Right triangles and elliptic curves

Karl Rubin

Ross Reunion July 2007

Karl Rubin (UCI)

Right triangles and elliptic curves

Ross Reunion, July 2007 1 / 34

< (F) >

Rational right triangles

Question

Given a positive integer *d*, is there a right triangle with rational sides and area *d*?

Rational right triangles

Question

Given a positive integer *d*, is there a right triangle with rational sides and area *d*?

"Answer"

Suppose *d* is a positive integer, not divisible by the square of an integer bigger than 1. Let a = 1 if *d* is odd, and a = 2 if *d* is even, and

$$n = \#\{(x, y, z) \in \mathbb{Z}^3 : x^2 + 2ay^2 + 8z^2 = d/a\}$$
$$m = \#\{(x, y, z) \in \mathbb{Z}^3 : x^2 + 2ay^2 + 32z^2 = d/a\}$$

counting *integer* solutions (positive, negative, or zero) x, y, z.

Theorem (Tunnell, 1983)

If $n \neq 2m$, then there is **no** rational right triangle with area d.

Conjecture

If n = 2m, then there is a rational right triangle with area d.

Karl Rubin (UCI)

< A

"Answer"

Suppose *d* is a positive squarefree integer, and a = (d, 2). Let $n = \#\{(x, y, z) : x^2 + 2ay^2 + 8z^2 = d/a\}$ $m = \#\{(x, y, z) : x^2 + 2ay^2 + 32z^2 = d/a\}$

d	1	2	3	5	6	7	11	41	157	$5, 6, \text{ or } 7 \pmod{8}$	
n	2	2	4	0	0	0	12	32	0	0	
т	2	2	4	0	0	0	4	16	0	0	
											 4

"Answer"

					d	ri	ght 1	triar	ngle with are	a d	
	1						none				
					2				none		
					3				none		
					5		(1	3/2,	20/3, 41/6)		
					6				(3,4,5)		
					7		(24	(5, 3)	35/12, 337/6	0)	
					11			, .	none	,	
					41		(40/	(3, 1)	23/20,881/6	50)	
				1	57		、 <i>/</i>	,	?	,	
						I					
d	1	2	3	5	6	7	11	41	··· 157 ···	$5, 6, \text{ or } 7 \pmod{8}$	
n	2	2	4	0	0	0	12	32	0	0	
т	2	2	4	0	0	0	4	16	0	0	
	I										< @ >
Karl Rubin (UCI)							Right tria	angles a	and elliptic curves	Ross Reunion, July 2007	6/34

d = 157

Karl Rubin (UCI)

Ross Reunion, July 2007 7 / 34

< 🗇 >

Conjecture

If *d* is positive, squarefree, and $d \equiv 5, 6, \text{ or } 7 \pmod{8}$, then there is a rational right triangle with area *d*.

This has been verified for d < 1,000,000.

Theorem

If p is a prime, and $p \equiv 5$ or 7 (mod 8), then there is a rational right triangle with area p.

Translating the question

... then
$$x = \frac{1}{2}A(A - C)$$
, $y = \frac{1}{2}A^{2}(C - A)$ is a solution of
 $y^{2} = x^{3} - d^{2}x$.

For example, the (3,4,5) triangle with area 6 gives the solution (-3,9) of $y^2 = x^3 - 36x$.

If (x, y) is a solution of $y^2 = x^3 - d^2x$, and $y \neq 0$...

is a right triangle with area d.

Theorem

There is a rational right triangle with area d

if and only if

there are rational numbers x and y, $y \neq 0$, such that $y^2 = x^3 - d^2x$.

The equation $y^2 = x^3 - d^2x$ is an elliptic curve.

$$y^2 = x^3 - 36x$$

Karl Rubin (UCI)

Ross Reunion, July 2007

< □ →
 12 / 34

In fact, this procedure gives *infinitely many* rational solutions (x, y) of the equation $y^2 = x^3 - 36x$, so there are *infinitely many* rational right triangles with area 6.

Some right triangles with area 6

3 4 5
$\frac{7}{10}$ $\frac{120}{7}$ $\frac{1201}{70}$
<u>4653</u> <u>3404</u> <u>7776485</u> <u>1319901</u>
$\frac{1437599}{168140} \frac{2017680}{1437599} \frac{2094350404801}{241717895860}$
3122541453 8518220204 18428872963986767525 2129555051 1040847151 18426872963986767525
43690772126393 246340567871640 5405257799550679424342410801 20528380655970 43690772126393 5405257799550679424342410801
13932152355102290403 3538478409041570404 64777297161660083702224674830494320965 884619602260392601 4644050785034096801 4108218358333926731621213541698169401
4156118808548967941769601 12149807353008887088572640 21205995309366331267522543206350800799677728019201 1012483946084073924047720 4156118808548967941769601 41205095309366331267522543206350800799677728019201
562877367533365225251484084003 9096802581030701081135787921001
318497209829094206727124168815460900807 81696716359207757071479211742813520050
85529544363814282559421823745196992028029282253 4547893737992821776112484676302621179493399749 Of a side of the <i>n</i> -th triangle each
$\frac{21929138919604046938040163740757618953522127258567818399}{9695960103990294331025984943841149560825669775138168420}$ have about $.38n^2$ digits.
107678491232504214629027366203609143706610045561881253147888227347 80304789058118229075736578976728059627039657981964461933622942851
$\frac{4176501831301593836542885342768698632287714214832228338980765292538706358393}{532238562805568241491490558109034414979225647633848461831768367334071583930}$
$\frac{1079105871168987121006453902668412947766665234341778960385423262791622087404656103595203}{185464238582965240005930623598461000901089939509317879474651315129697183338323743861199}$
$\frac{147041175918614622878834609763844737863238509623432216983017702582510228429899319383526553807398401}{178469808005426933574772082424814735518789288015046635216293058541114735982691961198186826871967440}$
$\frac{4070056675448836579024879370271267980956229345588329478596840641287521113637800807862653771565199120693031057597}{1429074121970706033855720824145960825829305397068390644927313224349582184764846147591378216841482986847582555601}{2}$
109565800840255303348288858797431823906809310407172779909217038823592251715733191650183352374951410179667208161417205417936007 1129923003469755304557346049544320420591109221557621543965948977234077059160030475517429354890371843356582997577908093920090

< 67 ▶

An elliptic curve is a curve defined by a cubic equation

$$y^2 = x^3 + ax + b$$

with constants $a, b \in \mathbb{Z}$, and

$$\Delta := -16(4a^3 + 27b^2) \neq 0.$$

(One should really think of it as a curve

$$Y^2Z = X^3 + aXZ^2 + bZ^3$$

in 2-dimensional projective space.)

Basic Problem

If *E* is the elliptic curve $y^2 = x^3 + ax + b$, find all rational solutions (rational points):

$$E(\mathbb{Q}) := \{ (x, y) \in \mathbb{Q} \times \mathbb{Q} : y^2 = x^3 + ax + b \} \cup \{ \infty \}$$

Example (Fermat)

If *E* is $y^2 = x^3 - x$, then $E(\mathbb{Q}) = \{(0,0), (1,0), (-1,0), \infty\}$. (In particular, there is no rational right triangle with area 1.)

The chord-and-tangent process can be used to define an addition law on $E(\mathbb{Q})$, making $E(\mathbb{Q})$ a commutative group.

< A >

16/34

Karl Rubin (UCI)

Right triangles and elliptic curves

Ross Reunion, July 2007

< 🗗 >

17/34

< 67 ▶

18/34

Theorem (Mordell, 1922)

The group $E(\mathbb{Q})$ is finitely generated.

In other words, although $E(\mathbb{Q})$ may be infinite, there is always a finite set of points $\{P_1, \ldots, P_r\}$ that generates all points in $E(\mathbb{Q})$ under the chord-and-tangent process.

In other other words,

$$E(\mathbb{Q})\cong\mathbb{Z}^r\times E(\mathbb{Q})_{\mathrm{tors}}$$

where

- r is a nonnegative integer, called the *rank* of E,
- $E(\mathbb{Q})_{\text{tors}}$ is a finite group, made up of all points that have finite order under the group law on *E*.

Karl Rubin (UCI)

Right triangles and elliptic curves

Theorem (Nagell, Lutz, 1937)

If $(x, y) \in E(\mathbb{Q})_{tors}$, then $x, y \in \mathbb{Z}$ and either y = 0 or $y^2 \mid \Delta$.

Theorem (Mazur, 1977)

 $E(\mathbb{Q})_{tors}$ is one of the following 15 groups:

•
$$\mathbb{Z}_n$$
, $1\leq n\leq 10$ or $n=12$,

•
$$\mathbb{Z}_2 \times \mathbb{Z}_{2m}$$
, $1 \leq m \leq 4$

and each of these groups occurs infinitely often.

Points of finite order

Example

If
$$E_d$$
 is $y^2 = x^3 - d^2x$ then

$$E_d(\mathbb{Q})_{\mathrm{tors}} = \{(0,0), (d,0), (-d,0), \infty\} \cong \mathbb{Z}_2 imes \mathbb{Z}_2.$$

Theorem

There is a rational right triangle with area *d* if and only if $E_d(\mathbb{Q})$ is infinite.

Corollary

If there is one rational right triangle with area d, then there are infinitely many.

Karl Rubin (UCI)

Right triangles and elliptic curves

Equivalently, there is a rational right triangle with area d if and only if the rank of $E(\mathbb{Q})$ is nonzero.

Unfortunately, the rank is very mysterious.

- There is no known algorithm guaranteed to determine the rank.
- It is not known which ranks can occur.

How can we determine the rank, or at least determine whether $E(\mathbb{Q})$ is infinite?

Another interpretation of the rank:

There is a constant $C \in \mathbb{R}^+$ such that

$$\#\{(x, y) \in E(\mathbb{Q}) : x = \frac{a}{b}, h(a), h(b) < B\}$$

grows like $C \log(B)^{\operatorname{rank}(E)/2}$.

Rank 28 (Elkies)

Currently the largest known rank is (at least) 28:

 $E: y^2 = x^3 + ax + b$

a = -321084198649208425360531331349416684014883684994863304027

 $P_1 = (-2124150091254381073292137463, 259854492051899599030515511070780628911531)$ $P_2 = (2334509866034701756884754537, 18872004195494469180868316552803627931531)$ $P_3 = (-1671736054062369063879038663, 251709377261144287808506947241319126049131)$ $P_4 = (2139130260139156666492982137, 36639509171439729202421459692941297527531)$ $P_5 = (1534706764467120723885477337, 85429585346017694289021032862781072799531)$ $P_6 = (-2731079487875677033341575063, 262521815484332191641284072623902143387531)$ $P_7 = (2775726266844571649705458537, 12845755474014060248869487699082640369931)$ $P_8 = (1494385729327188957541833817, 88486605527733405986116494514049233411451)$ $P_{0} = (1868438228620887358509065257, 59237403214437708712725140393059358589131)$ $P_{10} = (2008945108825743774866542537, 47690677880125552882151750781541424711531)$ $P_{11} = (2348360540918025169651632937, 17492930006200557857340332476448804363531)$ $P_{12} = (-1472084007090481174470008663, 246643450653503714199947441549759798469131)$ $P_{13} = (2924128607708061213363288937, 28350264431488878501488356474767375899531)$ $P_{14} = (5374993891066061893293934537, 286188908427263386451175031916479893731531)$ $P_{15} = (1709690768233354523334008557, 71898834974686089466159700529215980921631)$

Counting points modulo p

Instead of trying to "count" $E(\mathbb{Q})$, for primes p count

 $E(\mathbb{Z}_p) := \{ (x, y) \in \mathbb{Z}_p \times \mathbb{Z}_p : y^2 \equiv x^3 + ax + b \pmod{p} \} \cup \{ \infty \}$

 x
 $x^3 + 2x + 1 \pmod{5}$

 p = 5 0
 1

 p = 5 1
 4

 2 3
 3

 3 4
 4

 4 3 3

 so $E(\mathbb{Z}_5)$ has 7 points.
 4 3

y

1,4

2, 3

2, 3

Theorem (Gauss)

If E_d is the elliptic curve $y^2 = x^3 - d^2x$ and $p \nmid 2d$, then

•
$$\#(E(\mathbb{Z}_p)) = p + 1$$
 if $p \equiv 3 \pmod{4}$,

•
$$\#(E(\mathbb{Z}_p)) = p + 1 - 2\left(\frac{d}{p}\right)u$$
 if $p \equiv 1 \pmod{4}$, where
 $\left(\frac{d}{p}\right)$ is the Legendre symbol,
 $p = u^2 + v^2$, v is even, and $u \equiv v + 1 \pmod{4}$.

Idea of Birch and Swinnerton-Dyer

There is a "reduction map"

$$E(\mathbb{Q}) \longrightarrow E(\mathbb{Z}_p).$$

Birch and Swinnerton-Dyer suggested that the larger $E(\mathbb{Q})$ is, the larger the $E(\mathbb{Z}_p)$ should be "on average".

How can we measure this?

Birch and Swinnerton-Dyer computed

$$\prod_{p < X} \frac{\#(E(\mathbb{Z}_p))}{p}$$

as X grows.

Data for $y^2 = x^3 - d^2x$

Better idea

Define the *L*-function of *E*

$$L(E,s) := \prod_{p} \left(1 - \frac{1 + p - \#(E(\mathbb{Z}_p))}{p^s} + \frac{p}{p^{2s}} \right)^{-1}$$

As a function of the complex variable *s*, this product converges on the half-plane Re(s) > 3/2.

If we set s = 1 (!!!)

$$L(E,1)$$
 "=" $\prod_{p} \left(\frac{\#(E(\mathbb{Z}_{p}))}{p}\right)^{-1}$.

This is (the inverse of) what Birch and Swinnerton-Dyer were computing.

The Birch and Swinnerton-Dyer "heuristic" predicts that L(E, 1) should tell us how big $E(\mathbb{Q})$ is.

Theorem (Wiles et al., 1999)

L(E, s) has an analytic continuation to the entire complex plane.

Conjecture (Birch and Swinnerton-Dyer)

 $E(\mathbb{Q})$ is infinite if and only if L(E, 1) = 0.

(In fact, they conjecture that $rank(E) = ord_{s=1}L(E, s)$.)

Theorem

Theorem (Coates & Wiles, Kolyvagin, Kato, ...)

If $E(\mathbb{Q})$ is infinite, then L(E,1) = 0.

Now let E_d be the elliptic curve $y^2 = x^3 - d^2x$, where *d* is a positive squarefree integer.

Corollary

If there is a right triangle with rational sides and area d, then $L(E_d, 1) = 0$.

We need a way to evaluate $L(E_d, 1)$.

$L(E_d, 1)$

Theorem (Tunnell)

Let E_d be the elliptic curve $y^2 = x^3 - d^2x$. Then

$$L(E_d, 1) = \frac{a(n-2m)^2}{16\sqrt{d}} \int_1^\infty \frac{dx}{\sqrt{x^3 - x}}$$

where a = 1 if d is odd, and a = 2 if d is even, $n = \#\{(x, y, z) \in \mathbb{Z}^3 : x^2 + 2ay^2 + 8z^2 = d/a\},$ $m = \#\{(x, y, z) \in \mathbb{Z}^3 : x^2 + 2ay^2 + 32z^2 = d/a\}.$

Corollary

If there is a right triangle with rational sides and area d, then n = 2m.

- Prove the converse: if n = 2m, then there is a rational right triangle with area *d*.
- If n = 2m, find a rational right triangle with area *d*. (There is a method that works "most"(?) of the time, including d = 157, but not always.)
- Bow often is there a rational right triangle with area *d*, if *d* ≡ 1, 2, or 3 (mod 8)?
 (Guess: the number of such *d* < *X* is about *X*^{3/4}).

Right triangles and elliptic curves

Karl Rubin

Ross Reunion July 2007

Karl Rubin (UCI)

Right triangles and elliptic curves

Ross Reunion, July 2007 34 / 34

< (F) >