Right triangles and elliptic curves

Karl Rubin

Ross Reunion July 2007

Rational right triangles

Question

Given a positive integer d, is there a right triangle with rational sides and area d?

Rational right triangles

Question

Given a positive integer d, is there a right triangle with rational sides and area d?

Examples:

- $A=3, B=4, C=5$

$$
d=6
$$

- $A=\frac{3}{2}, B=\frac{20}{3}, C=\frac{41}{6}$

$$
d=5
$$

B
Theorem (Fermat, ~1640)
There is no rational right triangle with area 1.

"Answer"

Suppose d is a positive integer, not divisible by the square of an integer bigger than 1 . Let $a=1$ if d is odd, and $a=2$ if d is even, and

$$
\begin{aligned}
n & =\#\left\{(x, y, z) \in \mathbb{Z}^{3}: x^{2}+2 a y^{2}+8 z^{2}=d / a\right\} \\
m & =\#\left\{(x, y, z) \in \mathbb{Z}^{3}: x^{2}+2 a y^{2}+32 z^{2}=d / a\right\}
\end{aligned}
$$

counting integer solutions (positive, negative, or zero) x, y, z.

Theorem (Tunnell, 1983)

If $n \neq 2 m$, then there is no rational right triangle with area d.

Conjecture

If $n=2 m$, then there is a rational right triangle with area d.

"Answer"

Suppose d is a positive squarefree integer, and $a=(d, 2)$. Let

$$
\begin{gathered}
n=\#\left\{(x, y, z): x^{2}+2 a y^{2}+8 z^{2}=d / a\right\} \\
m=\#\left\{(x, y, z): x^{2}+2 a y^{2}+32 z^{2}=d / a\right\}
\end{gathered}
$$

d	1	2	3	5	6	7	11	41	\cdots	157	\cdots
5,6, or $7(\bmod 8)$											
n	2	2	4	0	0	0	12	32	0	0	
m	2	2	4	0	0	0	4	16	0	0	

"Answer"

d	right triangle with area d
1	none
2	none
3	none
5	$(3 / 2,20 / 3,41 / 6)$
6	$(3,4,5)$
7	$(24 / 5,35 / 12,337 / 60)$
11	none
41	$(40 / 3,123 / 20,881 / 60)$
157	$?$

d	1	2	3	5	6	7	11	41	\cdots	157	\cdots
5,6, or $7(\bmod 8)$											
n	2	2	4	0	0	0	12	32	0	0	
m	2	2	4	0	0	0	4	16	0	0	

$d=157$

$$
\begin{aligned}
A & =\frac{411340519227716149383203}{21666555693714761309610} \\
B & =\frac{6803298487826435051217540}{411340519227716149383203} \\
C & =\frac{224403517704336969924557513090674863160948472041}{8912332268928859588025535178967163570016480830}
\end{aligned}
$$

5,6 , and $7(\bmod 8)$

Conjecture

If d is positive, squarefree, and $d \equiv 5,6$, or $7(\bmod 8)$, then there is a rational right triangle with area d.

This has been verified for $d<1,000,000$.

Theorem

If p is a prime, and $p \equiv 5$ or $7(\bmod 8)$, then there is a rational right triangle with area p.

Translating the question

\ldots then $x=\frac{1}{2} A(A-C), y=\frac{1}{2} A^{2}(C-A)$ is a solution of

$$
y^{2}=x^{3}-d^{2} x .
$$

For example, the $(3,4,5)$ triangle with area 6 gives the solution $(-3,9)$ of $y^{2}=x^{3}-36 x$.

Translating the question

If (x, y) is a solution of $y^{2}=x^{3}-d^{2} x$, and $y \neq 0 \ldots$

Translating the question

Theorem
 There is a rational right triangle with area d
 if and only if
 there are rational numbers x and $y, y \neq 0$, such that $y^{2}=x^{3}-d^{2} x$.

The equation $y^{2}=x^{3}-d^{2} x$ is an elliptic curve.

$y^{2}=x^{3}-36 x$

$y^{2}=x^{3}-36 x$

In fact, this procedure gives infinitely many rational solutions (x, y) of the equation $y^{2}=x^{3}-36 x$, so there are infinitely many rational right triangles with area 6 .

Some right triangles with area 6

Elliptic curves

An elliptic curve is a curve defined by a cubic equation

$$
y^{2}=x^{3}+a x+b
$$

with constants $a, b \in \mathbb{Z}$, and

$$
\Delta:=-16\left(4 a^{3}+27 b^{2}\right) \neq 0 .
$$

(One should really think of it as a curve

$$
Y^{2} Z=X^{3}+a X Z^{2}+b Z^{3}
$$

in 2-dimensional projective space.)

Elliptic curves

Basic Problem

If E is the elliptic curve $y^{2}=x^{3}+a x+b$, find all rational solutions (rational points):

$$
E(\mathbb{Q}):=\left\{(x, y) \in \mathbb{Q} \times \mathbb{Q}: y^{2}=x^{3}+a x+b\right\} \cup\{\infty\}
$$

Example (Fermat)

If E is $y^{2}=x^{3}-x$, then $E(\mathbb{Q})=\{(0,0),(1,0),(-1,0), \infty\}$. (In particular, there is no rational right triangle with area 1.)

The chord-and-tangent process can be used to define an addition law on $E(\mathbb{Q})$, making $E(\mathbb{Q})$ a commutative group.

Elliptic curves

Elliptic curves

∞

$$
\begin{aligned}
& \text { Example (Fermat) } \\
& \text { If } E \text { is } y^{2}=x^{3}-x \text {, then } \\
& E(\mathbb{Q}) \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2} \text {. }
\end{aligned}
$$

Elliptic curves

Theorem (Mordell, 1922)

The group $E(\mathbb{Q})$ is finitely generated.
In other words, although $E(\mathbb{Q})$ may be infinite, there is always a finite set of points $\left\{P_{1}, \ldots, P_{r}\right\}$ that generates all points in $E(\mathbb{Q})$ under the chord-and-tangent process.
In other other words,

$$
E(\mathbb{Q}) \cong \mathbb{Z}^{r} \times E(\mathbb{Q})_{\text {tors }}
$$

where

- r is a nonnegative integer, called the rank of E,
- $E(\mathbb{Q})_{\text {tors }}$ is a finite group, made up of all points that have finite order under the group law on E.

Points of finite order

Theorem (Nagell, Lutz, 1937)
If $(x, y) \in E(\mathbb{Q})_{\text {tors }}$, then $x, y \in \mathbb{Z}$ and either $y=0$ or $y^{2} \mid \Delta$.

Theorem (Mazur, 1977)

$E(\mathbb{Q})_{\text {tors }}$ is one of the following 15 groups:

- $\mathbb{Z}_{n}, 1 \leq n \leq 10$ or $n=12$,
- $\mathbb{Z}_{2} \times \mathbb{Z}_{2 m}, 1 \leq m \leq 4$
and each of these groups occurs infinitely often.

Points of finite order

Example

If E_{d} is $y^{2}=x^{3}-d^{2} x$ then

$$
E_{d}(\mathbb{Q})_{\text {tors }}=\{(0,0),(d, 0),(-d, 0), \infty\} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}
$$

Theorem

There is a rational right triangle with area d if and only if $E_{d}(\mathbb{Q})$ is infinite.

Corollary

If there is one rational right triangle with area d, then there are infinitely many.

Ranks

Equivalently, there is a rational right triangle with area d if and only if the rank of $E(\mathbb{Q})$ is nonzero.

Unfortunately, the rank is very mysterious.

- There is no known algorithm guaranteed to determine the rank.
- It is not known which ranks can occur.

How can we determine the rank, or at least determine whether $E(\mathbb{Q})$ is infinite?

Ranks

Another interpretation of the rank:

There is a constant $C \in \mathbb{R}^{+}$such that

$$
\#\left\{(x, y) \in E(\mathbb{Q}): x=\frac{a}{b}, h(a), h(b)<B\right\}
$$

grows like $C \log (B)^{\operatorname{rank}(E) / 2}$.

Rank 28 (Elkies)

Currently the largest known rank is (at least) 28:

$$
\begin{aligned}
& E: y^{2}=x^{3}+a x+b \\
& a=-321084198649208425360531331349416684014883684994863304027 \\
& b=2206823154881955613890111083863921905341572013635896211771607846947800439724000275446 \\
& P_{1}=(-2124150091254381073292137463,259854492051899599030515511070780628911531) \\
& P_{2}=(2334509866034701756884754537,18872004195494469180868316552803627931531) \\
& P_{3}=(-1671736054062369063879038663,251709377261144287808506947241319126049131) \\
& P_{4}=(2139130260139156666492982137,36639509171439729202421459692941297527531) \\
& P_{5}=(1534706764467120723885477337,85429585346017694289021032862781072799531) \\
& P_{6}=(-2731079487875677033341575063,262521815484332191641284072623902143387531) \\
& P_{7}=(2775726266844571649705458537,12845755474014060248869487699082640369931) \\
& P_{8}=(1494385729327188957541833817,88486605527733405986116494514049233411451) \\
& P_{9}=(1868438228620887358509065257,59237403214437708712725140393059358589131) \\
& P_{10}=(2008945108825743774866542537,47690677880125552882151750781541424711531) \\
& P_{11}=(2348360540918025169651632937,17492930006200557857340332476448804363531) \\
& P_{12}=(-1472084007090481174470008663,246643450653503714199947441549759798469131) \\
& P_{13}=(2924128607708061213363288937,28350264431488878501488356474767375899531) \\
& P_{14}=(5374993891066061893293934537,286188908427263386451175031916479893731531) \\
& P_{15}=(1709690768233354523334008557,71898834974686089466159700529215980921631)
\end{aligned}
$$

Counting points modulo p

Instead of trying to "count" $E(\mathbb{Q})$, for primes p count

$$
E\left(\mathbb{Z}_{p}\right):=\left\{(x, y) \in \mathbb{Z}_{p} \times \mathbb{Z}_{p}: y^{2} \equiv x^{3}+a x+b \quad(\bmod p)\right\} \cup\{\infty\}
$$

Example

$E: y^{2}=x^{3}+2 x+1$
$p=5$

x	$x^{3}+2 x+1(\bmod 5)$	y
0	1	1,4
1	4	2,3
2	3	-
3	4	2,3
4	3	-

so $E\left(\mathbb{Z}_{5}\right)$ has 7 points.

Counting points modulo p

Theorem (Gauss)

If E_{d} is the elliptic curve $y^{2}=x^{3}-d^{2} x$ and $p \nmid 2 d$, then

- $\#\left(E\left(\mathbb{Z}_{p}\right)\right)=p+1$ if $p \equiv 3(\bmod 4)$,
- $\#\left(E\left(\mathbb{Z}_{p}\right)\right)=p+1-2\left(\frac{d}{p}\right) u$ if $p \equiv 1(\bmod 4)$, where

$$
\begin{aligned}
& \left(\frac{d}{p}\right) \text { is the Legendre symbol, } \\
& p=u^{2}+v^{2}, v \text { is even, and } u \equiv v+1(\bmod 4) .
\end{aligned}
$$

Idea of Birch and Swinnerton-Dyer

There is a "reduction map"

$$
E(\mathbb{Q}) \longrightarrow E\left(\mathbb{Z}_{p}\right) .
$$

Birch and Swinnerton-Dyer suggested that the larger $E(\mathbb{Q})$ is, the larger the $E\left(\mathbb{Z}_{p}\right)$ should be "on average".

How can we measure this?
Birch and Swinnerton-Dyer computed

$$
\prod_{p<X} \frac{\#\left(E\left(\mathbb{Z}_{p}\right)\right)}{p}
$$

as X grows.

Data for $y^{2}=x^{3}-d^{2} x$

Better idea

Define the L-function of E

$$
L(E, s):=\prod_{p}\left(1-\frac{1+p-\#\left(E\left(\mathbb{Z}_{p}\right)\right)}{p^{s}}+\frac{p}{p^{2 s}}\right)^{-1}
$$

As a function of the complex variable s, this product converges on the half-plane $\operatorname{Re}(s)>3 / 2$.

If we set $s=1$ (!!!)

$$
L(E, 1) "=" \prod_{p}\left(\frac{\#\left(E\left(\mathbb{Z}_{p}\right)\right)}{p}\right)^{-1}
$$

This is (the inverse of) what Birch and Swinnerton-Dyer were computing.

Better idea

The Birch and Swinnerton-Dyer "heuristic" predicts that $L(E, 1)$ should tell us how big $E(\mathbb{Q})$ is.

Theorem (Wiles et al., 1999)

$L(E, s)$ has an analytic continuation to the entire complex plane.

Conjecture (Birch and Swinnerton-Dyer)
 $E(\mathbb{Q})$ is infinite if and only if $L(E, 1)=0$.

(In fact, they conjecture that $\operatorname{rank}(E)=\operatorname{ord}_{s=1} L(E, s)$.)

Theorem

Theorem (Coates \& Wiles, Kolyvagin, Kato, ...)
 If $E(\mathbb{Q})$ is infinite, then $L(E, 1)=0$.

Now let E_{d} be the elliptic curve $y^{2}=x^{3}-d^{2} x$, where d is a positive squarefree integer.

Corollary

If there is a right triangle with rational sides and area d, then $L\left(E_{d}, 1\right)=0$.

We need a way to evaluate $L\left(E_{d}, 1\right)$.

$L\left(E_{d}, 1\right)$

Theorem (Tunnell)

Let E_{d} be the elliptic curve $y^{2}=x^{3}-d^{2} x$. Then

$$
L\left(E_{d}, 1\right)=\frac{a(n-2 m)^{2}}{16 \sqrt{d}} \int_{1}^{\infty} \frac{d x}{\sqrt{x^{3}-x}}
$$

where $a=1$ if d is odd, and $a=2$ if d is even,

$$
\begin{aligned}
n & =\#\left\{(x, y, z) \in \mathbb{Z}^{3}: x^{2}+2 a y^{2}+8 z^{2}=d / a\right\} \\
m & =\#\left\{(x, y, z) \in \mathbb{Z}^{3}: x^{2}+2 a y^{2}+32 z^{2}=d / a\right\}
\end{aligned}
$$

Corollary

If there is a right triangle with rational sides and area d, then $n=2 m$.

Open questions

(1) Prove the converse: if $n=2 m$, then there is a rational right triangle with area d.
(2) If $n=2 m$, find a rational right triangle with area d. (There is a method that works "most"(?) of the time, including $d=157$, but not always.)
(3) How often is there a rational right triangle with area d, if $d \equiv 1,2$, or $3(\bmod 8)$?
(Guess: the number of such $d<X$ is about $X^{3 / 4}$).

Right triangles and elliptic curves

Karl Rubin

Ross Reunion July 2007

