Name:	
I (WIIIC.	

Math 230C final, with solutions

June 15, 2005, 1:30-3:30pm

Closed book, no notes or other aids. Justify your answers carefully and completely. Use the back of the page if necessary, and there is a blank page at the end for extra space. There are 7 problems.

Z, **Q**, **R**, and **C** denote the integers, rational, real and complex numbers, respectively.

(12 points) 1. Suppose that $K \subset F$ are finite fields. Prove that F/K is a Galois extension and $\operatorname{Gal}(F/K)$ is cyclic.

Let q = |K|, so q is a power of some prime p. Let d = [F : K], so $|F| = q^d$. Define $\phi : F \to F$ by $\phi(x) = x^q$. If $x, y \in F$ then $\phi(xy) = \phi(x)\phi(y)$, and since F has characteristic p, $\phi(x+y) = (x+y)^q = x^q + y^q = \phi(x) + \phi(y)$, so ϕ is an automorphism of F. Further $x^q = x$ for every $x \in K$, so ϕ restricted to K is the identity. Thus $\phi \in \operatorname{Aut}(F/K)$.

Suppose ϕ has order k in $\operatorname{Aut}(F/K)$. Then $x^{q^k} = \phi^k(x) = x$ for every $x \in F$. Since the polynomial $t^{q^k} - t$ has at most q^k roots in F, we conclude that $|F| = q^d \le q^k$ so $d \le k$. Since $|\operatorname{Aut}(F/K)| \le [F:K] = d$, we conclude that $|\operatorname{Aut}(F/K)| = d$ and ϕ is a generator. Since $|\operatorname{Aut}(F/K)| = [F:K]$, we also conclude that F/K is Galois (Lemma 4.31 and Theorem 4.34).

(12 points) 2. Classify all groups of order 275 (= $11 \cdot 25$).

Let G be a group of order 275. The number of Sylow 11-subgroups of G is 1 modulo 11 and divides 25, so it must be 1. Therefore the Sylow 11-subgroup H is normal in G. Let K be a Sylow 5-subgroup of G; since $H \cap K = \{e\}$ and |H||K| = |G| it follows that G is a semidirect product

$$G = H \rtimes_{\phi} K$$

for some homomorphism $\phi: K \to \operatorname{Aut}(H)$. Since H has order 11, $\operatorname{Aut}(H)$ is cyclic of order 10. Every group of order $25 = 5^2$ is abelian, so there are two possibilities for K.

Case 1: $K \cong \mathbb{Z}/25\mathbb{Z}$. In this case there are (up to composition with an automorphism of K) exactly two homomorphisms from K to $\operatorname{Aut}(H)$, the trivial one and one whose image is the (unique) subgroup of order 5. This gives rise to two groups:

 G_1 : the direct product $\mathbf{Z}/11\mathbf{Z} \times \mathbf{Z}/25\mathbf{Z}$,

 G_2 : one nonabelian semidirect product $\mathbb{Z}/11\mathbb{Z} \rtimes \mathbb{Z}/25\mathbb{Z}$.

Case 2: $K \cong \mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}$. In this case there are (up to composition with an automorphism of K) exactly two homomorphisms from K to $\operatorname{Aut}(H)$, the trivial one and one whose image is the (unique) subgroup of order 5. This gives rise to two groups:

 G_3 : the direct product $\mathbf{Z}/11\mathbf{Z} \times \mathbf{Z}/5\mathbf{Z} \times \mathbf{Z}/5\mathbf{Z}$

 G_4 : one nonabelian semidirect product $\mathbb{Z}/11\mathbb{Z} \rtimes (\mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z})$.

Thus every group of order 275 is isomorphic to G_i for i=1, 2, 3, or 4. Further, $G_1 \ncong G_2$ since G_1 is abelian and G_2 is not, similarly $G_3 \ncong G_4$, and if $i \le 2$ and $j \ge 3$ then $G_i \ncong G_j$ because the Sylow 5-subgroups of G_i are cyclic and the Sylow 5-subgroups of G_j are not. Thus the 4 groups G_1 , G_2 , G_3 , G_4 are pairwise nonisomorphic.

- (12 points) 3. Let R be a commutative ring with identity. An R-module F is called flat if whenever $f: M \to N$ is an injective homomorphism of R-modules, the induced map $M \otimes_R F \to N \otimes_R F$ is injective.
 - (a) Show that $\mathbb{Z}/2\mathbb{Z}$ is not a flat \mathbb{Z} -module.
 - (b) More generally, if R is a principal ideal domain and A is a nonzero finitely generated torsion R-module, show that A is not flat.
 - (a) Recall that if M is a **Z**-module then $M \otimes_{\mathbf{Z}} (\mathbf{Z}/2\mathbf{Z}) \cong M/2M$. Let $N = \mathbf{Z}$ and $M = 2\mathbf{Z}$, with the natural (injective) inclusion $M \hookrightarrow N$. Tensoring with $\mathbf{Z}/2\mathbf{Z}$ induces the zero map $(2\mathbf{Z}/4\mathbf{Z}) \to (\mathbf{Z}/2\mathbf{Z})$, which is not injective. (I.e., $2 \otimes 1$ in not zero in $(2\mathbf{Z}) \otimes_{\mathbf{Z}} (\mathbf{Z}/2\mathbf{Z})$, but it is zero in $\mathbf{Z} \otimes_{\mathbf{Z}} (\mathbf{Z}/2\mathbf{Z})$.) Thus $\mathbf{Z}/2\mathbf{Z}$ is not flat.
 - (b) By the classification theorem we have $A \cong \bigoplus_{i=1}^k (R/d_iR)$ where the d_i are nonzero non-units in R and $d_1 \mid d_2 \mid \cdots \mid d_k$. If M is an R-module then $M \otimes A \cong \bigoplus_i (M \otimes (R/d_iR)) \cong \bigoplus_i M/d_iM$.

As in part (a), consider the injective map $d_k R \hookrightarrow R$. Tensoring with A gives the map

$$\bigoplus_{i=1}^k d_k R/d_i d_k R \to \bigoplus_{i=1}^k R/d_i R$$

which is zero since $d_k R \subset d_i R$ for every i. Thus A is not flat.

(12 points) 4. Let ρ be a representation of S_4 acting on a complex vector space, and suppose $\rho = \bigoplus_{i=1}^k \rho_i$ with irreducible representations ρ_i . Suppose that the character χ of ρ satisfies

$$\chi(e) = 4$$
 where e is the identity
 $\chi((1\ 2)) = 2$
 $\chi((1\ 2\ 3)) = 1$
 $\chi((1\ 2\ 3\ 4)) = 0$
 $\chi((1\ 2)(3\ 4)) = 0$

- (a) What is the dimension of ρ ?
- (b) What is k?
- (c) How many of the ρ_i are the trivial representation?
- (d) Give (explicitly) the characters of all the ρ_i .
- (a) $\dim(\rho) = \chi(e) = 4$.
- (b) Let $X_2, X_3, X_4, X_{2,2}$ be the sets of 2-cycles, 3-cycles, 4-cycles, and products of two disjoint 2-cycles, respectively, in S_4 . Along with $\{e\}$, these are the conjugacy classes in S_4 , so every character is constant on each of these sets. We also compute easily that $|X_2|=6$, $|X_3|=8$, $|X_4|=6$, $|X_{2,2}|=3$. We compute

$$\langle \chi, \chi \rangle = \frac{1}{24} \sum_{\sigma \in S_4} |\chi(\sigma)|^2 = \frac{1}{24} (4^2 + 6 \cdot 2^2 + 8 \cdot 1^2) = 2.$$

Also, if χ_i is the character of ρ_i , then

$$\langle \chi, \chi \rangle = \langle \sum_{i} \chi_{i}, \sum_{j} \chi_{j} \rangle = \sum_{i,j} \langle \chi_{i}, \chi_{j} \rangle.$$

Since $\langle \chi_i, \chi_j \rangle$ is 1 if $\chi_i = \chi_j$ and 0 otherwise, we conclude that k = 2 and $\chi_1 \neq \chi_2$.

(c) Let ψ be the character of the trivial representation, so $\psi(\sigma) = 1$ for every $\sigma \in S_4$. The number of ρ_i that are the trivial representation is

$$\langle \chi, \psi \rangle = \frac{1}{24} \sum_{\sigma \in S_4} \chi(\sigma) \bar{\psi}(\sigma) = \frac{1}{24} (4 + 6 \cdot 2 + 8 \cdot 1) = 1.$$

(d) We can renumber if necessary so that ρ_1 is the trivial representation, i.e., $\chi_1 = \psi$. Then $\chi = \psi + \chi_2$ so $\chi_2 = \chi - \psi$ is given by $\chi_2(e) = 3$, and $\chi_2(\sigma)$ is 1, 0, -1, or -1 if $\sigma \in X_2$, X_3 , X_4 , or $X_{2,2}$, respectively.

- (12 points) 5. Suppose $f(x) \in \mathbf{Q}[x]$ is an irreducible polynomial of degree 5, with 3 real roots and 2 complex (non-real) roots. Let K denote the splitting field of f, and let G be the image of $\mathrm{Gal}(K/\mathbf{Q})$ in S_5 , viewing $\mathrm{Gal}(K/\mathbf{Q})$ as permutations of the roots of f.
 - (a) Show that G contains a 2-cycle.
 - (b) Show that G contains a 5-cycle.
 - (a) Complex conjugation (restricted to K) is an element of $Gal(K/\mathbb{Q})$ that switches the two complex roots and fixes the three real roots. Hence complex conjugation gives a 2-cycle in G.
 - (b) Note that the map $\operatorname{Gal}(K/\mathbf{Q}) \to G$ is injective: every automorphism of K that fixes all the roots of f fixes the splitting field K of f. Let α be a root of f in K. Since f is irreducible, $[\mathbf{Q}(\alpha):\mathbf{Q}]=5$. Hence $|G|=|\operatorname{Gal}(K/\mathbf{Q})|=[K:\mathbf{Q}]=5[K:\mathbf{Q}(\alpha)]$ is divisible by 5, so G has an element of order 5. The only elements of order 5 in S_5 are 5-cycles.

(16 points) 6. For each part below, give your answer and a brief justification.

- (a) Suppose G is a finite group, and $K \neq \{e\}$ is a subgroup of G that is contained in *every* subgroup of G other than $\{e\}$. Explain why the order of G must be a power of a prime.
- (b) Give a maximal ideal of the ring $\mathbf{Z} \times \mathbf{Z}[x]$.
- (c) Is $\{(n,n): n \in \mathbf{Z}\}$ a prime ideal of $\mathbf{Z} \times \mathbf{Z}$?
- (d) Give two square matrices A and B with entries in \mathbb{Q} , such that the minimal polynomial of A is equal to the minimal polynomial of B and the characteristic polynomial of A is equal to the characteristic polynomial of B, but A and B are not similar.
- (a) Suppose p is a prime dividing the order of G, and let H_p be a Sylow p-subgroup of G. Then $H_p \neq \{e\}$, so $K \leq H_p$. If |G| has two distinct prime factors p and q, then $K \leq H_p \cap H_q = \{e\}$, which is impossible. Thus |G| is a prime power.
- (b) $2\mathbf{Z} \times \mathbf{Z}[x]$ is an ideal, and it's maximal because $(\mathbf{Z} \times \mathbf{Z}[x])/(2\mathbf{Z} \times \mathbf{Z}[x]) \cong \mathbf{Z}/2\mathbf{Z}$ is a field.
- (c) No. It's not an ideal because (1,1) is in it but (1,1)(1,0)=(1,0) is not.

(d)

both have characteristic polynomial x^4 and minimal polynomial x^2 , but they have different elementary divisors $(x^2, x, x \text{ versus } x^2, x^2)$.

(16 points) 7. For each part below, answer True or False and give a brief justification.

- (a) True or False: if F is a finite extension of \mathbf{Q} in \mathbf{C} , and $F \not\subset \mathbf{R}$, then $[F:\mathbf{Q}]$ must be even.
- (b) True or False: if F is a finite extension of \mathbf{Q} in \mathbf{C} , and $\sqrt{-2} \in F$, then $[F:\mathbf{Q}]$ must be even.
- (c) True or False: if ρ_1 and ρ_2 are irreducible complex representations of a finite group, then $\rho_1 \otimes \rho_2$ is irreducible.
- (d) True or False: If A and B are finite commutative groups, and for every $n \in \mathbf{Z}^+$ we have

$$|\{a \in A : na = 0\}| = |\{b \in B : nb = 0\}|,$$

(i.e., those two sets have the same cardinality) then $A \cong B$.

- (a) False: let $\alpha = e^{2\pi i/3}\sqrt[3]{2}$ where $\sqrt[3]{2}$ is the real cube root of 2. Then $\mathbf{Q}(\alpha) \not\subset \mathbf{R}$ but $[\mathbf{Q}(\alpha):\mathbf{Q}]=3$.
- (b) True: $[F : \mathbf{Q}] = [F : \mathbf{Q}(\sqrt{-2})][\mathbf{Q}(\sqrt{-2}) : \mathbf{Q}] = 2[F : \mathbf{Q}(\sqrt{-2})].$
- (c) False: for example, S_3 has an irreducible representation of degree 2 but no irreducible representations of degree 4 (and $\dim(\rho_1 \otimes \rho_2) = \dim(\rho_1) \dim(\rho_2)$).
- (d) True. We can write $A = \bigoplus_p (\bigoplus_i \mathbf{Z}/p^{n_{i,p}}\mathbf{Z})$, and similarly for B. From the sequence of integers $r_{k,p} = \log_p(|\{a \in A : p^k a = 0\}|)$, for $k \geq 1$, we can recover the integers $n_{i,p}$ (up to reordering) for each p, and similarly for B. (For example, $r_{k+1,p} r_{k,p}$ is the number of $n_{i,p}$ that are larger than k.) Thus A and B will have the same elementary divisors, so they are isomorphic.