Math 230C, problem set #4

due May 13

- (1) Rotman #9.70
- (2) Rotman #9.86
- (3) Rotman #9.89
- (4) Rotman #9.90
- (5) Rotman #9.95
- (6) Suppose that R is a commutative ring and M is a cyclic R-module.
 - (a) Show that the tensor algebra T(M) is isomorphic to the symmetric algebra $\operatorname{Sym}(M)$.
 - (b) Show that the exterior algebra $\bigwedge(M)$ is isomorphic to $R \oplus M$ (with what multiplication?).
- (7) Suppose R is a (commutative) integral domain, and $I \subset R$ is an ideal.
 - (a) Show that $\wedge^2(I)$ is a torsion R-module.
 - (b) Let $R = \mathbf{Z}[x, y]$ and I = (x, y). Show that $\wedge^2(I) \neq 0$. Hint: show that the map

$$(ax + by, cx + dy) \mapsto ad - bc$$

from $I \times I$ to R/I is R-bilinear, and use this to construct a nonzero map from $\wedge^2(I)$.