- 1. Give complete and precise definitions for the following.
 - (a) **F** is a field.

A subset $\mathbf{F} \subseteq \mathbf{C}$ is a field if and only if

- 1 is an element of **F** and
- if $a, b \in \mathbf{F}$ then a + b, a b, ab, and (if $b \neq 0$) a/b are all in \mathbf{F} .
- (b) φ is an automorphism of **F**.

Let **F** be a field. Then a function $\varphi : \mathbf{F} \to \mathbf{F}$ is an automorphism of **F** if and only if

- $\varphi(a+b) = \varphi(a) + \varphi(b)$ and $\varphi(ab) = \varphi(a)\varphi(b)$ for every $a, b \in F$ and
- φ is a bijection.
- 2. Short answer questions. Give brief justifications.
 - (a) What is the minimal polynomial of $(1+\sqrt{5})/2$ over \mathbf{Q} ? Let $\theta = (1+\sqrt{5})/2$. Then $\theta - 1/2 = \sqrt{5}/2$, so $(\theta - 1/2)^2 = 5/4$, i.e., $\theta^2 - \theta - 1 = 0$. Let $f(x) = x^2 - x - 1$. Then $f(\theta) = 0$. Moreover, $f(x-2) = x^2 - 5x + 5$, which is irreducible over \mathbf{Q} by Eisenstein's criterion with p = 5. Therefore, f(x) is also irreducible over \mathbf{Q} and hence f(x) is the minimal polynomial of $(1 + \sqrt{5})/2$ over \mathbf{Q} .
 - (b) Is $\cos(1^{\circ})$ algebraic over \mathbf{Q} ? Why or why not? $\cos(1^{\circ})$ is algebraic over \mathbf{Q} . (Note: "algebraic" is *not* the same as "constructible".) To see this, note that $e^{2\pi i/360} = e^{\pi i/180}$ is algebraic over \mathbf{Q} because it is a root of the polynomial

 $x^{360} - 1 \in \mathbf{Q}[x]$. Therefore $\mathbf{Q}(e^{\pi i/180})$ is an algebraic extension of \mathbf{Q} . As such, any element of $\mathbf{Q}(e^{\pi i/180})$ is algebraic over \mathbf{Q} . Finally,

$$\frac{e^{\pi i/180} + e^{-\pi i/180}}{2} = \frac{\cos(\frac{\pi}{180}) + i\sin(\frac{\pi}{180}) + \cos(\frac{\pi}{180}) - i\sin(\frac{\pi}{180})}{2} = \cos(\frac{\pi}{180}) = \cos(1^{\circ}).$$

 $\mathbf{Q}(e^{\pi i/180})$ is closed under addition and division, so the fact that $e^{-\pi i/180} = 1/e^{\pi i/180}$ implies $\cos(1^\circ) \in \mathbf{Q}(e^{\pi i/180})$, completing the proof.

Alternatively, we may use a constructability argument. First, use trigonometric identities to write

$$\begin{array}{lcl} \cos(3^\circ) & = & \cos(1^\circ + 2^\circ) = \cos(1^\circ)\cos(2^\circ) - \sin(1^\circ)\sin(2^\circ) \\ & = & \cos(1^\circ)(\cos^2(1^\circ) - \sin^2(1^\circ)) - 2\sin^2(1^\circ)\cos(1^\circ) \\ & = & \cos^3(1^\circ) - 3\sin^2(1^\circ)\cos(1^\circ) = 4\cos^3(1^\circ) - 3\cos(1^\circ). \end{array}$$

We saw in homework 4 that that a regular pentagon is constructible, which is equivalent to constructing 72°. We also know that 60° is constructible by the section on trisecting an angle. Since an angle is constructible if and only if its cosine and sine are constructible, we conclude, using the fact that

$$\cos(12^{\circ}) = \cos(72^{\circ} - 60^{\circ}) = \cos(72^{\circ})\cos(60^{\circ}) - \sin(72^{\circ})\sin(60^{\circ}),$$

that $\cos(12^{\circ})$ is also constructible. Using the half angle formula twice gives

$$\cos(3^{\circ}) = \frac{1 - \cos(6^{\circ})}{2} = \frac{1 - \frac{1}{2}(1 - \cos(12^{\circ}))}{2},$$

which means $\cos(3^{\circ})$ is also constructible. By theorem 4 on page 32, this implies that $\cos(3^{\circ})$ is algebraic over **Q**. Let $f(x) \in \mathbf{Q}[x]$ be a nonzero polynomial satisfied by $\cos(3^{\circ})$. Then $\cos(1^{\circ})$ satisfies the nonzero polynomial $f(4x^3 - 3x)$.

(c) Is $e^{2\pi i/7}$ constructible? Why or why not?

Constructing $e^{2\pi i/7}$ is equivalent to constructing a regular 7-gon, which is impossible by lemma 24b since 7 is not a Fermat prime.

1

(d) True or False: If a polynomial in $\mathbf{Q}[x]$ has no roots in \mathbf{R} then it is irreducible in $\mathbf{Q}[x]$. Explain your answer.

False. Consider the polynomial $f(x) = (x^2+1)^2 \in \mathbf{Q}[x]$, which has no roots in \mathbf{R} . This polynomial is not irreducible in $\mathbf{Q}[x]$ since it factors as two polynomials in $\mathbf{Q}[x]$ of lower degree, $(x^2+1)\cdot(x^2+1)$.

3. Suppose that **F** is a field, **E** is an extension of **F**, and $[\mathbf{E}:\mathbf{F}]=2$. Show that there is a $k \in \mathbf{F}$ such that $\mathbf{E}=\mathbf{F}(\sqrt{k})$.

Since $[\mathbf{E}:\mathbf{F}]=2$, the fields \mathbf{E} and \mathbf{F} are not equal and hence there is some $c\in\mathbf{E}\backslash\mathbf{F}$. Consider the tower of fields $\mathbf{F}\subseteq\mathbf{F}(c)\subseteq\mathbf{E}$. Since $[\mathbf{E}:\mathbf{F}(c)][\mathbf{F}(c):\mathbf{F}]=[\mathbf{E}:\mathbf{F}]=2$ and $[\mathbf{F}(c):\mathbf{F}]\neq 1$, we have $[\mathbf{F}(c):\mathbf{F}]=2$ and $[\mathbf{E}:\mathbf{F}(c)]=1$. The latter degree forces $\mathbf{F}(c)=\mathbf{E}$. $2=[\mathbf{F}(c):\mathbf{F}]=\deg_{\mathbf{F}}(c)$, so c satisfies some monic quadratic polynomial $x^2+bx+d\in\mathbf{F}[x]$. Using the quadratic formula, we have either

$$c = \frac{1 + \sqrt{b^2 - 4ad}}{2}$$
 or $c = \frac{1 - \sqrt{b^2 - 4ad}}{2}$

In either case, $\mathbf{E} = \mathbf{F}(c) = \mathbf{F}(\sqrt{b^2 - 4ad})$. Take $k = b^2 - 4ad$ to complete the proof.

4. (a) Show that $\mathbf{Q}(\sqrt[5]{2}) = \mathbf{Q}(\sqrt[5]{4})$.

First, $\sqrt[5]{4} = \sqrt[5]{2}$ so $\sqrt[5]{4} \in \mathbf{Q}(\sqrt[5]{2})$. Since $\mathbf{Q}(\sqrt[5]{4})$ is the smallest field containing both \mathbf{Q} and $\sqrt[5]{4}$, we have $\mathbf{Q}(\sqrt[5]{2}) \supseteq \mathbf{Q}(\sqrt[5]{4})$. On the other hand

$$\sqrt[5]{4^3} = \sqrt[5]{2^6} = 2\sqrt[5]{2}$$

which implies $\sqrt[5]{2} \in \mathbf{Q}(\sqrt[5]{4})$ and hence $\mathbf{Q}(\sqrt[5]{2}) \subseteq \mathbf{Q}(\sqrt[5]{4})$.

(b) Show that $x^5 - 4$ is irreducible in $\mathbf{Q}[x]$ (Hint: use part a).

 x^5-4 is certainly a polynomial in $\mathbf{Q}[x]$ satisfied by $\sqrt[5]{4}$. The plan here is to show it is the minimal polynomial of $\sqrt[5]{4}$ over \mathbf{Q} , from which irreducibility follows by theorem 16. By Eisenstein's criterion at p=2, the polynomial $g(x)=x^5-2\in\mathbf{Q}[x]$ is irreducible over \mathbf{Q} . Since $g(\sqrt[5]{2})=0$, g(x) is the minimal polynomial of $\sqrt[5]{2}$ over \mathbf{Q} . Then using part a we have

$$[\mathbf{Q}(\sqrt[5]{4}):\mathbf{Q}] = [\mathbf{Q}(\sqrt[5]{2}):\mathbf{Q}] = 5.$$

Any polynomial in $\mathbf{Q}[x]$ satisfied by $\sqrt[5]{4}$ then must have degree at least 5, which forces $x^5 - 4$ to be the minimal polynomial of $\sqrt[5]{4}$ over \mathbf{Q} , and hence irreducible.

5. Suppose a is algebraic over \mathbf{Q} , and let $d = [\mathbf{Q}(a) : \mathbf{Q}]$. What are all the possibilities for $[\mathbf{Q}(a^3) : \mathbf{Q}]$? Illustrate your answer with concrete examples.

First, $a^3 \in \mathbf{Q}(a)$ so we have the tower of fields $\mathbf{Q} \subseteq \mathbf{Q}(a^3) \subseteq \mathbf{Q}(a)$. Then

$$d = [\mathbf{Q}(a) : \mathbf{Q}] = [\mathbf{Q}(a) : \mathbf{Q}(a^3)][\mathbf{Q}(a^3) : \mathbf{Q}].$$

Since a satisfies the polynomial $x^3 - a^3 \in \mathbf{Q}(a^3)[x]$, $[\mathbf{Q}(a) : \mathbf{Q}(a^3)] \leq 3$. Therefore $[\mathbf{Q}(a^3) : \mathbf{Q}]$ is either d, d/2, or d/3.

These three cases are all realizable. For the first, let a be any element of \mathbf{Q} . Then $\mathbf{Q} = \mathbf{Q}(a^3) = \mathbf{Q}(a)$ so $[\mathbf{Q}(a):\mathbf{Q}] = [\mathbf{Q}(a^3):\mathbf{Q}] = 1$.

For the second case, take $a = \omega$, where ω is a primitive third root of unity. Then from a theorem in lecture, $[\mathbf{Q}(a):\mathbf{Q}] = \varphi(3) = 2$ where φ is the Euler totient function. In this case $a^3 = 1$, so $\mathbf{Q}(a^3) = \mathbf{Q}$ and $[\mathbf{Q}(a^3):\mathbf{Q}] = 1$.

For the final case, take $a = \sqrt[3]{2}$ to be the real cube root of 2. In this case, $x^3 - 2$ is irreducible over **Q** by Eisenstein at p = 2, so $[\mathbf{Q}(a) : \mathbf{Q}] = 3$. However, $a^3 = 1$ so we again have $[\mathbf{Q}(a^3) : \mathbf{Q}] = 1$.