Math 124, problem set #2

due April 18, 2006

As usual, ${\bf Q}$ is the field of rational numbers.

- (1) Using the fact that $\sqrt[3]{2}$ is not constructible, give a simple proof that $\sqrt[3]{4}$ is not constructible.
- (2) Suppose **F** is a field, $k \in \mathbf{F}$, and $\sqrt{k} \notin F$.
 - (a) Show that the function $f: \mathbf{F}(\sqrt{k}) \to \mathbf{F}(\sqrt{k})$ defined by

$$f(a+b\sqrt{k}) = a - b\sqrt{k}$$

is a homomorphism (see problem 5 from problem set 1).

- (b) Show that if p(x) is a polynomial with coefficients in \mathbf{F} , and $c \in \mathbf{F}(\sqrt{k})$, then p(f(c)) = f(p(c)).
- (c) Conclude that if $c \in \mathbf{F}(\sqrt{k})$ is a root of p, then f(c) is also a root of p.
- (3) Show that $\sqrt{3} \notin \mathbf{Q}(\sqrt{2})$ and $\sqrt{2} \notin \mathbf{Q}(\sqrt{3})$.
- (4) Suppose p(x) is a polynomial with coefficients in \mathbf{Q} , and $p(\sqrt{2}+\sqrt{3})=0$. Use problems 2 and 3 above to show that $\sqrt{2}-\sqrt{3}$, $-\sqrt{2}+\sqrt{3}$, and $-\sqrt{2}-\sqrt{3}$ are also roots of p.

Deduce that the degree of p is at least 4.

(5) Find a polynomial p(x) of degree 4, with coefficients in \mathbb{Q} , that has $\sqrt{2} + \sqrt{3}$ as a root. (Hint: by problem 4, you know all the roots of this polynomial.)