Math 124, problem set #3
due April 25, 2006

(1) Find the greatest common divisor (gcd) of the polynomials \(f(x) = x^3 - 1 \) and \(g(x) = x^2 - 1 \). Write the gcd as a linear combination of \(f(x) \) and \(g(x) \).

(2) Factor \(x^6 - 1 \) into irreducible polynomials in \(\mathbb{Q}[x] \).

(3) Let \(f(x) \in \mathbb{F}[x] \) be a polynomial of degree \(n \). Show that there is an extension \(E \) of \(\mathbb{F} \), with \([E : \mathbb{F}] \leq n! \), such that \(f(x) \) factors into linear factors in \(E[x] \).

(4) Suppose \(a, b \) are algebraic over a field \(\mathbb{F} \).
 (a) Show that \([\mathbb{F}(a, b) : \mathbb{F}] \leq \deg_{\mathbb{F}}(a) \deg_{\mathbb{F}}(b) \).
 (b) Show that if \(\deg_{\mathbb{F}}(a) \) is relatively prime to \(\deg_{\mathbb{F}}(b) \), then
 \([\mathbb{F}(a, b) : \mathbb{F}] = \deg_{\mathbb{F}}(a) \deg_{\mathbb{F}}(b) \).
 (c) Show that if \(a \) and \(b \) are two different roots of \(x^3 - 2 \) then
 \([\mathbb{Q}(a, b) : \mathbb{Q}] \neq \deg_{\mathbb{Q}}(a) \deg_{\mathbb{Q}}(b) \).

(5) Suppose that \(E/\mathbb{F} \) is a field extension, and \([E : \mathbb{F}] = n \). Prove that if \(\alpha \in E \), then \(E = \mathbb{F}(\alpha) \) if and only if \(\deg_{\mathbb{F}}(\alpha) = n \).