Math 124, problem set #3

due April 25, 2006

- (1) Find the greatest common divisor (gcd) of the polynomials $f(x) = x^3 1$ and $g(x) = x^2 1$. Write the gcd as a linear combination of f(x) and g(x).
- (2) Factor $x^6 1$ into irreducible polynomials in $\mathbf{Q}[x]$.
- (3) Let $f(x) \in \mathbf{F}[x]$ be a polynomial of degree n. Show that there is an extension \mathbf{E} of \mathbf{F} , with $[\mathbf{E} : \mathbf{F}] \leq n!$, such that f(x) factors into linear factors in $\mathbf{E}[x]$.
- (4) Suppose a, b are algebraic over a field \mathbf{F} .
 - (a) Show that $[\mathbf{F}(a,b):\mathbf{F}] \leq \deg_{\mathbf{F}}(a) \deg_{\mathbf{F}}(b)$.
 - (b) Show that if $\deg_{\mathbf{F}}(a)$ is relatively prime to $\deg_{\mathbf{F}}(b)$, then

$$[\mathbf{F}(a,b):\mathbf{F}] = \deg_{\mathbf{F}}(a) \deg_{\mathbf{F}}(b).$$

(c) Show that if a and b are two different roots of $x^3 - 2$ then

$$[\mathbf{Q}(a,b):\mathbf{Q}] \neq \deg_{\mathbf{Q}}(a) \deg_{\mathbf{Q}}(b).$$

(5) Suppose that \mathbf{E}/\mathbf{F} is a field extension, and $[\mathbf{E}:\mathbf{F}]=n$. Prove that if $\alpha \in \mathbf{E}$, then $\mathbf{E}=\mathbf{F}(\alpha)$ if and only if $\deg_{\mathbf{F}}(\alpha)=n$.