Math 124, problem set #4

due May 2, 2006

- (1) (a) Find a number a so that $\mathbf{Q}(a) = \mathbf{Q}(\sqrt{2}, \sqrt{3})$. Justify your answer. (b) Show that $\mathbf{Q}(e^{2\pi i/35}) = \mathbf{Q}(e^{2\pi i/5}, e^{2\pi i/7})$. Give a complete and explicit justification.
- (2) Let **F** be the smallest field with the property that $x^7 7$ factors into a product of linear factors in $\mathbf{F}[x]$. What is $[\mathbf{F}:\mathbf{Q}]$?
- (3) Factor $x^{10} 1$ into irreducible polynomials in $\mathbf{Q}[x]$. Explain why each factor is irreducible. What is $[\mathbf{Q}(e^{2\pi i/10}):\mathbf{Q}]$?
- (4) Suppose **F** is a field and p is a prime. Let $f(x) = x^{p-1} + x^{p-2} + \cdots + x + 1$, and let $f(x) = \prod_{i=1}^d g_i(x)$ be the factorization of f(x) into irreducible polynomials in $\mathbf{F}[x]$. Prove that the irreducible factors $g_i(x)$ all have the same degree. (Hint: if a_i is a root of g_i , show that $\mathbf{F}(a_i) = \mathbf{F}(a_i)$ for every i and j.)
- (5) Suppose a is a root of the (irreducible) polynomial $x^4 + x^3 + x^2 + x + 1 \in \mathbf{Q}[x]$.
 - (a) Show that $a + a^{-1}$ is a root of $x^2 + x 1$.
 - (b) Show that $[\mathbf{Q}(a+a^{-1}):\mathbf{Q}]=2.$
 - (c) Show that $[\mathbf{Q}(a) : \mathbf{Q}(a+a^{-1})] = 2$.
 - (d) Deduce that a is constructible.
 - (e) Deduce that a regular pentagon is constructible