Math 124, problem set #6

due May 23, 2006

- (1) Find all fields **K** such that $\mathbf{Q} \subseteq \mathbf{K} \subseteq \mathbf{Q}(e^{2\pi i/5})$. Justify your answer.
- (2) Suppose **E** is a normal extension of **F**, and **F** \subseteq **K** \subseteq **E**. Show that if $\phi \in G(\mathbf{K}/\mathbf{F})$, then ϕ can be extended to an automorphism of **E** (i.e., there is an automorphism ψ of **E** whose restriction to **K** is ϕ).
- (3) Let $\mathbf{E} = \mathbf{Q}(\sqrt[6]{5})$. What is $G(\mathbf{E}/\mathbf{Q})$? What is $\mathbf{E}^{G(\mathbf{E}/\mathbf{Q})}$?
- (4) Show that if \mathbf{K}/\mathbf{F} is a finite extension, then there is a normal extension \mathbf{E} of \mathbf{F} that contains \mathbf{K} .
- (5) Use problem (4) to show that if \mathbf{E}/\mathbf{F} is a finite extension (not necessarily normal) then there are only finitely many fields \mathbf{K} such that $\mathbf{F} \subset \mathbf{K} \subset \mathbf{E}$.