Math 124, problem set #7

due May 30, 2006

- (1) Let $\mathbf{E} = \mathbf{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$ and $\mathbf{F} = \mathbf{Q}(\sqrt{3})$.
 - (a) Show that \mathbf{E}/\mathbf{Q} is normal. (This should not be difficult.)
 - (b) Describe $G(\mathbf{E}/\mathbf{Q})$ and $G(\mathbf{E}/\mathbf{F})$.
 - (c) List all subgroups of $G(\mathbf{E}/\mathbf{F})$ and the corresponding fields $\mathbf{K}, \mathbf{F} \subset \mathbf{K} \subset \mathbf{E}$.
- (2) Let **E** be the splitting field of the polynomial $f(x) = x^4 5 \in \mathbf{Q}[x]$.
 - (a) Show that $G(\mathbf{E}/\mathbf{Q}) = D_8$, the dihedral group of order 8. (Recall that D_8 is the group generated by r and s, where $r^4 = 1$, $s^2 = 1$, and $rs = sr^{-1}$.)
 - (b) List all intermediate fields $\mathbf{F},\ \mathbf{Q}\subset\mathbf{F}\subset\mathbf{E}.$ Which ones are normal extensions of \mathbf{Q} ?
- (3) Suppose **F** is a field, $a \in \mathbf{F}$, and a is not a cube in **F**. Let $\omega = e^{2\pi i/3}$.
 - (a) If $\omega \in \mathbf{F}$, show that $\mathbf{F}(\sqrt[3]{a})/\mathbf{F}$ is normal.
 - (b) If $\omega \notin \mathbf{F}$, show that $\mathbf{F}(\sqrt[3]{a})/\mathbf{F}$ is *not* normal. (Hint: you will have to show that $\omega \notin \mathbf{F}(\sqrt[3]{a})$, this requires proof.)
- (4) Show that if \mathbf{E}/\mathbf{F} and \mathbf{K}/\mathbf{F} are normal extensions, then $\mathbf{E}\mathbf{K}/\mathbf{F}$ is a normal extension.
- (5) Find a normal extension \mathbf{E}/\mathbf{K} and a normal extension \mathbf{K}/\mathbf{F} such that \mathbf{E}/\mathbf{F} is not normal.