(1) Show that if G is a finite commutative group, then G is solvable.

(2) Show that D_{2n}, the dihedral group of order $2n$, is solvable.

(3) Show that if G is a solvable group, and H is a subgroup of G, then H is solvable.

(4) Suppose F is a field, $f(x) \in F[x]$ is an irreducible polynomial, and r_1, r_2 are roots of f. Show that the fields $F(r_1)$ and $F(r_2)$ are isomorphic (i.e., there is a bijection $\phi : F(r_1) \rightarrow F(r_2)$ that preserves addition and multiplication).

(5) What is wrong with the following proof of the (false) statement that every normal extension E/F is solvable?

"Proof". We proceed by induction on $[E:F]$. If $[E:F] = 1$, then $E = F$ and E/F is solvable.

Suppose $[E:F] > 1$, and let p be a prime dividing $[E:F]$. Then $G(E/F)$ has an element ϕ of order p. Let H be the subgroup of order p generated by ϕ, and let $K = E^H$. Then E/K is normal of prime order p. Since $[K:F] < [E:F]$, by induction we know that K/F is solvable. Therefore we have

$$F = F_0 \subset F_1 \subset \cdots \subset F_N = K$$

with each F_{i+1}/F_i normal of prime degree. Now the tower

$$F = F_0 \subset F_1 \subset \cdots \subset F_N = K \subset F_{N+1} = E$$

shows that E/F is solvable.