(1) There is a rational number \(r \), with denominator less than 50, whose decimal expansion begins 1.2941176470588\ldots. Express \(r \) as a fraction. (You may need to use a calculator to compute a continued fraction.)

(2) Suppose \(x > 0 \) and \(x \) has the continued fraction expansion \([a_0, a_1, a_2, \ldots]\). What is the continued fraction of \(1/x \)? (If you can’t see the answer, try some experiments.)

(3) Suppose \(r \) is a rational number. Show that there are only finitely many rational numbers \(m/n \) (with \(m, n \in \mathbb{Z} \)) such that
\[
\left| r - \frac{m}{n} \right| < \frac{1}{n^2}.
\]

(4) Suppose \(r \) is an irrational number. Show that there are infinitely many rational numbers \(m/n \) (with \(m, n \in \mathbb{Z} \)) such that
\[
\left| r - \frac{m}{n} \right| < \frac{1}{n^2}.
\]

For the next three problems an RSA cipher is set up with modulus \(N = 12091 = 107 \cdot 113 \) and encryption exponent \(e = 3 \).

(5) Encrypt the message 2107.

(6) What is the decryption exponent?

(7) Suppose the encrypted message (ciphertext) received is 9812. Decrypt it.

In the Diffie-Hellman key exchange, Alice and Bob (being computationally challenged) agree to use the prime modulus 101 and the primitive root 2. Alice chooses the secret exponent 20 and Bob chooses the secret exponent 41.

(8) What does Alice send to Bob?

(9) What does Bob send to Alice?

(10) What is the shared secret?