Pre-Putnam Exam Solutions

1. Find all polynomials p(z) with real coefficients satisfying the differential equation

7%[3:]9(3:)] = 3p(x) + 4p(z + 1), —00 < T < 0.

Solution:

Suppose we have a solution of degree n, so that p(x) = ap,z"™ +a,_12" "1 +---+a1x+ap. By looking
at the coefficient of 2™, we have 7(n + 1)a,, = 3a,, + 4a,, which implies n = 0 (in assuming that our
polynomial has degree n, we have assumed a,, # 0). Then, we see that for any constant ¢, p(z) = ¢
satisfies our differential equation.

2. Show that
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for all positive integers n.
Solution:

We proceed by induction on n. Notice 1 < 2v/1. Define
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and assume as our induction hypothesis that f(k) < 2v/k. Consider
1 1
: k1) = F(k) + ——— < 2+ ——.
) I )= Ik VEk+1 VEk+1

Since we would like an expression on the right involving 2v/k 4 1, it is natural to consider
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Using this on the right-hand side of (*), we have f(k+1) < 2vk + 1.

3. Show that
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for all positive real numbers x,y, and z.
Solution:
Using the Arithmetic Mean - Geometric Mean inequality, we have
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and our result follows.




4. Let T be an acute triangle. Inscribe a pair of rectangles R and S in T as shown in the figure
A(R) + A(S
below. Let A(X) denote the area of any polygon X. Find the maximum value of %)(),

where T" ranges over all acute triangles, and R and S range over all inscribed rectangles.

Solution:

Let bg, hg,bs, hs,br, and hr be the lengths of the bases and heights of R, S, and T, respectively.
Observing the similarity of three triangles, we have
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Thus .
A(S) = bshs = i(hT —hg — hs)hs,

and for any fixed R and T, this area is maximized when hg = %(hT — hg) (see this using properties
of parabolas or the first derivative test). Also,
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Thus, for any fixed R and T, if we choose A(S) to be maximal,
A(R) + A(S) _ 3= (hr — hp)hg + gZ (Pr5he)?

A(T) sbrhr
For any fixed T, this quantity is maximized when hp = %hT (again using properties of parabolas or
A(R) + A(S)
A(T)

A(R) = brhr = L (hy — hr)hg.

the first derivative test). Substituting this in for hr, we see that the maximum value of
is %, independent of T

Is there a better solution?




5. Let ay,asq,...,a100 be integers. Show that there exist 4, j, k, and [ with 7 # j and @ # [ such that
a; — a; + ap — a; is a multiple of 2004.

Solution:

Consider the multiset S = {a, + an|1 < n < m < 100}. This multiset has (') = 4950 > 2004
elements, and so by the pigeonhole principle, two of these elements must be congruent modulo 2004.
Let these two elements be a. + aq and a; + a;. Since {c,d} # {j,1}, one element of {c,d} is & {j,1};
set 4 to be that element of {c,d}, and k to be the other. Then a; — a; + ar — a; is a multiple of 2004,
with ¢ #£ j and 7 # [.

6. Find all real valued functions F'(x) defined for all real x # 0,1 satisfying the functional equation

F@)+F(xx1)1+x

Solution:

Notice that for any = # 0, 1,
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