Pre-Putnam Exam

This exam was designed to be taken in 3 hours without notes, books, calculators, collaboration, or interruption. Good luck.

1. Find all polynomials $p(x)$ with real coefficients satisfying the differential equation

$$
7 \frac{d}{d x}[x p(x)]=3 p(x)+4 p(x+1), \quad-\infty<x<\infty
$$

2. Show that

$$
1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\cdots+\frac{1}{\sqrt{n}}<2 \sqrt{n}
$$

for all positive integers n.
3. Show that

$$
\frac{x}{y}+\frac{y}{z}+\frac{z}{x} \geq 3
$$

for all positive real numbers x, y, and z.
4. Let T be an acute triangle. Inscribe a pair of rectangles R and S in T as shown in the figure below. Let $A(X)$ denote the area of any polygon X. Find the maximum value of $\frac{A(R)+A(S)}{A(T)}$, where T ranges over all acute triangles, and R and S range over all inscribed rectangles.

5. Let $a_{1}, a_{2}, \ldots, a_{100}$ be integers. Show that there exist i, j, k, and l with $i \neq j$ and $i \neq l$ such that $a_{i}-a_{j}+a_{k}-a_{l}$ is a multiple of 2004 .
6. Find all real valued functions $F(x)$ defined for all real $x \neq 0,1$ satisfying the functional equation

$$
F(x)+F\left(\frac{x-1}{x}\right)=1+x .
$$

