(1) Suppose $K \subset F \subset L$ are number fields, p_K is a prime of K, p_F is a prime of F above p_K, and p_L is a prime of L above p_F.
(a) Show that
$$e(p_L/p_K) = e(p_L/p_F)e(p_F/p_K), \quad f(p_L/p_K) = f(p_L/p_F)f(p_F/p_K).$$
(b) If a is a fractional ideal of L, show that $N_{L/K}a = N_{F/K}(N_{L/F}(a))$.

In the following problems, K is a number field, p is a rational prime, p is a prime of K above p, and $|\cdot|_p$, $||\cdot||_p$ are the absolute values on K extending $|\cdot|_p$, normalized so that

\[*\] $$|p|_p = 1/p, \quad ||x||_p = \#(O_K/p)^{-\text{ord}_p(x)}.$$

(2) For which real number c is $||x||_p = |x|^c_p$?

(3) Suppose K is a number field, and $|\cdot|$ is an absolute value whose restriction to \mathbb{Q} is $|\cdot|_p$.
(a) Show that $|x| \leq 1$ for every $x \in O_K$.
(b) Show that there is a prime p of K above p such that $|\cdot| = |\cdot|_p$.

(4) Show that if $x \in \mathbb{Q}$, then $\prod_{p \leq \infty} |x|_p = 1$.

(5) Suppose K is a number field, Galois over \mathbb{Q}. Show using \[*\] that if $x \in K$ and p is a rational prime, then
$$\prod_{p | p} ||x||_p = |N_{K/\mathbb{Q}}x|_p$$

(6) Use the proof of Hensel’s Lemma to find a rational number r such that
$$|r^2 - 2|_7 < .001$$

(7) Suppose m is a positive integer. Prove that \mathbb{Q}_p contains a primitive m-th root of unity if and only if $m \equiv 1 \pmod{p}$.