Pre-Putnam Exam Solutions

1. Find all polynomials $p(x)$ with real coefficients satisfying the differential equation

$$
7 \frac{d}{d x}[x p(x)]=3 p(x)+4 p(x+1), \quad-\infty<x<\infty .
$$

Solution:
Suppose we have a solution of degree n, so that $p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$. By looking at the coefficient of x^{n}, we have $7(n+1) a_{n}=3 a_{n}+4 a_{n}$, which implies $n=0$ (in assuming that our polynomial has degree n, we have assumed $a_{n} \neq 0$). Then, we see that for any constant $c, p(x)=c$ satisfies our differential equation.
2. Show that

$$
1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\cdots+\frac{1}{\sqrt{n}}<2 \sqrt{n}
$$

for all positive integers n.
Solution:
We proceed by induction on n. Notice $1<2 \sqrt{1}$. Define

$$
f(n)=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\cdots+\frac{1}{\sqrt{n}},
$$

and assume as our induction hypothesis that $f(k)<2 \sqrt{k}$. Consider

$$
\begin{equation*}
f(k+1)=f(k)+\frac{1}{\sqrt{k+1}}<2 \sqrt{k}+\frac{1}{\sqrt{k+1}} . \tag{*}
\end{equation*}
$$

Since we would like an expression on the right involving $2 \sqrt{k+1}$, it is natural to consider

$$
2(\sqrt{k+1}-\sqrt{k})=2 \frac{(\sqrt{k+1}-\sqrt{k})(\sqrt{k+1}+\sqrt{k})}{\sqrt{k+1}+\sqrt{k}}=2 \frac{1}{\sqrt{k+1}+\sqrt{k}}>\frac{1}{\sqrt{k+1}} .
$$

Using this on the right-hand side of $\left(^{*}\right)$, we have $f(k+1)<2 \sqrt{k+1}$.
3. Show that

$$
\frac{x}{y}+\frac{y}{z}+\frac{z}{x} \geq 3
$$

for all positive real numbers x, y, and z.
Solution:
Using the Arithmetic Mean - Geometric Mean inequality, we have

$$
\frac{\frac{x}{y}+\frac{y}{z}+\frac{z}{x}}{3} \geq \sqrt[3]{\frac{x}{y} \frac{y}{z} \frac{z}{x}}=1
$$

and our result follows.
4. Let T be an acute triangle. Inscribe a pair of rectangles R and S in T as shown in the figure below. Let $A(X)$ denote the area of any polygon X. Find the maximum value of $\frac{A(R)+A(S)}{A(T)}$, where T ranges over all acute triangles, and R and S range over all inscribed rectangles.

Solution:

Let $b_{R}, h_{R}, b_{S}, h_{S}, b_{T}$, and h_{T} be the lengths of the bases and heights of R, S, and T, respectively. Observing the similarity of three triangles, we have

$$
\frac{b_{T}}{h_{T}}=\frac{b_{R}}{h_{T}-h_{R}}=\frac{b_{S}}{h_{T}-h_{R}-h_{S}} .
$$

Thus

$$
A(S)=b_{S} h_{S}=\frac{b_{T}}{h_{T}}\left(h_{T}-h_{R}-h_{S}\right) h_{S}
$$

and for any fixed R and T, this area is maximized when $h_{S}=\frac{1}{2}\left(h_{T}-h_{R}\right)$ (see this using properties of parabolas or the first derivative test). Also,

$$
A(R)=b_{R} h_{R}=\frac{b_{T}}{h_{T}}\left(h_{T}-h_{R}\right) h_{R}
$$

Thus, for any fixed R and T, if we choose $A(S)$ to be maximal,

$$
\frac{A(R)+A(S)}{A(T)}=\frac{\frac{b_{T}}{h_{T}}\left(h_{T}-h_{R}\right) h_{R}+\frac{b_{T}}{h_{T}}\left(\frac{h_{T}-h_{R}}{2}\right)^{2}}{\frac{1}{2} b_{T} h_{T}}
$$

For any fixed T, this quantity is maximized when $h_{R}=\frac{1}{3} h_{T}$ (again using properties of parabolas or the first derivative test). Substituting this in for h_{R}, we see that the maximum value of $\frac{A(R)+A(S)}{A(T)}$ is $\frac{2}{3}$, independent of T.

Is there a better solution?
5. Let $a_{1}, a_{2}, \ldots, a_{100}$ be integers. Show that there exist i, j, k, and l with $i \neq j$ and $i \neq l$ such that $a_{i}-a_{j}+a_{k}-a_{l}$ is a multiple of 2004 .

Solution:
Consider the multiset $S=\left\{a_{n}+a_{m} \mid 1 \leq n<m \leq 100\right\}$. This multiset has $\binom{100}{2}=4950>2004$ elements, and so by the pigeonhole principle, two of these elements must be congruent modulo 2004. Let these two elements be $a_{c}+a_{d}$ and $a_{j}+a_{l}$. Since $\{c, d\} \neq\{j, l\}$, one element of $\{c, d\}$ is $\notin\{j, l\}$; set i to be that element of $\{c, d\}$, and k to be the other. Then $a_{i}-a_{j}+a_{k}-a_{l}$ is a multiple of 2004, with $i \neq j$ and $i \neq l$.
6. Find all real valued functions $F(x)$ defined for all real $x \neq 0,1$ satisfying the functional equation

$$
F(x)+F\left(\frac{x-1}{x}\right)=1+x .
$$

Solution:
Notice that for any $x \neq 0,1$,

$$
\begin{aligned}
F(x)+F\left(\frac{x-1}{x}\right) & =1+x \\
F\left(\frac{x-1}{x}\right)+F\left(\frac{1}{1-x}\right) & =1+\frac{x-1}{x}, \text { and } \\
F\left(\frac{1}{1-x}\right)+F(x) & =1+\frac{1}{1-x} .
\end{aligned}
$$

Thus

$$
\begin{aligned}
2 F(x) & =F(x)+F\left(\frac{x-1}{x}\right)-F\left(\frac{x-1}{x}\right)-F\left(\frac{1}{1-x}\right)+F\left(\frac{1}{1-x}\right)+F(x) \\
& =1+x-\left(1+\frac{x-1}{x}\right)+1+\frac{1}{1-x} \\
& =1+x+\frac{1-x}{x}+\frac{1}{1-x}
\end{aligned}
$$

and

$$
F(x)=\frac{1}{2}\left(1+x+\frac{1-x}{x}+\frac{1}{1-x}\right) .
$$

