1. Suppose \(A \) and \(B \) are two \(n \times n \) matrices that commute (i.e., \(AB = BA \)), and for some positive integers \(r, s \) we have \(A^r = I \) (the \(n \times n \) identity matrix) and \(B^s = 0 \) (the \(n \times n \) zero matrix). Prove that \(A + B \) is invertible, and find its inverse.

(Andreescu & Gelca)

2. Suppose \(a, b \geq 2 \) are relatively prime integers. For every \(n \geq 0 \) show that \(a^{2n} + b^{2n} \) is not divisible by \(a + b \).

(Gelca)

3. Find all polynomials \(P(x) \) with real coefficients such that
\[
(x + 1)P(x) = (x - 2)P(x + 1)
\]

4. Let \(P(x) \) be a polynomial of odd degree with real coefficients. Show that the equation \(P(P(x)) = 0 \) has at least as many real roots as the equation \(P(x) = 0 \), (counted without multiplicities).

(Russian Mathematical Olympiad, 2002)

5. Given an integer \(n \geq 1 \), find all polynomials \(P(x) \) with real coefficients such that \(P(x)^n = P(x^n) \) for all \(x \).

6. Suppose you have a calculator, but the multiplication and division buttons are broken. You can add, subtract, and take the inverse of a number, but you can’t multiply or divide. Show how to find the product of (any) two numbers, using at most 20 operations.

(Quantum)

7. Let \(S \) be the smallest set of rational functions (i.e., ratios of polynomials) in the variables \(x \) and \(y \) with real coefficients, containing \(f(x, y) = x \) and \(g(x, y) = y \) and closed under addition, subtraction, and taking reciprocals. Show that \(S \) does not contain the constant function \(h(x, y) = 1 \).

(American Mathematical Monthly, 1987)

8. Suppose \(f(x) \) is a polynomial with integer coefficients, and for some integer \(k \) there are \(k \) consecutive integers \(n, n + 1, \ldots, n + k - 1 \) such that none of the values \(f(n), f(n + 1), \ldots, f(n + k - 1) \) are divisible by \(k \). Prove that \(f(x) \) has no integer roots.

(Putnam, 1940)

9. Suppose that \(a \) and \(b \) are different roots of \(x^3 + x - 1 \). Prove that \(ab \) is a root of \(x^3 - x^2 - 1 \).

10. Show that there are infinitely many positive integers \(a \) such that \(n^4 + a \) is not prime for any natural number \(n \).