(1) Suppose $K \subset F$, $K \subset L$ are number fields, and p is a prime of K.
 (a) Show that if p splits completely in F and L, then p splits completely in FL.
 (b) Show that p splits completely in F if and only if p splits completely in the Galois closure of F/K.

(2) Suppose G is a finite abelian group, and let $\hat{G} = \{\chi : \chi : G \to \mathbb{C}^\times\}$.
 (a) Show that if $g \in G$ then
 $$\sum_{\chi \in \hat{G}} \chi(g) = \begin{cases} 0 & \text{if } g \neq 1 \\ |G| & \text{if } g = 1. \end{cases}$$
 (b) Show that if $\chi \in \hat{G}$ then
 $$\sum_{g \in G} \chi(g) = \begin{cases} 0 & \text{if } \chi \neq 1 \\ |G| & \text{if } \chi = 1. \end{cases}$$

(3) (a) Describe as best you can the rational primes that split completely in $\mathbb{Q}(\sqrt[3]{2})$.
 (b) Describe as best you can the rational primes that split completely in $\mathbb{Q}(\sqrt[3]{2}, e^{2\pi i/3})$.
 (c) Describe as best you can the primes of $\mathbb{Q}(e^{2\pi i/3})$ that split completely in $\mathbb{Q}(\sqrt[3]{2}, e^{2\pi i/3})$.
 (d) How are these three sets of primes related?

(4) In class we used the fact that for any number field K and cycle ϵ, there is a finite abelian extension F/K such that $N_{F/K}I_F(\epsilon) \subset \varphi_{\epsilon}$. Prove this when $K = \mathbb{Q}$ and $\epsilon = p\infty$.