Math 232B
Problem set #5, due March 3, 2008

(1) Suppose \(K \) is a local field, \(\mathcal{O} \) is its ring of integers, \(\mathfrak{p} \) is the maximal ideal of \(\mathcal{O} \), \(k = \mathcal{O}/\mathfrak{p} \) is the residue field, \(p \) is the characteristic of \(k \), and \(F \) is a formal group over \(\mathcal{O} \). For every \(n \geq 1 \), let \(F(p^n) \) denote the set \(\mathfrak{p}^n \) with the group structure defined by \(F \).

(a) Prove that \(F(p^n)/F(p^{n+1}) \cong k \).

(b) Prove that \(F(\mathfrak{p}) \) contains no prime-to-\(p \) torsion.

(c) Prove that for \(n \) sufficiently large, \(F(p^n) \) is isomorphic to \(\mathbb{Z}_p^d \) for some \(d \) (hint: use the isomorphism from \(F \) to the additive formal group). How large does \(n \) have to be? What is \(d \)?

(2) Suppose \(k \) is a field of characteristic \(p \) and \(F \) is a formal group over \(k \). Let \([p](X) \in k[[X]]\) be the endomorphism of \(F \) “multiplication by \(p \)” (i.e., \([p](X) = F(F(F(\ldots F(X,X),X,\ldots),X)\) with \(p \) \(X \)'s).

(a) Show that there is an integer \(h \), \(1 \leq h \leq \infty \) such that \([p](X) \equiv uXp^h \pmod{\deg p^h + 1}\) for some \(u \in k^\times \). The integer \(h \) is called the height of \(F \).

(b) Exhibit formal groups of height 1 and \(\infty \).

(3) Suppose \(K \) is a local field, \(\pi \) is a uniformizing parameter of \(K \), \(k \) is the residue field of \(K \), and \(f \in \mathcal{F}_\pi \). Let \(\tilde{F}_f \) denote the formal group over \(k \) that is the reduction of \(F_f \). What is the height of \(\tilde{F}_f \)?