Math 232C

Problem set #3, due April 23, 2008

In all of these problems, suppose G is a finite group.

- (1) Suppose A is an induced G-module. Show that $\hat{H}^{-1}(G,A)=0$.
- (2) Suppose A is a G-module and H is a subgroup of G. Show that the corestriction map

 $\operatorname{Cor}: \hat{H}^0(H,A) \to \hat{H}^0(G,A)$

defined by dimension-shifting the natural map $\operatorname{Cor}: \hat{H}^{-1}(H,A) \to \hat{H}^{-1}(G,A)$, is the same as the map induced by multiplication by $\sum_{g \in G/H} g$ on A^H . (You will need to use the explicit definition of dimension-shifting.)

- (3) Suppose that A is a |G|-module (A is not necessarily finite), and let $f:A\to A$ be multiplication by |G|.
 - (a) If f is an isomorphism, show that $\hat{H}^q(G,A) = 0$ for every A.
 - (b) Give an example of G and A such that f is injective, but not all $\hat{H}^q(G, A)$ are zero.
 - (c) Give an example of G and A such that f is surjective, but not all $\hat{H}^q(G,A)$ are zero.
- (4) Show that if $n \in \mathbf{Z}^+$ and F/K is a finite Galois extension of degree prime to n, then the map $K^{\times}/(K^{\times})^n \to F^{\times}/(F^{\times})^n$ is injective.
- (5) Suppose G is cyclic. Compute the Herbrand quotient for each of the modules
 - (a) \mathbf{Z} (with trivial action)
 - (b) **Q/Z** (with trivial action)
 - (c) the ideal $I_G \subset \mathbf{Z}[G]$

You should be able to do (b) and (c) with minimal effort, after doing (a).