Math 232C

Problem set #6, to discuss on May 19, 2008

Fix a rational prime p, and for every prime ℓ let A_{ℓ} be the subgroup of $\overline{\mathbf{Q}}_p^{\times}$ generated by a primitive ℓ -th root of unity ζ_{ℓ} and $p^{1/\ell}$. Let $G = \operatorname{Gal}(\overline{\mathbf{Q}}_p/\mathbf{Q}_p)$.

- (1) Show that $A_{\ell} \cong (\mathbf{Z}/\ell\mathbf{Z})^2$ as abelian groups.
- (2) Show that $A_{\ell}^* \cong A_{\ell}$ as G-modules (recall that $A_{\ell}^* = \operatorname{Hom}(A_{\ell}, \mu_{\infty})$).
- (3) Show that there is an exact sequence of G-modules

$$0 \longrightarrow \boldsymbol{\mu}_{\ell} \longrightarrow A_{\ell} \longrightarrow \mathbf{Z}/\ell\mathbf{Z} \longrightarrow 0.$$

- (4) Compute $H^i(G, A_\ell)$ for $i \geq 0$ (use Tate duality for H^2).
- (5) If $\ell \neq p$ show that A_{ℓ} is unramified, and compute $H^1_{\mathrm{ur}}(G, A_{\ell})$.