You are strongly urged to write up and hand in a careful and complete solution to (at least) one of these problems.

1. The horizontal line \(y = c \) intersects the curve \(y = 2x - 3x^3 \) in the first quadrant as in the figure. Find \(c \) so that the areas of the two shaded regions are equal. (Putnam, 1993)

2. A not uncommon calculus mistake is to believe that the product rule for derivatives says that \((fg)' = f'g'\). If \(f(x) = e^{x^2} \), determine, with proof, whether there exists an open interval \((a, b)\) and a nonzero function \(g \) defined on \((a, b)\) such that this wrong product rule is true for \(x \) in \((a, b)\). (Putnam 1988)

3. If \(n \) is a positive integer, prove for \(x > 0 \) that \[
\frac{x^n}{(x + 1)^{n+1}} \leq \frac{n^n}{(n + 1)^{n+1}}.
\]

4. (a) Assuming that temperature is a continuous function, show that at any given time on the earth’s equator there are two points directly opposite points that have the same temperature.

 (b) A rock climber starts to climb a mountain at 7:00 AM on Saturday and gets to the top at 5:00 PM. She camps on top and climbs back down on Sunday, starting at 7:00 AM. Show that at some time of day on Sunday she was at the same elevation as she was at that time on Saturday.

5. Suppose \(f \) and \(g \) are differentiable functions and for every \(x \), \(f'(x)g(x) \neq f(x)g'(x) \). Show that between every two zeros of \(f \) there is a zero of \(g \).

6. (a) Suppose that \(f(x) \) is continuous and \(f(x) \geq 0 \) on \([0, 1]\). Show that if \(\int_0^1 (x - 1)^2 f(x) \, dx = 0 \), then \(f(x) = 0 \) on \([0, 1]\).

 (b) Find all continuous functions \(f(x) \) on \([0, 1]\) such that \(f(x) \geq 0 \) and
 \[
 \int_0^1 f(x) \, dx = 1, \quad \int_0^1 xf(x) \, dx = \alpha, \quad \int_0^1 x^2 f(x) \, dx = \alpha^2
 \]

 where \(\alpha \) is a given real number. (Putnam, 1964)

7. Suppose \(f \) is a differentiable function on \([0, 1]\), \(f(0) = 0 \), and \(f'(x) \) is strictly increasing. Show that \(f(x)/x \) is strictly increasing.

8. Suppose \(f \) is a continuous function on \([0, 1]\), \(n \in Z^+ \), \(\int_0^1 x^k f(x) \, dx = 0 \) for \(k = 0, 1, \ldots, n - 1 \), and \(\int_0^1 x^n f(x) \, dx = 1 \). Show that there is a \(c \in [0, 1] \) such that \(|f(c)| > 2^n(n + 1) \).