1. Evaluate
\[
\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{\sqrt{k^2 + n^2}}.
\]
(Larson 6.8.5)

2. Let \(f(x) = \sum_{k=1}^{n} a_k \sin(kx) \) with \(a_i \in \mathbb{R}, \ n \geq 1 \). Prove that if \(f(x) \leq |\sin(x)| \) for every \(x \), then
\[
\left| \sum_{k=1}^{n} ka_k \right| \leq 1.
\]
(Putnam 1967)

3. Let \(f(x) \) be a continuous function on \([0, 1]\) such that \(f(0) = f(1) = 0 \) and \(2f(x) + f(y) = 3f\left(\frac{2x+y}{3}\right) \) for all \(x, y \in [0, 1] \). Prove that \(f(x) = 0 \) for all \(x \in [0, 1] \). (Vietnamese Mathematical Olympiad, 1999)

4. Suppose \(f : \mathbb{R} \to \mathbb{R} \) is a continuous function such that \(|f(x) - f(y)| \geq |x - y| \) for every \(x, y \in \mathbb{R} \). Show that the range of \(f \) is \(\mathbb{R} \), i.e., for every \(c \in \mathbb{R} \) there is an \(x \) such that \(f(x) = c \).

(De Souza & Silva, Berkeley Problems in Mathematics)

5. Suppose that \(f : \mathbb{R} \to \mathbb{R} \) is a continuous function, and define
\[
g(x) = f(x) \int_{0}^{x} f(t) dt.
\]
Prove that if \(g \) is a nonincreasing function, then \(f(x) = 0 \) for every \(x \).
(Romanian Olympiad 1978)

6. Let \(f : [0, 1] \to \mathbb{R} \) be a function with a continuous derivative, such that \(f(0) = 0 \) and \(0 < f'(x) \leq 1 \) for every \(x \). Show that
\[
\left(\int_{0}^{1} f(x) dx \right)^2 \geq \int_{0}^{1} (f(x))^3 dx.
\]
(Putnam 1973)

7. Suppose \(f \) and \(g \) are \(n \)-times continuously differentiable functions in a neighborhood of a point \(a \), such that \(f(a) = g(a) \), \(f'(a) = g'(a) \), \ldots, \(f^{(n-1)}(a) = g^{(n-1)}(a) \), and \(f^{(n)}(a) \neq g^{(n)}(a) \). Evaluate
\[
\lim_{x \to a} \frac{e^{f(x)} - e^{g(x)}}{f(x) - g(x)}.
\]
8. Let $n > 1$ be an integer, and $f : [a, b] \to \mathbb{R}$ a continuous function, n-times differentiable on (a, b). Prove that if the graph of f has $n + 1$ collinear points, then there is a point $c \in (a, b)$ such that $f^{(n)}(c) = 0$.

(G. Sirețchi, Mathematics Gazette, Bucharest)

9. Suppose $x_1, x_2, \ldots, x_n \in \mathbb{R}$. Find the real number(s) a that minimize the expression

$$|a - x_1| + |a - x_2| + \cdots + |a - x_n|.$$

(Andrescu & Gelca)

10. Prove that for every natural number $n \geq 2$ and every $x \in [-1, 1]$,

$$(1 + x)^n + (1 - x)^n \leq 2^n.$$

(Exercises and Problems in Algebra, Bucharest 1983)