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Introduction

Since their introduction by Kolyvagin in [Ko|, Euler systems have been used
in several important applications in arithmetic algebraic geometry. For a p-adic
Galois module T', Kolyvagin’s machinery is designed to provide an upper bound for
the size of a Selmer group associated to the Cartier dual of T

Kolyvagin’s method proceeds in three steps. The first step is to establish an
Euler system as input to the machine. The second step gives as intermediate output
a new collection of cohomology classes, which Kolyvagin calls “derivative” classes,
with coefficients in certain quotient Galois modules. The third step uses this system
of derivative classes to obtain an upper bound on the size of the dual Selmer group.

In [MRJ we showed that Kolyvagin’s systems of derivative classes satisfy even
stronger interrelations than had previously been recognized. A system of coho-
mology classes satisfying these stronger interrelations, which we call a Kolyvagin
system, has an interesting rigid structure which in many ways resembles (an en-
riched version of) the “leading term” of an L-function. See [MR)], especially the
introduction, for an explanation of what we mean by this. By making use of the
extra rigidity, we prove in [MR] that Kolyvagin systems exist for many interesting
representations for which no Euler system is known, and further that there are
Kolyvagin systems for these representations which give rise to exact formulas for
the size of the dual Selmer group, rather than just upper bounds.

The purpose of this paper is to present an introduction to the theory of Koly-
vagin systems by describing in detail one of its simplest and most concrete settings.
Namely, we take the Galois module T" to be a twist of the group p,,» of pPF-th roots
of unity by a Dirichlet character of conductor p, and then the dual Selmer group is
a Galois-eigenspace in the ideal class group of the cyclotomic field Q(up). For this
T there is an Euler system made from cyclotomic units, and we will see that every
Kolyvagin system is a multiple of the one produced by Kolyvagin’s machinery, a
fact essentially equivalent to Iwasawa’s main conjecture. We hope that removing
the extra layers of notation and hypotheses that occur in the general case will make
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2 BARRY MAZUR AND KARL RUBIN

the main ideas more transparent. The results in this cyclotomic setting have ana-
logues for more general p-adic representations 7', and we will discuss the general
case briefly in

1. The cyclotomic unit Euler system

Fix once and for all an odd prime p and a power p* of p. Let F' = Q(up), the
field of p-th roots of unity, and O = Z[up], its ring of integers. Define

P = {rational primes £ =1 (mod p*)},
N = {squarefree products of primes £ € P}.

For every £ € P U {p} fix a primitive ¢-th root of unity ¢;, and if n € A define a
primitive np-th root of unity (,, = Hanp Ce- As is well known, 1 — (€ Z[p,,,)]*
if n € N is different from 1, and

NF(p,0)/F () (L= Gapt) = (1= Gop) ™7 (1)
where Fry is the Frobenius automorphism of ¢ in Gal(F'(u,,)/Q), the automorphism
which sends () to Cﬁp.

Let A = Gal(F/Q) = (Z/pZ)*. If n € N then we can identify A with
C(l;ail(Q(lJ’np)/Q(lJ’n)) - Ga‘l(Q(lJ’np)/Q)ﬂ 50, for example, Z[/J’np]x is a Z[A}_mo_
ule.
Fix a character x : A — Z. If M is a Z,[A]-module, we write

MX ={m e M : ém = x(6)m for every § € A},

the “y-eigenspace” for the action of A. If M is a Z[A]-module then we write
Mx = (lim M/ p'M)X (which coincides with the previous definition when M is a
Z,-module).

For every n € N define (1—(,,)X to be the projection of 1—(,, into (F(u,,)*)X.
The relation makes the collection {(1 — ()X : n € N'} an Euler systemﬂ which
we call the cyclotomic unit Euler system attached to .

If n € Z we will often write M /n as an abbreviation for M /nM, so, for example,
F*/n=F*/(F*)".

2. The cyclotomic unit Kolyvagin system for p,: ® Xt

Kolyvagin’s machine takes as input the cyclotomic unit Euler system attached
to x, and gives as output an upper bound on the order of A%, the x-component
of the p-part Ap of the ideal class group of F. As an essential intermediate step
Kolyvagin’s construction produces a collection of “derivative classes”

(kY e (F*/pF)X :n e NY.

The classes £ are a modified version of the classes defined in [Ko| or [Rul] §2.
See the Appendix for the definition. We content ourselves here with recording the
essential properties of these classes.

For every ¢ € P fix a generator oy of F, where as usual F, denotes the finite
field with ¢ elements. (The construction of the &' will depend on these choices.
The choices could be removed, at the expense of carrying extra notation. For the

I See [Ru3] §§2.1 and 3.2. The definition of Euler system in [Ko] or [Rul] included a con-
gruence relation in addition to the norm relation above. However, the congruence is a consequence
of the norm relation; see for example §4.8 of [Ru3|.
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canonical construction without these choices, see [MR].) If ¢ € P then ¢ splits
completely in F, so if A is a prime of F' above ¢ then O/A = Fy,. We write F)
(resp. O,) for the completion of F' (resp. O) at such a A, and we define the discrete
logarithm map log, to be the composition

log, : O — (O/N)* —=F) ——=1Z/({ - 1)Z.
i >
THEOREM 2.1 ([Kol, [Rul] Proposition 2.4). For everyn € N,
(i) k¥ is the image of 1 — ¢, in (F* /p*)X,
(ii) ordy (k') =0 (mod p*) if X is a prime of F not dividing n,
(iii) ordy (k&) = log/\(/ﬁfly/‘zl) (mod p*) if X | £ and € | n.

Properties (i)-(iii) of Theorem [2.1] are all that is needed (see [Rul]) to apply
Kolyvagin’s machinery to bound ideal class groups. Namely, each &' gives a
principal ideal (modulo p*-th powers of ideals). One can view a principal ideal as
giving a relation among the generators (the classes of prime ideals) in A%, and by
cleverly choosing a good sequence of integers n, one can produce enough relations
to bound (Ar/p*)X.

REMARK 2.2. It is natural to ask whether the properties (i)—(iii) of Theorem
determine all of the k%', and in general they do not. If one knows the " < for
all d properly dividing n, then these properties determine x5! modulo the group

{a € (F*/p*)X : ordya =0 (mod p*) for every \}.

This group is an extension of (Ag/p*)X by (O* /p*)X, which in general is nontrivial.

However, it turns out that Kolyvagin’s derivative classes satisfy an additional
property, which adds enough “rigidity” so that one x¢°! (for a properly chosen n,
see Theorem below) determines all the others. We now describe this additional

property.
DEFINITION 2.3. The exact sequence

00— Z) /p —— Q) JpF > Z/pZ — 0

~
<
has a natural splitting, obtained by mapping i € Z/p*Z to ¢ € Q; /(Q/) )pk. Define
the transverse subgroup (Q,/ p*)tr to be the subgroup of Q S/ p* generated by £, so
Q) /r* = Z; /p* & (Q) /")
For every ¢ € P write
Or=0®Z;=®x0n, Fr=F®Q=®xeF,

and if o € F write ay for the image of v in Fy. Since ¢ splits completely in F/Q,
choosing a prime A of F' above £ gives isomorphisms

(Fo)* = Qq, OF =7y. (2)

Define (F,* /p*)& to be the subgroup of (F,* /p¥)X corresponding to (Q, /p*)¢ under
the isomorphism . (Choosing a different prime A? multiplies the isomorphisms
by x~!(c), which does not affect this definition.) Then we have a splitting

(Fy ) = (OF /o)X @ (B /p")i 3)
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of (F)/p¥)X into a product of two cyclic groups of order p*.

THEOREM 2.4 ([MR] Theorem 3.2.4). If n € N and £ | n, then (k%), €
F>< k\X
( ? /p )tr'

See the Appendix for the proof of Theorem [2:4]

DEFINITION 2.5. For n € A define a subgroup H(n) of (F* /p*)X by

a < IpEYXif 4 n
Hn) = o & (F /)" : {aj Sl el

As we will see below in 7 H(1) is related to the ideal class group of F'. For
arbitrary n we view H(n) as a modified “Selmer group”, where we have changed
the defining local condition at primes dividing n.

DEFINITION 2.6. If / € P we define the isomorphism
(O 0 S (FX M)
to be the map induced via (2)) by the isomorphism Z,* /p¥ — (Q,/p*)¢» which sends

a lift of oy to £. In other words, ¢ is the unique map which makes the diagram of
isomorphisms

¢
(O /™) : (F /)i
Z/p*z

commute for every prime A of F' above /.

With notation as above, we can combine Theorems and to obtain the
following proposition.

PROPOSITION 2.7. For every n € N,
(i) k¥ is the image of 1 — ¢, in (F*/p*)X,
(i) K € H(n),
(iii) if £ is a prime dividing n then (k&) = %((mfﬁﬁl)g).
REMARK 2.8. Returning to the situation of Remark we see now that if
T ! is known for every d properly dividing n, then Proposition determines
&vel modulo

{a € (F*/p*)X : ap € (O] /p*)X for every prime ¢, and oy = 1 (mod £) if £ | n}.

For sufficiently divisible n, this group is trivial.

K

3. The Selmer sheaf attached to p,» ® Xt

DEFINITION 3.1. Let X be the graph whose set of vertices is A/ and whose
edges join vertices n and nf when £ is prime. A sheafon X’ consists of the following
data:

e a stalk (an abelian group) over every vertex,

e a stalk (an abelian group) over every edge,

e if e is an edge and v is one of its vertices, a homomorphism from the stalk
over v to the stalk over e.
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We define the Selmer sheaf H on X as follows.

e The stalk at the vertex n is H(n) C (F*/p*)X.

e If ¢ is the edge joining n and n/, the stalk at e is (F;/p*){, which we will
also denote by H (e).

o If ¢ is the edge joining n and n¢, we define ¥y, , ¢, by

H(n) — > H(e) <2 H(nt)

b —— (), Bp<~—0

A global section of H is a collection {x,, € H(n) : n € N'} such that if n and nf are
vertices, and e is an edge joining them, then ¥ (k,) = ¥, (kne) in H(e).

DEFINITION 3.2. A Kolyvagin system (for p,« ® x ') is a global section of H.
Equivalently, a Kolyvagin system is a collection {x, € H(n) : n € N} such that
whenever n,nf € N we have ¢*((k,)¢) = (kne)e in (F)/p").

The following proposition is immediate from Proposition
PROPOSITION 3.3. The collection {k%' : n € N'} is a Kolyvagin system.

DEFINITION 3.4. Let KS denote the group of all Kolyvagin systems, and let
k! € KS denote the cyclotomic unit Kolyvagin system {x% : n € N'}.

4. The modified Selmer groups attached to p,» ® x !

Suppose from now on that x is not the trivial character, and also not the
Teichmiiller character w giving the action of A on p,,. Define an invariant

() 1 if x is even,
T=7rTr =
X 0 if x is odd.

Then (O*/pF)X is free of rank r over Z/p*Z, and it is a standard exercise in
algebraic number theory to show that there is an exact sequence

0 — (0% /p")* — H(1) — ARp*] — 0. (4)

From now on we will write our multiplicative groups additively. The following
proposition is proved in [MR]. Tt follows from the exact sequence above when
n =1, and it is vacuous when r = 0.

PrOPOSITION 4.1 ([MR] Theorem 4.1.13). For every n € N, H(n) contains a
free Z/p*Z-submodule of rank r.

DEFINITION 4.2. For n € N define A*(n) = dimg, H(n)[p] — r. We say that
n is a core vertex if A*(n) = 0. Equivalently, n is a core vertex if and only if
H(n) = (Z/p"Z)".

The next proposition is proved using (for (ii)) global duality and the Cebotarev
Theorem.

PropoSITION 4.3 ([MR] Lemma 4.1.7 and Proposition 3.6.1).
(i) If n,nl € N then |A*(n) — X*(nf)| < 1.
(ii) If n € N and X\*(n) > 0, then there is are infinitely many £ € P prime
to n such that \*(nf) = X\*(n) — 1.
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COROLLARY 4.4. If n € N and \*(n) = t, then there is a path of length t in
the graph X from n to a core vertex.

DEFINITION 4.5. Suppose A is a finite abelian group and d > 0. We define the
d-stub of A to be the (unique) maximal subgroup A" C A of the form [A : C]A4,
where C' runs through subgroups of A generated by d elements.

If d = 0 then A’ =0, and if A can be generated by d elements then A’ = A. In
general [A: C]A C C, so A’ can be generated by d elements. In particular if d =1
then A’ is a canonical cyclic subgroup of A.

If n € N we define H'(n) C H(n) to be the r-stub of H(n) where r = r(x) is
0 or 1 as above. Concretely (using Proposition

H'(n) = WU (n).

If x is odd then r =0 so H'(n) = 0, and if x is even then H'(n) is cyclic. If n is a
core vertex then H'(n) = H(n).

When n =1 we see from that
H'(1) = |A% M| - H(1). (5)

The following theorem is central to the theory of Kolyvagin systems. It incor-
porates the “Kolyvagin induction”, and allows one to use a Kolyvagin system to
bound ideal class groups.

THEOREM 4.6 ([MR] Theorem 4.4.1). If {k,} is a Kolyvagin system then
kn € H'(n) for every n.

REMARK ABOUT THE PROOF. The proof in [MR] is by induction on A*(n).
When A*(n) = 0 (i.e., n is a core vertex), we have H'(n) = H(n) and there is
nothing to prove. When A*(n) > 0 one can use Proposition ii) to choose a
prime ¢ with A*(nf) = A*(n) — 1, and then use that (by induction) k,e € H'(nf).
See [MR]. O

Since H'(n) = 0 for every n when r = 0, we have the following immediate
corollary of Theorem

COROLLARY 4.7. If r = 0 then there are no nonzero Kolyvagin systems.

REMARK 4.8. If x is odd and x # w, then the cyclotomic units (1 — {pp)X
used to define the cyclotomic unit Euler system are all 1, and hence so are the
Kn € (Fx/pk)x'

The following corollary is the standard application of Kolyvagin’s machinery
to ideal class groups.

COROLLARY 4.9 ([Ko|, [Rul] §4, [MR] Corollary 4.4.5). If {x,} is a Kolyvagin
system for p, @ X"t then
AR < max{p' s s € (F)7/(F)7 )
PrOOF. By Theorem and , we have
ky € H'(1) = A" - H(1)

and the corollary follows. |
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5. The stub subsheaf

DEFINITION 5.1. We define the stub subsheaf H' C H by the following data.

e The stalk at the vertex n is H'(n).

e If e is the edge joining n and n/, the stalk H'(e) at e is o5, (H'(n)) C H(e).

e If e is an edge and n is one of its vertices, the map ¢¢ : H'(n) — H'(e)

is the restriction of w,.

We use here the fact ([MR] Lemma 4.1.7(iii)) that if e is the edge joining n,n/
then ¢ (H'(n)) = 5, (H'(nf)). As a consequence, all the vertex-to-edge maps g,
are surjective.

The following theorem is just a restatement of Theorem [£.6]

THEOREM 5.2. Fvery global section of the Selmer sheaf H is actually a global
section of the stub subsheaf H'.

DEFINITION 5.3. If n and m are vertices of X', a surjective path P from n to m
is a (directed) path

e e e ek
n =mno ! niy 2 N9 3 k nE =m,

where e; is the edge joining n; 1 and n;, such that for every i, 1 <i < n, the map
Vgt H'(n;) — H'(e;) is an isomorphism. (We place no restriction on the map

Tes
Ni—1

If P is such a surjective path from n to m, then (since all the ¥¢ are surjective)
we have

: H'(n;j—1) — H'(e;), which is in any case surjective.)

o H'(ni—1) ——= H'(e;) e H,(ni)Fﬁ)H/(ei-&-l)f:ﬁH/(ni-&-l)'”
ni_1 n; ng; nit1

and so P induces a surjective homomorphism ¢p : H'(n) — H'(m).

The next two theorems, along with Theorem summarize the “rigidity” of
our Selmer sheaf. Theorem is due to Benjamin Howard.

THEOREM 5.4 ([MR] Theorem 4.3.4). Suppose n is a core vertex. Then for
every vertex m € N, there is a surjective path from n to m.

THEOREM 5.5 (Howard, Appendix B of [MR]). If m and n are vertices of
X, and P,Q are two surjective paths from m to n, then the two maps Yp,Pg €
Hom(H'(m), H'(n)) are equal.

More generally, if m, n, and nf are vertices, e is the edge joining n and nt, P
s a surjective path from m to n and Q is a surjective path from m to nf, then

Ypotp =1n 0tq € Hom(H'(m), H'(e)).

Because of Theorem [5.5| we say that H’ has trivial monodromy.
Recall that KS is the group of Kolyvagin systems attached to p,» @ x L.

THEOREM 5.6. Ifn is a core vertex, then the map KS — H(n) which specializes
k € KS to k, € H(n) is an isomorphism.

In other words, KS is cyclic of order p* and k,, determines k., for every vertex
m.
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PROOF. Suppose k € KS and m is a vertex of X. By Theorem [5.4] there
is a surjective path P from n to m, and then by the definition of global section,
Km = ¥p(ky). Thus if K, = 0 then k = 0, so the map KS — H(n) is injective.

On the other hand, suppose ¢ € H(n) and m is a vertex. By Theoremthere
is a surjective path P from n to m, and we define k., = ¥p(c). By Theorem
this is independent of the choice of P, and defines a global section. We have k,, = c,
so the map KS — H(n) is surjective as well. O

We say that k € KS is primitive if K generates KS.

THEOREM 5.7. Suppose k € KS. The following are equivalent.
(i) K is primitive.
(ii) Ky generates H'(n) for everyn € N.
(iii) kn generates H'(n) for some n € N with H(n) # 0.

PRrOOF. This follows from the proof of Theorem [5.6] since the maps ¢p :
H'(n) — H'(m) induced by a surjective path are surjective. O

COROLLARY 5.8. If k € KS and k1 # 0, then K is primitive if and only if
AP = max{p’ : k1 € (F*)7 (P},

PROOF. Let p? = |A%[p"]|. By Theorem ), and (@),
m € H'(1) = p"H(1) = (07" /(0 P")x,

and by Theorem K is primitive if and only if k; generates (((’)X)pd/(OX)Pk)X.
This proves the corollary. O

REMARK 5.9. The results above apply to every Kolyvagin system, and prove
the existence of Kolyvagin systems for even characters xy without making use of the
cyclotomic unit Kolyvagin system x<' of

THEOREM 5.10. The cyclotomic unit Kolyvagin system is primitive.

PROOF. By Corollary [£.7] we may assume that x is even. Suppose first that
k is sufficiently large, for example p* > |AY|. Theorem ﬂ(l) relates £ with
cyclotomic units. The equality

AR [PY]] = [AF] = max{p' : x5 € ()P /(F*)"'},
once known as the Gras conjecture, was proved by the first author and Wiles in
[IMW] and then again by Kolyvagin using Corollary above and the analytic
class number formula. It follows by Corollary [5.8| that £<¥°! is primitive.

Using Theorem it is easy now to deduce that k! is primitive for every
k. O

ExaMPLE 5.11. We conclude this section by illustrating in more detail the
special case k = 1. This case plays an important role in the proof of Theorem [5.4]

Suppose k =1 and y is even, so r = 1. If n is a core vertex then H'(n) = H(n)
is one-dimensional over F,, and if n is not a core vertex then H'(n) = 0. It follows
from Theorem that if k € KS is nonzero, then k,, # 0 if and only if n is a core
vertex.

Define a subgraph Xy of X whose set of vertices is the set ANy of core vertices
of X, and whose edges are the edges e joining n,nf € Ny such that the maps
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ve + H(n) — H(e) and ¢, : H(nf) — H(e) are isomorphisms. Let Hg be the
restriction of the sheaf H to X, or equivalently the restriction of H’ to Xy. Then
we can view Hy as a linear system of one-dimensional F-vector spaces over Xp,
with isomorphisms between stalks over vertices which are adjacent in Aj.

In this setting, Theorem says simply that the graph A} is connected. In
other words, any two core vertices can be connected by a path in Ay. If n and m
are core vertices then a path from n to m induces an isomorphism H(n) — H(m),
and Howard’s Theorem [5.5] says that this isomorphism is independent of the path.

6. Kolyvagin systems for general Galois representations

In this final section we briefly describe the theory of Kolyvagin systems for
more general p-adic representations. For the details, see [MR].

Keep our fixed prime power p*, and let R = Z/p*Z. (More generally, R could
be a principal artinian local ring.) Fix a free R module T of finite rank, with a
continuous action of Gq = Gal(Q/Q).

UT = pr® X! then we will recover the setting discussed in the previous
sections of this paper. Another interesting case is where T' = F[p"] with an elliptic
curve F defined over Q.

We associate to T' a Selmer group H (1) C H'(Q, T), defined by local conditions.
In other words, for every prime ¢ we have a subgroup Hx(Q,T) C H*(Qq, T), and
then

H(1)={ce H(Q,T) : ¢, € HF(Qu, T) for every ¢}
where ¢, € H*(Qg,T) is the localization of c. We require that for all but finitely
many ¢, H3(Qg,T) is the “unramified subgroup”

L (Qe,T) = Ker : HY(Qu, T) — HY Q™. T).
Define P to be the set of rational primes £ satisfying

T is unramified at ¢ (i.e., an inertia group I; C Gq acts trivially on T'),
=1 (mod p"),

det(1 — Fre|T) = 0, where Fr, € Gq is a Frobenius automorphism for ¢,
H}:(Qg, T) = H&nr(Qb T)

As in §2] we let N be the set of squarefree products of primes in P.

PROPOSITION 6.1. If ¢ € P then
Hl(Qfa T) = H&nr(va T) D Htlr(QZa T)
where HL(Qy,T) = ker : HY(Qg,T) — H'(Q¢(py), T). There is a map
gs : H\inr(vaT) - Htlr(vaT)
which depends only on the choice of a generator of F.

If n € N we define the modified Selmer group H(n) to be the set of all classes
c € HYQ,T) such that ¢, € Hx(Qq,T) if £ 1 n, and ¢, € HL(Qy, T) if £ | n, with
HL(Qg,T) as in Proposition

DEFINITION 6.2. As in we define a graph X with vertices NV and edges
joining vertices n,nf, and we define a Selmer sheaf H on X by
e the stalk at the vertex n is H(n),
e the stalk at the edge e joining n,nf is H(e) = HL(Qy,T),
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e the vertex-to-edge maps are given by localization and the maps ¢ of
Proposition [6.1}
A Kolyvagin system for T' (and the given collection of local Selmer conditions) is

a global section of the sheaf H. In other words, a Kolyvagin system is a collection
{k,, € H(n) : n € N'} such that if n,nl € N then ¢F((k,)e) = (Fne)e-

REMARK 6.3. In [MR] we prove (Theorem 3.2.4) that if one starts with an
Euler system for T (in the sense of [Ru3]) and applies Kolyvagin’s derivative con-

struction, the resulting collection of derivative classes is a Kolyvagin system for
T.

DEFINITION 6.4. Let T* = Hom(T, p,«) be the Cartier dual of T'. For every
n € N we can define a modified Selmer group H*(n) C H*(Q, T*) using the “dual
local conditions”. Le., H*(n) is the set of all classes c € H'(Q, T*) satisfying
e ¢/ is orthogonal to H:(Qe, T) if £t n,
e ¢ is orthogonal to HL(Q,T) if £ | n,
orthogonal under the local Tate pairing H*(Qy,T) x H (Qq, T*) — Z/p*Z.
For the strongest results we need to make some technical assumptions on 7" and
the local Selmer conditions H(Qg,T). Rather than formulate these conditions

here, we will say simply that from now on we assume hypotheses (H.0) through
(H.6) of §3.5 of [MR], and we refer the reader to [MR] for details.

THEOREM 6.5. With notation and hypotheses as above, there is an integer
r =r(T) € Z such that for every n € N there is a noncanonical isomorphism
H(n) = (Z/p"Z)" © H*(n) ifr >0,
H(n) & (Z/p*Z)™" = H*(n) ifr <0.
DEFINITION 6.6. Define x(T') = max{0,r} with » = r(T) as in Theorem [6.5
For every n € N define the stub subgroup H'(n) = |H*(n)|- H(n). As in
Definition we have H'(n) = 0 if x(T) = 0, and in general H'(n) = (Z/p?Z)x(T)
for some d < k.
Let KS(T') denote the group of Kolyvagin systems for 7.
THEOREM 6.7. (1) If x(T) = 0 then KS(T') = 0.
(i) If x(T) =1 then KS(T) is free of rank one over Z/p*Z.
(iii) If x(T) > 1 then KS(T) contains a free Z/p*Z-module of rank d for
every d.

As with Theorem [5.6), Theorem is proved in [MR] by studying the stub
subsheaf of H, and using a result of Howard from Appendix B of [MR]. We also
have the following analogue of Theorems [£.6] and

THEOREM 6.8. Suppose x(T) =1 and k € KS(T). Then k,, € H'(n) for every
n, and the following are equivalent.
(i) & generates KS(T).
(i) K, generates H'(n) for every n € N.
(i) Ky, generates H'(n) for some n € N with H(n) # 0.

COROLLARY 6.9. Suppose x(T) =1 and k € KS(T). Then
|H*(1)] < max{p": &1 € P'H'(Q,T)},
with equality if k1 # 0 and Kk generates KS(T).
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PRrROOF. As with Corollaries and the inequality (resp., the equality)
follows from the fact that x; belongs to (resp., generates) H'(1) = |[H*(1)|- H(1)
(]

by Theorem

REMARK 6.10. When x(T") > 1, it is still true under additional hypotheses that
if k is a Kolyvagin system then k,, € H'(n) for every n. In those cases it follows,
exactly as in Corollary that |[H*(1)] < max{p®: k1 € p'HY(Q,T)}.

Appendix

Keep the notation of {I] In this appendix we give the definition of the classes
k<l e (F*/p*)X and prove Theorem We will follow also the notation and
setting of [Rul].

For every n € N write G,, = Gal(F(u,,)/F) = Gal(Q(,,)/Q), and write N,
for the norm operator

N, = Z T € Z[G,).
TEGH
If mn € N we will identify G,, with Gal(F(t,)/F () C Gmn. With this
identification there is a natural isomorphism G, = Han Gy (product over primes
¢ dividing n), and N, = [[,,, N¢ € Z[G,]. Recall that if ¢ € P we have fixed
a generator o, of FX. We can view o, as a generator of G, via the canonical
isomorphism G, = F, and we define

-2
D, =) ol € Z|G,].
1

Q

.
Il

This “operator” is constructed to satisfy the identity
(0g—1)Dg = (g —1) — N, (6)

in Z[G,]. For n € N we define D,, =[], Dq € Z[G,]. If g | n we write Fr, for the
Frobenius of ¢, and we view Fr, € G,,/, C Gy, In other words, Fr, is a Frobenius
element for ¢ in Gal(F(u,,)/F(p,))-

To avoid ambiguity we will use the following notation. If z € F(u,)* and
p € Z|Gal(F(w,)/Q)], then we will denote the action of p on x by p - z. Thus if
a € Z we have a-x = 2% and (ap) -z = p- (z*). We will write the group operations
in F*/p* and F, s p* additively instead of multiplicatively.

Let (,p be as in @ and for n € N define a new x-cyclotomic unit

gn = H((l - de)x)u(n/d) € (Z[l*l’np]x)x
d|n
where p is the usual Mobius function.

LEMMA A.1l. (i) If g | n then Ny - &, = (Frg — q) - &, /-
(ii) If ¢ | n then &, =1 modulo every prime of F(u,,) above £.

PrOOF. The first assertion follows directly from the distribution relation ,
and the second from the fact that (; is congruent to 1 modulo every prime of Q(p,,)
above {. O
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As in §2 of [Rul], there is a unique x,, € (F* /p*)X whose image in F(g,,)* /p*
is Dy, - &,. In other words, we can fix 3, € F(u,,)™ such that (D,, - §n)/ﬁpk e F*,

ie.,

kin = (D - &,)/02  in F*/p, (7)
(y=1)-Ba)" = (= 1)Dy & for every 7 € G- (8)

The classes k,, do not form a Kolyvagin system, because they do not satisfy Theorem
For each n we will define k<! (Definition below) to be an appropriate
linear combination of the r, for d dividing n, and we will show that the k¢! satisfy
Theorem 2.4

If n € N and g is a prime dividing n, define a derivation 9, : (Z/p*Z)[G,] —
Z/p*Z by

94 (H ‘7?2) = 744
tIn

extended by linearity to all of (Z/p*Z)[G,]. By our convention on Fr, we have
0y(Fry) = 0.

Write (k,,), for the image of ,, in (F,/p*)X, and (k, )¢ for the “finite projec-
tion” of (ky )¢, the image of (k,, ), under the projection map (F, /pF)x — (O /p*)x

of (3).
If n € N let &(n) denote the set of permutations of the primes dividing n, and
let &1(n) C &(n) be the subset

{m € &(n) : the ¢ not fixed by 7 form a single m-orbit}.
If m e &(n) let dr =[], (4)=y @

PROPOSITION A.2. Ifn e N and £ |n then

(“n)f,f: Z ( H 6q(Frﬂ(q))>(’id,,)é,f-

7€61(n) ql(n/dx)

We will prove Proposition below, after using it to prove Theorem

DEFINITION A.3. For every n € N define

KSLyd: Z 5(71')( H (911(].:‘1",1.@))):‘id,r

nES(n) ql(n/dx)

where ¢(7) is the number of cycles of length greater than one in the cycle decom-
cycl

position of 7. Note that £7¥° = £ is the image of 1 — ¢, in (O* /p¥)X.
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PROOF OF THEOREM 24l If £ | n then we can group the terms in the definition
of k¥ as

KOyl = Z ( H Oq(Fry( )

TeS(n) ql(n/dx)

w(0)=~L
+ > Y ) I uEFrae))ra

TE€S(n) 7'€&1(dy) ql(n/d.r)
()= 7w (L)#£L

= Z €(7T)( H 8,1(1?1"77(,1)))97T

T€S(n) ql(n/dx)
w(€)=¢L
where
Sw= K, — Y ( II 5q(Fr7r’<q))>“dﬂ/~
€Sy (dr) ql(dn/drr)
7 (0)£L
Proposition shows that (s )¢ = 0 for every 7, so (k&) ¢ = 0. U

The rest of this appendix is devoted to the proof of Proposition Fix a
prime ¢ € P and an n € N divisible by £. Let A denote the augmentation ideal of
Z|G,).

LEMMA A4. If m | n and p € A+ pFZ[G,], then pD,, - &, has a unique p*-th
root in (Z[w,]™)X.

PRrROOF. Equation exhibits a pF-th root of (y—1)D,, - &, for every v € G,,,
so every such pD,, - &, is a p*-th power. The p¥-th root is unique because (since
X is not the Teichmiiller character) (Z[g,,,]* )X is torsion-free. O

We will write p~*pD,, - &, for the p*-th root of pD,, - &, given by Lemma
Let A denote the product of all primes of F'(u,,) above £, and let X = (Z[u,,,)]/\)*,
which we will write additively. If o € Z[u,,,]* we will write & for the image of a
in X.

LEMMA A.5. Suppose ml | n.

(i) If p € A% + p*Z[G,], then p=*pDyy - Eme = 0 in X
(i) If p € A+ p*Z[G,), then

pikamZ : €m€ Z 6 Frq - Q)Dml/q : fmf/q

qlme

in X.

Proor. If q Jf m{ then pikamZ . §m€ <€ Z[Gn]DmZ : gméa SO p_kamé . fmé =0

by Lemma ii). If ¢ | m¢, then using (6) and Lemma [A.T](i) we see that
(1 - O'q)Dmé : gmé = (Nq - (q - 1))Dm£/q '£m€
= (Frq - Q)Dmé/q . gmé/q - ((] - ]-)Dmé/q : fm[

in Z[p,,,]*. Dividing by p¥, projecting into X, and using Lemma (ii) proves (ii)
when p = 1 — 0,. (Note that each Fr, — ¢ belongs to A + p*Z[G,,] because ¢ = 1
(mod p*).) We will use this to prove (i), and then use (i) to complete the proof of

(ii).
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We will prove (i) by induction on the number of primes dividing m. If p €

pFZ[G,), then (i) follows from Lemma ( i). Thus it is enough to prove (i) when
p=(1—0g)(1—04). If ¢ # ¢, then the case of (ii) already done shows that

pikamé : gmé = pik(Frq - q)(l - Uq')DmZ/q : gmﬂ/q
which is zero by induction. If ¢ = ¢, then
p_kamé e = (Fre - é)p_k(l - O'q/)DmZ “Eme

which is zero because (Fr, — ¢) kills X. This proves (i).
The right-hand side of (ii) is a linear function of

p € (A+p"Z[G,))/(A* + p*Z]G,)),

and thanks to (i), the left-hand side is as well. We have shown that (ii) holds for
the generators 1 — o, of (A + p*Z[G,])/(A? + p*Z[G,)), so (ii) holds for all p. O

PROPOSITION A.6.

FE = 0Dn &= > (T u(Preq)) p~ (B = Da, -&u,
TFE(?l(;l) Q‘("L/dﬂ')

PRrROOF. Apply Lemmarepeatedly, beginning with m = n and p = (Fr,—?).
Expand all terms of the form p—*pD,, - x,, with m divisible by £, but not those
with m prime to £. The summand corresponding to 7w occurs as follows:

e expand p=#(Fr, — )D,, - &,,

e take the resulting term p=*(Frr ) — 7(€))Dy/x(e) - {n/n(ey and expand
that,

e take the new term pik(FI‘ﬂJ(g) — 72(6))Dn/(ﬂ(4)72(@) . fn/(ﬂ(g)ﬂ.z(g)) and
expand that,

and so forth until 7%(¢) = ¢, which leaves us with the desired multiple of the term
p_k(FI‘g — K)Dd, : gdw' [

LEMMA A.7. The natural map (F) /p*)X — (F(p,), /p*)X factors through
(7 /PP) = (OF [9°) — (F(g) "X

where the first map is the projection induced by and the second is injective.

PROOF. Using the definition of (F,*/p*)X it is enough to show that ¢ is in the
kernel of the map Q, /p* — Qu(py)*/p* and that the map Z; /p* — Qu(py)*/p"
is injective.

For the first statement, we have Nq,(,,)/qQ,(¢¢ — 1) = ¢, so

(Ce—l HC@—l = ({l-1)! = -1 (mod¢ —1).

Thus by Hensel’s Lemma, £ € (Qq(p,)*)?", as desired.
For the second statement, since Q(pt,)/Qy is totally ramified, we have

Z) /" = FJpE S Z[u)* /" O



INTRODUCTION TO KOLYVAGIN SYSTEMS 15

Recall that A is the product of all primes of F'(u,,) above £. There are injective
maps
(e—~1)/p"
OF [ph = (Ou/)* = (Ol ]e/N)". (9)
PROPOSITION A.8. If m | n, then the image of (km)es under the map (9) is
—p*(Fry =)Dy - &

PRrROOF. By , the principal ideal generated by (,, is fixed by G,,. Hence we
can find 7, € F(u,)* such that 5,,/nm, is a unit at all primes above ¢. Define

B = Bm/Nm and K, = Dy, - &m) /(8. )P". Since km = K/, in F(p,) ) /p", Lemma
shows that the image of (k. )e¢ in F(p,), /p* is k). Hence to prove the lemma

/!

we need to show that (/{m)(efl)/pk is congruent to p~*(Fr,—1)D,, -£,, modulo every

prime above /.
We have . .
(k! )(471)/p = (D, .gm)(lfl)/p /(8! )271_

m m
Since (!, is a unit all primes above ¢, modulo such primes we have (using and
the fact that n,, is fixed by Fry)

(B) "t = (Fre—1)- B, = (Frg—1)- B = p ¥ (Fry — 1)Diy - &
Thus .
(k! YED/PY = p=k( —Fr))D,, - &n  (mod A)

m

as desired. O

PROOF OF PROPOSITION [AZ2] Proposition [A22]is now immediate from Propo-
sitions and and the injectivity of @D This concludes the proof of Theorem
2.4 as well. O
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