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Introduction

Since their introduction by Kolyvagin in [Ko], Euler systems have been used
in several important applications in arithmetic algebraic geometry. For a p-adic
Galois module T , Kolyvagin’s machinery is designed to provide an upper bound for
the size of a Selmer group associated to the Cartier dual of T .

Kolyvagin’s method proceeds in three steps. The first step is to establish an
Euler system as input to the machine. The second step gives as intermediate output
a new collection of cohomology classes, which Kolyvagin calls “derivative” classes,
with coefficients in certain quotient Galois modules. The third step uses this system
of derivative classes to obtain an upper bound on the size of the dual Selmer group.

In [MR] we showed that Kolyvagin’s systems of derivative classes satisfy even
stronger interrelations than had previously been recognized. A system of coho-
mology classes satisfying these stronger interrelations, which we call a Kolyvagin
system, has an interesting rigid structure which in many ways resembles (an en-
riched version of) the “leading term” of an L-function. See [MR], especially the
introduction, for an explanation of what we mean by this. By making use of the
extra rigidity, we prove in [MR] that Kolyvagin systems exist for many interesting
representations for which no Euler system is known, and further that there are
Kolyvagin systems for these representations which give rise to exact formulas for
the size of the dual Selmer group, rather than just upper bounds.

The purpose of this paper is to present an introduction to the theory of Koly-
vagin systems by describing in detail one of its simplest and most concrete settings.
Namely, we take the Galois module T to be a twist of the group µpk of pk-th roots
of unity by a Dirichlet character of conductor p, and then the dual Selmer group is
a Galois-eigenspace in the ideal class group of the cyclotomic field Q(µp). For this
T there is an Euler system made from cyclotomic units, and we will see that every
Kolyvagin system is a multiple of the one produced by Kolyvagin’s machinery, a
fact essentially equivalent to Iwasawa’s main conjecture. We hope that removing
the extra layers of notation and hypotheses that occur in the general case will make

2000 Mathematics Subject Classification. Primary 11R42, 11R29, 11R18; Secondary 11R34,
11G40, 11F80.

Both authors partially supported by the National Science Foundation.

c©0000 (copyright holder)

1



2 BARRY MAZUR AND KARL RUBIN

the main ideas more transparent. The results in this cyclotomic setting have ana-
logues for more general p-adic representations T , and we will discuss the general
case briefly in §6.

1. The cyclotomic unit Euler system

Fix once and for all an odd prime p and a power pk of p. Let F = Q(µp), the
field of p-th roots of unity, and O = Z[µp], its ring of integers. Define

P = {rational primes ` ≡ 1 (mod pk)},
N = {squarefree products of primes ` ∈ P}.

For every ` ∈ P ∪ {p} fix a primitive `-th root of unity ζ`, and if n ∈ N define a
primitive np-th root of unity ζnp =

∏
`|np ζ`. As is well known, 1− ζnp ∈ Z[µnp]×

if n ∈ N is different from 1, and

NF (µn`)/F (µn)(1− ζnp`) = (1− ζnp)Fr`−1 (1)

where Fr` is the Frobenius automorphism of ` in Gal(F (µn)/Q), the automorphism
which sends ζnp to ζ`np.

Let ∆ = Gal(F/Q) ∼= (Z/pZ)×. If n ∈ N then we can identify ∆ with
Gal(Q(µnp)/Q(µn)) ⊂ Gal(Q(µnp)/Q), so, for example, Z[µnp]× is a Z[∆]-mo-
dule.

Fix a character χ : ∆→ Z×
p . If M is a Zp[∆]-module, we write

Mχ = {m ∈M : δm = χ(δ)m for every δ ∈ ∆},
the “χ-eigenspace” for the action of ∆. If M is a Z[∆]-module then we write
Mχ = (lim←−M/piM)χ (which coincides with the previous definition when M is a
Zp-module).

For every n ∈ N define (1−ζnp)χ to be the projection of 1−ζnp into (F (µn)×)χ.
The relation (1) makes the collection {(1− ζnp)χ : n ∈ N} an Euler system,1 which
we call the cyclotomic unit Euler system attached to χ.

If n ∈ Z we will often writeM/n as an abbreviation forM/nM , so, for example,
F×/n = F×/(F×)n.

2. The cyclotomic unit Kolyvagin system for µpk ⊗ χ−1

Kolyvagin’s machine takes as input the cyclotomic unit Euler system attached
to χ, and gives as output an upper bound on the order of AχF , the χ-component
of the p-part AF of the ideal class group of F . As an essential intermediate step
Kolyvagin’s construction produces a collection of “derivative classes”

{κcycl
n ∈ (F×/pk)χ : n ∈ N}.

The classes κcycl
n are a modified version of the classes defined in [Ko] or [Ru1] §2.

See the Appendix for the definition. We content ourselves here with recording the
essential properties of these classes.

For every ` ∈ P fix a generator σ` of F×
` , where as usual F` denotes the finite

field with ` elements. (The construction of the κcycl
n will depend on these choices.

The choices could be removed, at the expense of carrying extra notation. For the

1 See [Ru3] §§2.1 and 3.2. The definition of Euler system in [Ko] or [Ru1] included a con-
gruence relation in addition to the norm relation above. However, the congruence is a consequence

of the norm relation; see for example §4.8 of [Ru3].
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canonical construction without these choices, see [MR].) If ` ∈ P then ` splits
completely in F , so if λ is a prime of F above ` then O/λ = F`. We write Fλ
(resp. Oλ) for the completion of F (resp. O) at such a λ, and we define the discrete
logarithm map logλ to be the composition

logλ : O×λ // (O/λ)× ∼ // F×
`

∼ // Z/(`− 1)Z.

σi`
� // i

Theorem 2.1 ([Ko], [Ru1] Proposition 2.4). For every n ∈ N ,

(i) κcycl
1 is the image of 1− ζp in (F×/pk)χ,

(ii) ordλ(κcycl
n ) ≡ 0 (mod pk) if λ is a prime of F not dividing n,

(iii) ordλ(κcycl
n ) ≡ logλ(κ

cycl
n/` ) (mod pk) if λ | ` and ` | n.

Properties (i)–(iii) of Theorem 2.1 are all that is needed (see [Ru1]) to apply
Kolyvagin’s machinery to bound ideal class groups. Namely, each κcycl

n gives a
principal ideal (modulo pk-th powers of ideals). One can view a principal ideal as
giving a relation among the generators (the classes of prime ideals) in AχF , and by
cleverly choosing a good sequence of integers n, one can produce enough relations
to bound (AF /pk)χ.

Remark 2.2. It is natural to ask whether the properties (i)–(iii) of Theorem
2.1 determine all of the κcycl

n , and in general they do not. If one knows the κcycl
d for

all d properly dividing n, then these properties determine κcycl
n modulo the group

{α ∈ (F×/pk)χ : ordλα ≡ 0 (mod pk) for every λ}.
This group is an extension of (AF /pk)χ by (O×/pk)χ, which in general is nontrivial.

However, it turns out that Kolyvagin’s derivative classes satisfy an additional
property, which adds enough “rigidity” so that one κcycl

n (for a properly chosen n,
see Theorem 5.6 below) determines all the others. We now describe this additional
property.

Definition 2.3. The exact sequence

0 // Z×
` /p

k // Q×
` /p

k ord` // Z/pkZkk
// 0

`i i
�oo

has a natural splitting, obtained by mapping i ∈ Z/pkZ to `i ∈ Q×
` /(Q

×
` )p

k

. Define
the transverse subgroup (Q×

` /p
k)tr to be the subgroup of Q×

` /p
k generated by `, so

Q×
` /p

k = Z×
` /p

k ⊕ (Q×
` /p

k)tr.

For every ` ∈ P write

O` = O ⊗ Z` = ⊕λ|`Oλ, F` = F ⊗Q` = ⊕λ|`Fλ,
and if α ∈ F write α` for the image of α in F`. Since ` splits completely in F/Q,
choosing a prime λ of F above ` gives isomorphisms

(F`)χ ∼= Q`, Oχ` ∼= Z`. (2)

Define (F×
` /p

k)χtr to be the subgroup of (F×
` /p

k)χ corresponding to (Q×
` /p

k)tr under
the isomorphism (2). (Choosing a different prime λσ multiplies the isomorphisms
(2) by χ−1(σ), which does not affect this definition.) Then we have a splitting

(F×
` /p

k)χ ∼= (O×` /p
k)χ ⊕ (F×

` /p
k)χtr (3)
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of (F×
` /p

k)χ into a product of two cyclic groups of order pk.

Theorem 2.4 ([MR] Theorem 3.2.4). If n ∈ N and ` | n, then (κcycl
n )` ∈

(F×
` /p

k)χtr.

See the Appendix for the proof of Theorem 2.4.

Definition 2.5. For n ∈ N define a subgroup H(n) of (F×/pk)χ by

H(n) = {α ∈ (F×/pk)χ :

{
α` ∈ (O×` /pk)χ if ` - n,
α` ∈ (F×

` /p
k)χtr if ` | n

}.

As we will see below in (4), H(1) is related to the ideal class group of F . For
arbitrary n we view H(n) as a modified “Selmer group”, where we have changed
the defining local condition at primes dividing n.

Definition 2.6. If ` ∈ P we define the isomorphism

φfs
` : (O×` /p

k)χ ∼−→ (F×
` /p

k)χtr
to be the map induced via (2) by the isomorphism Z×

` /p
k → (Q×

` /p
k)tr which sends

a lift of σ` to `. In other words, φfs
` is the unique map which makes the diagram of

isomorphisms

(O×` /pk)χ
φfs

` //

logλ %%KKKKKKKKKK
(F×
` /p

k)χtr

ordλyyssssssssss

Z/pkZ

commute for every prime λ of F above `.

With notation as above, we can combine Theorems 2.1 and 2.4 to obtain the
following proposition.

Proposition 2.7. For every n ∈ N ,
(i) κcycl

1 is the image of 1− ζp in (F×/pk)χ,
(ii) κcycl

n ∈ H(n),
(iii) if ` is a prime dividing n then (κcycl

n )` = φfs
` ((κcycl

n/` )`).

Remark 2.8. Returning to the situation of Remark 2.2, we see now that if
κcycl
d is known for every d properly dividing n, then Proposition 2.7 determines
κcycl
n modulo

{α ∈ (F×/pk)χ : α` ∈ (O×` /p
k)χ for every prime `, and α` ≡ 1 (mod `) if ` | n}.

For sufficiently divisible n, this group is trivial.

3. The Selmer sheaf attached to µpk ⊗ χ−1

Definition 3.1. Let X be the graph whose set of vertices is N and whose
edges join vertices n and n` when ` is prime. A sheaf on X consists of the following
data:

• a stalk (an abelian group) over every vertex,
• a stalk (an abelian group) over every edge,
• if e is an edge and v is one of its vertices, a homomorphism from the stalk

over v to the stalk over e.
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We define the Selmer sheaf H on X as follows.
• The stalk at the vertex n is H(n) ⊂ (F×/pk)χ.
• If e is the edge joining n and n`, the stalk at e is (F`/pk)

χ
tr, which we will

also denote by H(e).
• If e is the edge joining n and n`, we define ψen, ψ

e
nl by

H(n)
ψe

n // H(e) H(n`)
ψe

nloo

α � // φfs
` (α`), β` β�oo

A global section of H is a collection {κn ∈ H(n) : n ∈ N} such that if n and n` are
vertices, and e is an edge joining them, then ψen(κn) = ψenl(κn`) in H(e).

Definition 3.2. A Kolyvagin system (for µpk ⊗ χ−1) is a global section of H.
Equivalently, a Kolyvagin system is a collection {κn ∈ H(n) : n ∈ N} such that
whenever n, n` ∈ N we have φfs((κn)`) = (κn`)` in (F×

` /p
k)χtr.

The following proposition is immediate from Proposition 2.7.

Proposition 3.3. The collection {κcycl
n : n ∈ N} is a Kolyvagin system.

Definition 3.4. Let KS denote the group of all Kolyvagin systems, and let
κcycl ∈ KS denote the cyclotomic unit Kolyvagin system {κcycl

n : n ∈ N}.

4. The modified Selmer groups attached to µpk ⊗ χ−1

Suppose from now on that χ is not the trivial character, and also not the
Teichmüller character ω giving the action of ∆ on µp. Define an invariant

r = r(χ) =

{
1 if χ is even,
0 if χ is odd.

Then (O×/pk)χ is free of rank r over Z/pkZ, and it is a standard exercise in
algebraic number theory to show that there is an exact sequence

0 −→ (O×/pk)χ −→ H(1) −→ AχF [pk] −→ 0. (4)

From now on we will write our multiplicative groups additively. The following
proposition is proved in [MR]. It follows from the exact sequence above when
n = 1, and it is vacuous when r = 0.

Proposition 4.1 ([MR] Theorem 4.1.13). For every n ∈ N , H(n) contains a
free Z/pkZ-submodule of rank r.

Definition 4.2. For n ∈ N define λ∗(n) = dimFp
H(n)[p] − r. We say that

n is a core vertex if λ∗(n) = 0. Equivalently, n is a core vertex if and only if
H(n) ∼= (Z/pkZ)r.

The next proposition is proved using (for (ii)) global duality and the Cebotarev
Theorem.

Proposition 4.3 ([MR] Lemma 4.1.7 and Proposition 3.6.1).
(i) If n, n` ∈ N then |λ∗(n)− λ∗(n`)| ≤ 1.
(ii) If n ∈ N and λ∗(n) > 0, then there is are infinitely many ` ∈ P prime

to n such that λ∗(n`) = λ∗(n)− 1.
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Corollary 4.4. If n ∈ N and λ∗(n) = t, then there is a path of length t in
the graph X from n to a core vertex.

Definition 4.5. Suppose A is a finite abelian group and d ≥ 0. We define the
d-stub of A to be the (unique) maximal subgroup A′ ⊂ A of the form [A : C]A,
where C runs through subgroups of A generated by d elements.

If d = 0 then A′ = 0, and if A can be generated by d elements then A′ = A. In
general [A : C]A ⊂ C, so A′ can be generated by d elements. In particular if d = 1
then A′ is a canonical cyclic subgroup of A.

If n ∈ N we define H ′(n) ⊂ H(n) to be the r-stub of H(n) where r = r(χ) is
0 or 1 as above. Concretely (using Proposition 4.1)

H ′(n) = |H(n)|
pkr H(n).

If χ is odd then r = 0 so H ′(n) = 0, and if χ is even then H ′(n) is cyclic. If n is a
core vertex then H ′(n) = H(n).

When n = 1 we see from (4) that

H ′(1) = |AχF [pk]| ·H(1). (5)

The following theorem is central to the theory of Kolyvagin systems. It incor-
porates the “Kolyvagin induction”, and allows one to use a Kolyvagin system to
bound ideal class groups.

Theorem 4.6 ([MR] Theorem 4.4.1). If {κn} is a Kolyvagin system then
κn ∈ H ′(n) for every n.

Remark about the proof. The proof in [MR] is by induction on λ∗(n).
When λ∗(n) = 0 (i.e., n is a core vertex), we have H ′(n) = H(n) and there is
nothing to prove. When λ∗(n) > 0 one can use Proposition 4.3(ii) to choose a
prime ` with λ∗(n`) = λ∗(n) − 1, and then use that (by induction) κn` ∈ H ′(n`).
See [MR]. �

Since H ′(n) = 0 for every n when r = 0, we have the following immediate
corollary of Theorem 4.6.

Corollary 4.7. If r = 0 then there are no nonzero Kolyvagin systems.

Remark 4.8. If χ is odd and χ 6= ω, then the cyclotomic units (1 − ζnp)χ

used to define the cyclotomic unit Euler system are all 1, and hence so are the
κn ∈ (F×/pk)χ.

The following corollary is the standard application of Kolyvagin’s machinery
to ideal class groups.

Corollary 4.9 ([Ko], [Ru1] §4, [MR] Corollary 4.4.5). If {κn} is a Kolyvagin
system for µpk ⊗ χ−1 then

|AχF [pk]| ≤ max{pi : κ1 ∈ (F×)p
i

/(F×)p
k

}.

Proof. By Theorem 4.6 and (5), we have

κ1 ∈ H ′(1) = |AχF [pk]| ·H(1)

and the corollary follows. �
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5. The stub subsheaf

Definition 5.1. We define the stub subsheaf H′ ⊂ H by the following data.

• The stalk at the vertex n is H ′(n).
• If e is the edge joining n and n`, the stalkH ′(e) at e is ψen(H

′(n)) ⊂ H(e).
• If e is an edge and n is one of its vertices, the map ψ̄en : H ′(n) → H ′(e)

is the restriction of ψen.

We use here the fact ([MR] Lemma 4.1.7(iii)) that if e is the edge joining n, n`
then ψen(H

′(n)) = ψenl(H
′(n`)). As a consequence, all the vertex-to-edge maps ψ̄en

are surjective.

The following theorem is just a restatement of Theorem 4.6.

Theorem 5.2. Every global section of the Selmer sheaf H is actually a global
section of the stub subsheaf H′.

Definition 5.3. If n and m are vertices of X , a surjective path P from n to m
is a (directed) path

n = n0
e1 // n1

e2 // n2
e3 // . . . ek // nk = m,

where ei is the edge joining ni−1 and ni, such that for every i, 1 ≤ i ≤ n, the map
ψ̄ei
ni

: H ′(ni) → H ′(ei) is an isomorphism. (We place no restriction on the map
ψ̄ei
ni−1

: H ′(ni−1)→ H ′(ei), which is in any case surjective.)
If P is such a surjective path from n to m, then (since all the ψ̄en are surjective)

we have

· · ·H ′(ni−1)
ψ̄

ei
ni−1

// // H ′(ei) H ′(ni)
ψ̄

ei
ni

∼oo
ψ̄

ei+1
ni

// // H ′(ei+1) H ′(ni+1) · · ·
ψ̄

ei+1
ni+1

∼oo

and so P induces a surjective homomorphism ψP : H ′(n) � H ′(m).

The next two theorems, along with Theorem 5.2, summarize the “rigidity” of
our Selmer sheaf. Theorem 5.5 is due to Benjamin Howard.

Theorem 5.4 ([MR] Theorem 4.3.4). Suppose n is a core vertex. Then for
every vertex m ∈ N , there is a surjective path from n to m.

Theorem 5.5 (Howard, Appendix B of [MR]). If m and n are vertices of
X , and P,Q are two surjective paths from m to n, then the two maps ψP , ψQ ∈
Hom(H ′(m),H ′(n)) are equal.

More generally, if m, n, and n` are vertices, e is the edge joining n and n`, P
is a surjective path from m to n and Q is a surjective path from m to n`, then

ψen ◦ ψP = ψenl ◦ ψQ ∈ Hom(H ′(m),H ′(e)).

Because of Theorem 5.5 we say that H′ has trivial monodromy.
Recall that KS is the group of Kolyvagin systems attached to µpk ⊗ χ−1.

Theorem 5.6. If n is a core vertex, then the map KS→ H(n) which specializes
κ ∈ KS to κn ∈ H(n) is an isomorphism.

In other words, KS is cyclic of order pk and κn determines κm for every vertex
m.
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Proof. Suppose κ ∈ KS and m is a vertex of X . By Theorem 5.4 there
is a surjective path P from n to m, and then by the definition of global section,
κm = ψP (κn). Thus if κn = 0 then κ = 0, so the map KS→ H(n) is injective.

On the other hand, suppose c ∈ H(n) and m is a vertex. By Theorem 5.4 there
is a surjective path P from n to m, and we define κm = ψP (c). By Theorem 5.5
this is independent of the choice of P , and defines a global section. We have κn = c,
so the map KS→ H(n) is surjective as well. �

We say that κ ∈ KS is primitive if κ generates KS.

Theorem 5.7. Suppose κ ∈ KS. The following are equivalent.
(i) κ is primitive.
(ii) κn generates H ′(n) for every n ∈ N .
(iii) κn generates H ′(n) for some n ∈ N with H(n) 6= 0.

Proof. This follows from the proof of Theorem 5.6, since the maps ψP :
H ′(n)→ H ′(m) induced by a surjective path are surjective. �

Corollary 5.8. If κ ∈ KS and κ1 6= 0, then κ is primitive if and only if

|AχF [pk]| = max{pi : κ1 ∈ (F×)p
i

/(F×)p
k

}.

Proof. Let pd = |AχF [pk]|. By Theorem 4.6, (5), and (4),

κ1 ∈ H ′(1) = pdH(1) = ((O×)p
d

/(O×)p
k

)χ,

and by Theorem 5.7 κ is primitive if and only if κ1 generates ((O×)p
d

/(O×)p
k

)χ.
This proves the corollary. �

Remark 5.9. The results above apply to every Kolyvagin system, and prove
the existence of Kolyvagin systems for even characters χ without making use of the
cyclotomic unit Kolyvagin system κcycl of §2.

Theorem 5.10. The cyclotomic unit Kolyvagin system is primitive.

Proof. By Corollary 4.7 we may assume that χ is even. Suppose first that
k is sufficiently large, for example pk > |AχF |. Theorem 2.1(i) relates κcycl

1 with
cyclotomic units. The equality

|AχF [pk]| = |AχF | = max{pi : κcycl
1 ∈ (F×)p

i

/(F×)p
k

},
once known as the Gras conjecture, was proved by the first author and Wiles in
[MW] and then again by Kolyvagin using Corollary 4.9 above and the analytic
class number formula. It follows by Corollary 5.8 that κcycl is primitive.

Using Theorem 5.7, it is easy now to deduce that κcycl is primitive for every
k. �

Example 5.11. We conclude this section by illustrating in more detail the
special case k = 1. This case plays an important role in the proof of Theorem 5.4.

Suppose k = 1 and χ is even, so r = 1. If n is a core vertex then H ′(n) = H(n)
is one-dimensional over Fp, and if n is not a core vertex then H ′(n) = 0. It follows
from Theorem 5.7 that if κ ∈ KS is nonzero, then κn 6= 0 if and only if n is a core
vertex.

Define a subgraph X0 of X whose set of vertices is the set N0 of core vertices
of X , and whose edges are the edges e joining n, n` ∈ N0 such that the maps
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ψen : H(n) → H(e) and ψenl : H(n`) → H(e) are isomorphisms. Let H0 be the
restriction of the sheaf H to X0, or equivalently the restriction of H′ to X0. Then
we can view H0 as a linear system of one-dimensional Fp-vector spaces over X0,
with isomorphisms between stalks over vertices which are adjacent in X0.

In this setting, Theorem 5.4 says simply that the graph X0 is connected. In
other words, any two core vertices can be connected by a path in X0. If n and m
are core vertices then a path from n to m induces an isomorphism H(n) ∼−→ H(m),
and Howard’s Theorem 5.5 says that this isomorphism is independent of the path.

6. Kolyvagin systems for general Galois representations

In this final section we briefly describe the theory of Kolyvagin systems for
more general p-adic representations. For the details, see [MR].

Keep our fixed prime power pk, and let R = Z/pkZ. (More generally, R could
be a principal artinian local ring.) Fix a free R module T of finite rank, with a
continuous action of GQ = Gal(Q̄/Q).

If T = µpk ⊗ χ−1 then we will recover the setting discussed in the previous
sections of this paper. Another interesting case is where T = E[pk] with an elliptic
curve E defined over Q.

We associate to T a Selmer groupH(1) ⊂ H1(Q, T ), defined by local conditions.
In other words, for every prime ` we have a subgroup H1

F (Q`, T ) ⊂ H1(Q`, T ), and
then

H(1) = {c ∈ H1(Q, T ) : c` ∈ H1
F (Q`, T ) for every `}

where c` ∈ H1(Q`, T ) is the localization of c. We require that for all but finitely
many `, H1

F (Q`, T ) is the “unramified subgroup”

H1
unr(Q`, T ) = ker : H1(Q`, T )→ H1(Qunr

` , T ).

Define P to be the set of rational primes ` satisfying
• T is unramified at ` (i.e., an inertia group I` ⊂ GQ acts trivially on T ),
• ` ≡ 1 (mod pk),
• det(1− Fr`|T ) = 0, where Fr` ∈ GQ is a Frobenius automorphism for `,
• H1

F (Q`, T ) = H1
unr(Q`, T ).

As in §2 we let N be the set of squarefree products of primes in P.

Proposition 6.1. If ` ∈ P then

H1(Q`, T ) = H1
unr(Q`, T )⊕H1

tr(Q`, T )

where H1
tr(Q`, T ) = ker : H1(Q`, T )→ H1(Q`(µ`), T ). There is a map

φfs
` : H1

unr(Q`, T )→ H1
tr(Q`, T )

which depends only on the choice of a generator of F×
` .

If n ∈ N we define the modified Selmer group H(n) to be the set of all classes
c ∈ H1(Q, T ) such that c` ∈ H1

F (Q`, T ) if ` - n, and c` ∈ H1
tr(Q`, T ) if ` | n, with

H1
tr(Q`, T ) as in Proposition 6.1.

Definition 6.2. As in §3 we define a graph X with vertices N and edges
joining vertices n, n`, and we define a Selmer sheaf H on X by

• the stalk at the vertex n is H(n),
• the stalk at the edge e joining n, n` is H(e) = H1

tr(Q`, T ),
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• the vertex-to-edge maps are given by localization and the maps φfs
` of

Proposition 6.1.
A Kolyvagin system for T (and the given collection of local Selmer conditions) is
a global section of the sheaf H. In other words, a Kolyvagin system is a collection
{κn ∈ H(n) : n ∈ N} such that if n, n` ∈ N then φfs

` ((κn)`) = (κn`)`.

Remark 6.3. In [MR] we prove (Theorem 3.2.4) that if one starts with an
Euler system for T (in the sense of [Ru3]) and applies Kolyvagin’s derivative con-
struction, the resulting collection of derivative classes is a Kolyvagin system for
T .

Definition 6.4. Let T ∗ = Hom(T,µpk) be the Cartier dual of T . For every
n ∈ N we can define a modified Selmer group H∗(n) ⊂ H1(Q, T ∗) using the “dual
local conditions”. I.e., H∗(n) is the set of all classes c ∈ H1(Q, T ∗) satisfying

• c` is orthogonal to H1
F (Q`, T ) if ` - n,

• c` is orthogonal to H1
tr(Q`, T ) if ` | n,

orthogonal under the local Tate pairing H1(Q`, T )×H1(Q`, T
∗)→ Z/pkZ.

For the strongest results we need to make some technical assumptions on T and
the local Selmer conditions H1

F (Q`, T ). Rather than formulate these conditions
here, we will say simply that from now on we assume hypotheses (H.0) through
(H.6) of §3.5 of [MR], and we refer the reader to [MR] for details.

Theorem 6.5. With notation and hypotheses as above, there is an integer
r = r(T ) ∈ Z such that for every n ∈ N there is a noncanonical isomorphism

H(n) ∼= (Z/pkZ)r ⊕H∗(n) if r ≥ 0,

H(n)⊕ (Z/pkZ)−r ∼= H∗(n) if r ≤ 0.

Definition 6.6. Define χ(T ) = max{0, r} with r = r(T ) as in Theorem 6.5.
For every n ∈ N define the stub subgroup H ′(n) = |H∗(n)| · H(n). As in

Definition 4.5 we have H ′(n) = 0 if χ(T ) = 0, and in general H ′(n) ∼= (Z/pdZ)χ(T )

for some d ≤ k.
Let KS(T ) denote the group of Kolyvagin systems for T .

Theorem 6.7. (i) If χ(T ) = 0 then KS(T ) = 0.
(ii) If χ(T ) = 1 then KS(T ) is free of rank one over Z/pkZ.
(iii) If χ(T ) > 1 then KS(T ) contains a free Z/pkZ-module of rank d for

every d.

As with Theorem 5.6, Theorem 6.7 is proved in [MR] by studying the stub
subsheaf of H, and using a result of Howard from Appendix B of [MR]. We also
have the following analogue of Theorems 4.6 and 5.7.

Theorem 6.8. Suppose χ(T ) = 1 and κ ∈ KS(T ). Then κn ∈ H ′(n) for every
n, and the following are equivalent.

(i) κ generates KS(T ).
(ii) κn generates H ′(n) for every n ∈ N .
(iii) κn generates H ′(n) for some n ∈ N with H(n) 6= 0.

Corollary 6.9. Suppose χ(T ) = 1 and κ ∈ KS(T ). Then

|H∗(1)| ≤ max{pi : κ1 ∈ piH1(Q, T )},
with equality if κ1 6= 0 and κ generates KS(T ).
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Proof. As with Corollaries 4.9 and 5.8, the inequality (resp., the equality)
follows from the fact that κ1 belongs to (resp., generates) H ′(1) = |H∗(1)| ·H(1)
by Theorem 6.8. �

Remark 6.10. When χ(T ) > 1, it is still true under additional hypotheses that
if κ is a Kolyvagin system then κn ∈ H ′(n) for every n. In those cases it follows,
exactly as in Corollary 6.9, that |H∗(1)| ≤ max{pi : κ1 ∈ piH1(Q, T )}.

Appendix

Keep the notation of §1. In this appendix we give the definition of the classes
κcycl
n ∈ (F×/pk)χ and prove Theorem 2.4. We will follow also the notation and

setting of [Ru1].
For every n ∈ N write Gn = Gal(F (µn)/F ) ∼= Gal(Q(µn)/Q), and write Nn

for the norm operator

Nn =
∑
τ∈Gn

τ ∈ Z[Gn].

If mn ∈ N we will identify Gn with Gal(F (µmn)/F (µm)) ⊂ Gmn. With this
identification there is a natural isomorphism Gn =

∏
`|nG` (product over primes

` dividing n), and Nn =
∏
`|nN` ∈ Z[Gn]. Recall that if q ∈ P we have fixed

a generator σq of F×
q . We can view σq as a generator of Gq via the canonical

isomorphism Gq ∼= F×
q , and we define

Dq =
q−2∑
i=1

iσiq ∈ Z[Gq].

This “operator” is constructed to satisfy the identity

(σq − 1)Dq = (q − 1)−Nq (6)

in Z[Gq]. For n ∈ N we define Dn =
∏
q|nDq ∈ Z[Gn]. If q | n we write Frq for the

Frobenius of q, and we view Frq ∈ Gn/q ⊂ Gn. In other words, Frq is a Frobenius
element for q in Gal(F (µn)/F (µq)).

To avoid ambiguity we will use the following notation. If x ∈ F (µn)× and
ρ ∈ Z[Gal(F (µn)/Q)], then we will denote the action of ρ on x by ρ · x. Thus if
a ∈ Z we have a · x = xa and (aρ) ·x = ρ · (xa). We will write the group operations
in F×/pk and F×

` /p
k additively instead of multiplicatively.

Let ζnp be as in §1, and for n ∈ N define a new χ-cyclotomic unit

ξn =
∏
d|n

((1− ζpd)χ)µ(n/d) ∈ (Z[µnp]
×)χ

where µ is the usual Möbius function.

Lemma A.1. (i) If q | n then Nq · ξn = (Frq − q) · ξn/q.
(ii) If ` | n then ξn ≡ 1 modulo every prime of F (µn) above `.

Proof. The first assertion follows directly from the distribution relation (1),
and the second from the fact that ζ` is congruent to 1 modulo every prime of Q(µn)
above `. �
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As in §2 of [Ru1], there is a unique κn ∈ (F×/pk)χ whose image in F (µn)×/pk

is Dn · ξn. In other words, we can fix βn ∈ F (µn)× such that (Dn · ξn)/βp
k ∈ F×,

i.e.,

κn = (Dn · ξn)/βp
k

n in F×/pk, (7)

((γ − 1) · βn)p
k

= (γ − 1)Dn · ξn for every γ ∈ Gn. (8)

The classes κn do not form a Kolyvagin system, because they do not satisfy Theorem
2.4. For each n we will define κcycl

n (Definition A.3 below) to be an appropriate
linear combination of the κd for d dividing n, and we will show that the κcycl

n satisfy
Theorem 2.4.

If n ∈ N and q is a prime dividing n, define a derivation ∂q : (Z/pkZ)[Gn] −→
Z/pkZ by

∂q

(∏
`|n

σa`

`

)
= −aq

extended by linearity to all of (Z/pkZ)[Gn]. By our convention on Frq we have
∂q(Frq) = 0.

Write (κn)` for the image of κn in (F×
` /p

k)χ, and (κn)`,f for the “finite projec-
tion” of (κn)`, the image of (κn)` under the projection map (F×

` /p
k)χ → (O×` /pk)χ

of (3).
If n ∈ N let S(n) denote the set of permutations of the primes dividing n, and

let S1(n) ⊂ S(n) be the subset

{π ∈ S(n) : the q not fixed by π form a single π-orbit}.

If π ∈ S(n) let dπ =
∏
π(q)=q q.

Proposition A.2. If n ∈ N and ` | n then

(κn)`,f =
∑

π∈S1(n)
π(`) 6=`

( ∏
q|(n/dπ)

∂q(Frπ(q))
)
(κdπ

)`,f .

We will prove Proposition A.2 below, after using it to prove Theorem 2.4.

Definition A.3. For every n ∈ N define

κcycl
n =

∑
π∈S(n)

ε(π)
( ∏
q|(n/dπ)

∂q(Frπ(q))
)
κdπ

where ε(π) is the number of cycles of length greater than one in the cycle decom-
position of π. Note that κcycl

1 = κ1 is the image of 1− ζp in (O×/pk)χ.
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Proof of Theorem 2.4. If ` | n then we can group the terms in the definition
of κcycl

n as

κcycl
n =

∑
π∈S(n)
π(`)=`

ε(π)
( ∏
q|(n/dπ)

∂q(Frπ(q))
)
κdπ

+
∑

π∈S(n)
π(`)=`

∑
π′∈S1(dπ)
π′(`) 6=`

ε(ππ′)
( ∏
q|(n/dπ′ )

∂q(Frππ′(q))
)
κdπ′

=
∑

π∈S(n)
π(`)=`

ε(π)
( ∏
q|(n/dπ)

∂q(Frπ(q))
)
sπ

where
sπ = κdπ −

∑
π′∈S1(dπ)
π′(`) 6=`

( ∏
q|(dπ/dπ′ )

∂q(Frπ′(q))
)
κdπ′ .

Proposition A.2 shows that (sπ)`,f = 0 for every π, so (κcycl
n )`,f = 0. �

The rest of this appendix is devoted to the proof of Proposition A.2. Fix a
prime ` ∈ P and an n ∈ N divisible by `. Let A denote the augmentation ideal of
Z[Gn].

Lemma A.4. If m | n and ρ ∈ A+ pkZ[Gn], then ρDm · ξm has a unique pk-th
root in (Z[µn]×)χ.

Proof. Equation (8) exhibits a pk-th root of (γ−1)Dm · ξm for every γ ∈ Gn,
so every such ρDm · ξm is a pk-th power. The pk-th root is unique because (since
χ is not the Teichmüller character) (Z[µnp]×)χ is torsion-free. �

We will write p−kρDm · ξm for the pk-th root of ρDm · ξm given by Lemma A.4.
Let λ denote the product of all primes of F (µn) above `, and let X = (Z[µnp]/λ)×,
which we will write additively. If α ∈ Z[µnp]× we will write ᾱ for the image of α
in X.

Lemma A.5. Suppose m` | n.
(i) If ρ ∈ A2 + pkZ[Gn], then p−kρDm` · ξm` = 0 in X.
(ii) If ρ ∈ A+ pkZ[Gn], then

p−kρDm` · ξm` =
∑
q|m`

∂q(ρ)p−k(Frq − q)Dm`/q · ξm`/q

in X.

Proof. If q - m` then p−kρDm` · ξm` ∈ Z[Gn]Dm` · ξm`, so p−kρDm` · ξm` = 0
by Lemma A.1(ii). If q | m`, then using (6) and Lemma A.1(i) we see that

(1− σq)Dm` · ξm` = (Nq − (q − 1))Dm`/q · ξm`
= (Frq − q)Dm`/q · ξm`/q − (q − 1)Dm`/q · ξm`

in Z[µnp]×. Dividing by pk, projecting into X, and using Lemma A.1(ii) proves (ii)
when ρ = 1 − σq. (Note that each Frq − q belongs to A + pkZ[Gn] because q ≡ 1
(mod pk).) We will use this to prove (i), and then use (i) to complete the proof of
(ii).
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We will prove (i) by induction on the number of primes dividing m. If ρ ∈
pkZ[Gn], then (i) follows from Lemma A.1(ii). Thus it is enough to prove (i) when
ρ = (1− σq)(1− σq′). If q 6= `, then the case of (ii) already done shows that

p−kρDm` · ξm` = p−k(Frq − q)(1− σq′)Dm`/q · ξm`/q
which is zero by induction. If q = `, then

p−kρDm` · ξm` = (Fr` − `)p−k(1− σq′)Dm` · ξm`

which is zero because (Fr` − `) kills X. This proves (i).
The right-hand side of (ii) is a linear function of

ρ ∈ (A+ pkZ[Gn])/(A2 + pkZ[Gn]),

and thanks to (i), the left-hand side is as well. We have shown that (ii) holds for
the generators 1− σq of (A+ pkZ[Gn])/(A2 + pkZ[Gn]), so (ii) holds for all ρ. �

Proposition A.6.

p−k(Fr` − `)Dn · ξn =
∑

π∈S1(n)
π(`) 6=`

( ∏
q|(n/dπ)

∂q(Frπ(q))
)
p−k(Fr` − `)Ddπ

· ξdπ

Proof. Apply Lemma A.5 repeatedly, beginning withm = n and ρ = (Fr`−`).
Expand all terms of the form p−kρDm · xm with m divisible by `, but not those
with m prime to `. The summand corresponding to π occurs as follows:

• expand p−k(Fr` − `)Dn · ξn,
• take the resulting term p−k(Frπ(`) − π(`))Dn/π(`) · ξn/π(`) and expand

that,
• take the new term p−k(Frπ2(`) − π2(`))Dn/(π(`)π2(`)) · ξn/(π(`)π2(`)) and

expand that,

and so forth until πi(`) = `, which leaves us with the desired multiple of the term
p−k(Fr` − `)Ddπ

· ξdπ
. �

Lemma A.7. The natural map (F×
` /p

k)χ → (F (µ`)
×
` /p

k)χ factors through

(F×
` /p

k)χ � (O×` /p
k)χ ↪→ (F (µ`)

×
` /p

k)χ

where the first map is the projection induced by (3) and the second is injective.

Proof. Using the definition of (F×
` /p

k)χtr it is enough to show that ` is in the
kernel of the map Q×

` /p
k → Q`(µ`)×/pk and that the map Z×

` /p
k → Q`(µ`)×/pk

is injective.
For the first statement, we have NQ`(µ`)/Q`

(ζ` − 1) = `, so

`

(ζ` − 1)`−1
=

`−1∏
i=1

ζi` − 1
ζ` − 1

≡ (`− 1)! ≡ −1 (mod ζ` − 1).

Thus by Hensel’s Lemma, ` ∈ (Q`(µ`)×)p
k

, as desired.
For the second statement, since Q`(µ`)/Q` is totally ramified, we have

Z×
` /p

k ∼−→ F×
` /p

k ∼←− Z`[µ`]
×/pk. �
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Recall that λ is the product of all primes of F (µn) above `. There are injective
maps

O×` /pk
� � (`−1)/pk

// (O`/`)× � � // (O[µn]`/λ)×. (9)

Proposition A.8. If m | n, then the image of (κm)`,f under the map (9) is
−p−k(Fr` − `)Dm · ξm.

Proof. By (8), the principal ideal generated by βm is fixed by Gn. Hence we
can find ηm ∈ F(µ`)× such that βm/ηm is a unit at all primes above `. Define
β′m = βm/ηm and κ′m = (Dm · ξm)/(β′m)p

k

. Since κm = κ′m in F (µ`)
×
` /p

k, Lemma
A.7 shows that the image of (κm)`,f in F (µ`)

×
` /p

k is κ′m. Hence to prove the lemma
we need to show that (κ′m)(`−1)/pk

is congruent to p−k(Fr`−1)Dm ·ξm modulo every
prime above `.

We have
(κ′m)(`−1)/pk

= (Dm · ξm)(`−1)/pk

/(β′m)`−1.

Since β′m is a unit all primes above `, modulo such primes we have (using (8) and
the fact that ηm is fixed by Fr`)

(β′m)`−1 ≡ (Fr` − 1) · β′m = (Fr` − 1) · βm = p−k(Fr` − 1)Dm · ξm.
Thus

(κ′m)(`−1)/pk

≡ p−k(`− Fr`)Dm · ξm (mod λ)
as desired. �

Proof of Proposition A.2. Proposition A.2 is now immediate from Propo-
sitions A.6 and A.8, and the injectivity of (9). This concludes the proof of Theorem
2.4 as well. �
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