SOUTHERN CALIFORNIA NUMBER THEORY DAY, NOVEMBER 4, 2012

ABSTRACTS

Noam Elkies, Remarks on isogenies over $\mathbf{Q}(\sqrt{5})$ and other number fields.

On the occasion of the creation of a table of modular elliptic curves over $\mathbf{Q}(\sqrt{5})$, we review the "Remarks on isogenies" that accompanied the "Antwerp" tables (LNM 476), and outline some of the new phenomena and open questions that arise in attempting to give a similar overview of isogenies defined over $\mathbf{Q}(\sqrt{5})$ or other number fields. In particular, we account for some new isogeny degrees and graphs not seen over \mathbf{Q} , and explain why the problem of proving completeness of the list over $\mathbf{Q}(\sqrt{5})$ is difficult but not hopeless.

Jeff Stopple, Repulsive behavior in an exceptional family.

The existence of a Landau-Siegel zero leads to the Deuring-Heilbronn phenomenon, here appearing in the 1-level density in a family of quadratic twists of a fixed genus character L-function. We obtain explicit lower order terms describing the vertical distribution of the zeros, and realize the influence of the Landau-Siegel zero as a resonance phenomenon.

Ramdorai Sujatha, Structure of Selmer groups of Lambda-adic deformations over p-adic Lie extensions.

Otmar Venjakob, On ϵ -isomorphisms for crystalline representations.

As ϵ -constants show up in (local or global) functional equations, they also crucial role regarding the behaviour of the (Equivariant) Tamgama Number Conjecture when going over from a motive M to its (Kummer) dual $M^*(1)$. The existence of ϵ -isomorphism—in the language of Fukaya & Kato—or the Local Tamagawa Number Conjecture—in the teminology of Burns & Flach (generalizing Fontaine & Perrin-Riou)—just imply the compatibility of the global conjecture for M and $M^*(1)$ taking into account their functional equation and Poitou-Tate/Artin-Verdier duality, respectively. In the talk we shall report on recent improvements and results in this direction, which is partly joint work with David Loeffler and Sarah Zerbes.