ORDINARY DIFFERENTIAL EQUATIONS

The Construction of a Pfaff System with Arbitrary Piecewise Continuous Characteristic Power-Law Functions

N. A. Izobov and E. N. Krupchik

Institute of Mathematics, National Academy of Sciences, Minsk, Belarus Belarus State University, Minsk, Belarus Received March 24, 2004

Consider the linear Pfaff system

$$\partial x/\partial t_i = A_i(t)x, \qquad x \in \mathbb{R}^n, \qquad t = (t_1, t_2) \in \mathbb{R}^2_{>1}, \qquad i = 1, 2, \qquad n \in \mathbb{N},$$
 (1_n)

with bounded continuously differentiable matrix functions $A_i(t)$ satisfying the complete integrability condition [1, pp. 43–44; 2, pp. 21–24]

$$\partial A_1(t)/\partial t_2 + A_1(t)A_2(t) = \partial A_2(t)/\partial t_1 + A_2(t)A_1(t), \qquad t \in \mathbb{R}^2_{>1}.$$

Let $p=p[x] \in R^2$ and $\lambda=\lambda[x] \in R^2$ be the lower characteristic vector [3] and the characteristic vector [4], respectively, of a nontrivial solution $x:R_{>1}^2\to R^n\backslash\{0\}$ of system (1_n) , and let $P_x=\{p[x]\}$ and $\Lambda_x=\{\lambda[x]\}$ be the lower characteristic set and the characteristic set of the same solution; they are bounded and closed and can be represented [3, 4], respectively, by monotone decreasing concave and convex curves $p_2=\varphi(p_1): [\alpha_1,\alpha_2]\to [\beta_1,\beta_2]$ and $\lambda_2=f(\lambda_1): [a_1,a_2]\to [b_1,b_2]$ on the plane R^2 .

We introduce analogs of the Demidovich characteristic degree [5] of a function of a single variable, namely, the lower characteristic degree [6] $\underline{d} = \underline{d}_x(p) \in R^2$ and the upper characteristic degree [7] $\overline{d} = \overline{d}_x(\lambda) \in R^2$ of the solution $x \neq 0$, given by the conditions

$$\begin{split} \underline{\ln}_x\left(p,\underline{d}\right) &\equiv \underline{\lim}_{t \to \infty} \frac{\ln \|x(t)\| - (p,t) - (\underline{d}, \ln t)}{\|\ln t\|} = 0, \\ \underline{\ln}_x\left(p,\underline{d} + \varepsilon e_i\right) &< 0, \qquad \forall \varepsilon > 0, \qquad i = 1,2, \\ \overline{\ln}_x\left(\lambda,\bar{d}\right) &\equiv \overline{\lim}_{t \to \infty} \frac{\ln \|x(t)\| - (\lambda,t) - \left(\bar{d}, \ln t\right)}{\|\ln t\|} = 0, \\ \overline{\ln}_x\left(\lambda,\bar{d} - \varepsilon e_i\right) &> 0, \qquad \forall \varepsilon > 0, \qquad i = 1,2, \end{split}$$

where $e_i = (2-i, i-1)$ and $\ln t \equiv (\ln t_1, \ln t_2) \in R_+^2$, as well as the lower degree set $\underline{D}_x(p) = \{\underline{d}_x(p)\}$ and the upper degree set $\overline{D}_x(\lambda) = \{\overline{d}_x(\lambda)\}$.

By [6], if for an interior point $p=(p_1,\varphi(p_1))\in P_x$, $p_1\in(\alpha_1,\alpha_2)$, and for an exterior point $\lambda=(\lambda_1,f(\lambda_1))\in\Lambda_x$, $\lambda_1\in(a_1,a_2)$, there exist finite limits $\underline{c}_x(p_1)\equiv\sqrt{2}\underline{\ln}_x((p_1,\varphi(p_1)),0)$ and $\bar{c}_x(\lambda_1)\equiv\sqrt{2}\overline{\ln}_x((\lambda_1,f(\lambda_1)),0)$, respectively, then the individual interior lower degree set $\underline{D}_x(p)$ and upper degree set $\bar{D}_x(\lambda)$ of the solution $x\neq 0$ are the lines $\underline{d}_1+\underline{d}_2=\underline{c}_x(p_1)$ and $\bar{d}_1+\bar{d}_2=\bar{c}_x(\lambda_1)$, respectively, on the plane R^2 .

It was shown in [8] that the left boundary lower degree set $\underline{D}_x(p')$, $p' = (\alpha_1, \beta_2)$, the right boundary lower degree set $\underline{D}_x(p'')$, $p'' = (\alpha_2, \beta_1)$, the left boundary upper degree set $\overline{D}_x(\lambda')$, $\lambda' = (a_1, b_2)$, and the right boundary upper degree set $\overline{D}_x(\lambda'')$, $\lambda'' = (a_2, b_1)$, of the solution $x \neq 0$ of system (1_n) do not necessarily coincide with any line on the two-dimensional plane and even need not contain a rectilinear segment.

Therefore, it is natural to introduce the lower characteristic degree function $\underline{c}_x(p_1)$ and the upper characteristic degree function $\bar{c}_x(\lambda_1)$ of the solution $x \neq 0$ of system (1_n) defined on the intervals (α_1, α_2) and (a_1, a_2) , respectively.

The investigation of these functions was initiated in [6]; more precisely, completely integrable Pfaff systems (1_n) with infinitely differentiable bounded coefficients such that the characteristic degree functions $\underline{c}_x(p_1)$ and $\bar{c}_x(\lambda_1)$ of nontrivial solutions of these systems coincide with given functions were constructed for some piecewise constant functions and some continuous functions. The next step in the description of the functions $\underline{c}_x(p_1)$ and $\bar{c}_x(\lambda_1)$ is to implement an arbitrary given piecewise continuous function by characteristic degree functions of some nontrivial solution of some system (1_n) .

By [9, p. 106 of the Russian translation], a piecewise continuous function on an interval is defined as a function continuous everywhere on that interval except for finitely many jump discontinuities.

Theorem 1. For an arbitrary positive integer n and for an arbitrary piecewise continuous function $g: [\alpha_1, \alpha_2] \to R$, there exists a completely integrable Pfaff system (1_n) with infinitely differentiable bounded coefficients such that, for each nontrivial solution $x: R^2_{>1} \to R^n \setminus \{0\}$ of this system, the domain of the curve P_x coincides with the interval $[\alpha_1, \alpha_2]$ and

$$\underline{c}_x(p_1) = g(p_1), \qquad \forall p_1 \in (\alpha_1, \alpha_2). \tag{2}$$

Proof. Note that it suffices to prove the desired assertion for n = 1. Indeed, having constructed a one-dimensional completely integrable Pfaff equation

$$\partial x/\partial t_i = a_i(t)x, \qquad x \in R, \qquad t \in \mathbb{R}^2_{>1}, \qquad i = 1, 2,$$
 (1₁)

with infinitely differentiable bounded coefficients such that the lower characteristic degree function \underline{c}_{x_1} $(p_1[x_1])$ of a nontrivial solution $x_1:R_{>1}^2\to R\setminus\{0\}$ coincides with the function $g(p_1[x_1])$ for all $p_1[x_1]\in(\alpha_1,\alpha_2)$, one can choose the desired n-dimensional system (1_n) in the form of the diagonal system with coefficient matrix $A_i(t)=\operatorname{diag}\left[a_i(t),\ldots,a_i(t)\right],\ i=1,2,$ of order n. Then $X(t)=x_1(t)E_n$, where E_n is the identity matrix of order n, is the principal solution matrix of system (1_n) , and each nontrivial solution $x:R_{>1}^2\to R^n\setminus\{0\}$ of this system can be represented in the form $x(t)=X(t)c=x_1(t)c$ with some $c\in R^n\setminus\{0\}$. Therefore, the lower characteristic vectors $p[x]=p[x_1]$ and hence the lower characteristic degree functions $\underline{c}_x(p_1[x])=\underline{c}_{x_1}(p_1[x_1])$ of this solution and the solution x_1 of Eq. (1_1) coincide.

First, consider the case of an interval $[\alpha_1, \alpha_2]$ on the line R such that $\alpha_1 < \alpha_2 < 0$.

1. CONSTRUCTION OF THE SOLUTION

We construct a solution x of the Pfaff equation (1_1) in the form

$$\ln x(t) = \ln \phi(t) + \nu(t) \ln \psi(t), \qquad t \in \mathbb{R}^2_{>1}.$$
 (3)

The function ϕ is defined so as to ensure that the domain of the curve P_{ϕ} of its lower characteristic set coincides with the interval $[\alpha_1, \alpha_2]$ and all points $p[\phi]$ of the lower characteristic set P_{ϕ} are realized in different directions $\theta_t \equiv t_2/t_1$ depending on $p[\phi]$. We define the function ν on the basis of the function $g\left(-\sqrt{\theta_t}\right)$ so as to ensure that the solution x satisfies relation (2), $\ln x$ is an infinitely differentiable function, and its derivatives $\partial \ln x(t)/\partial t_i$, i=1,2, are bounded.

We use the infinitely differentiable standard function [10, p. 54 of the Russian translation]

$$e_{01}(\tau; \tau_1, \tau_2) = \begin{cases} \exp\left\{-\left(\tau - \tau_1\right)^{-2} \exp\left[-\left(\tau_2 - \tau\right)^{-2}\right]\right\} & \text{for } \tau \in (\tau_1, \tau_2) \\ \left[1 + \operatorname{sgn}\left(\tau - 2^{-1}\left(\tau_1 + \tau_2\right)\right)\right]/2 & \text{for } \tau \notin (\tau_1, \tau_2), \end{cases}$$

 $-\infty < \tau_1 < \tau_2 < +\infty$, and define infinitely differentiable functions ϕ and ψ by the relations

$$\ln \phi(t) = -2\sqrt{t_1 t_2} + \left(2\sqrt{t_1 t_2} + t_2/\alpha_1\right) e_{01} \left(\theta_t/(2\alpha_1^2); 1/2, 1\right) + \left(2\sqrt{t_1 t_2} + \alpha_2 t_1\right) \left[1 - e_{01} \left(\theta_t/\alpha_2^2; 1/2, 1\right)\right],$$
(4)

$$\ln \psi(t) = e_{01} \left(\theta_t / \alpha_2^2; 1/2, 1 \right) \left[1 - e_{01} \left(\theta_t / \left(2\alpha_1^2 \right); 1/2, 1 \right) \right] \ln t_1, \qquad t \in \mathbb{R}^2_{>1}. \tag{5}$$

Suppose that, on the interval (α_1, α_2) , the function g has k points

$$\alpha_1 < \Delta_1 < \Delta_2 < \dots < \Delta_k < \alpha_2$$

of discontinuity. For convenience, we set $\Delta_0 = \alpha_1$, $\Delta_{k+1} = \alpha_2$, and $\tau_j = \Delta_j - \Delta_{j-1}$, $j = 1, \dots, k+1$. On the basis of the function g, we introduce the new functions

$$g_j: [\Delta_{j-1}, \Delta_j] \to R, \qquad j = 1, \dots, k+1,$$

given by the relations

$$g_i(\Delta) = g(\Delta), \qquad \Delta \in (\Delta_{i-1}, \Delta_i), \qquad g_i(\Delta_{i-1}) = g(\Delta_{i-1} + 0), \qquad g_i(\Delta_i) = g(\Delta_i - 0).$$

Obviously, each function g_j is continuous on the closed interval $[\Delta_{j-1}, \Delta_j]$, j = 1, ..., k+1. By the Weierstrass approximation theorem, for each function $g_j(\Delta)$, there exists a sequence $\{P_l^{(j)}(\Delta)\}_{l \in \mathbb{N}}$ of algebraic polynomials uniformly converging on $[\Delta_{j-1}, \Delta_j]$ to the function $g_j(\Delta)$. By virtue of the Weierstrass theorem on continuous functions on an interval, the following notation is well defined:

$$\mu_{l} = \max_{j=1,\dots,k+1} \left(\max_{\Delta \in [\Delta_{j-1},\Delta_{j}]} \left| P_{l}^{(j)}(\Delta) \right| \right) < +\infty,$$

$$\varrho_{l} = \max_{j=1,\dots,k+1} \left(\max_{\Delta \in [\Delta_{j-1},\Delta_{j}]} \left| dP_{l}^{(j)}(\Delta) / d\Delta \right| \right) < +\infty.$$

We use some value $\delta_0 > (\max_{j=0,\dots,k+1} |g(\Delta_j)|)^4 (1+2\alpha_1^2) + 1$ and introduce the numbers

$$\gamma_l = (\delta_{l-1} + (1 + \varrho_l^2 + \mu_l^4)(1 + \alpha_1^2))l^2, \quad \delta_l = \gamma_l e^2, \quad l \in N$$

We split the quadrant $R_{>1}^2$ (that is, the domain of the solution x to be constructed) into disjoint "basic" strips

$$\Pi(l) = \left\{ t \in R_{>1}^2 : \ \delta_l \le t_1 + t_2 \equiv \zeta(t) \le \gamma_{l+1} \right\},\,$$

"transition" strips

$$\tilde{\Pi}(l) = \left\{ t \in \mathbb{R}^2_{>1} : \gamma_l < \zeta(t) < \delta_l \right\}, \qquad l \in \mathbb{N},$$

and the triangle $T = \{t \in \mathbb{R}^2_{>1} : \zeta(t) \leq \gamma_1\}.$

Let us now proceed to the construction of the function ν . We first define auxiliary functions ν_l , $l \in N$, as follows:

$$\nu_l(t) = P_l^{(j)} \left(-\sqrt{\theta_t} \right), \qquad \theta_t \in \left[\left(\Delta_j - \tau_j / \left(2\sqrt{l} \right) \right)^2, \left(\Delta_{j-1} + \tau_j / \left(2\sqrt{l} \right) \right)^2 \right],$$

$$j = 1, \dots, k+1,$$

$$(6_1)$$

$$\nu_{l}(t) = g\left(\Delta_{j}\right), \qquad \theta_{t} \in \left[\left(\Delta_{j} + \tau_{j+1} / \left(4\sqrt{l}\right)\right)^{2}, \left(\Delta_{j} - \tau_{j} / \left(4\sqrt{l}\right)\right)^{2}\right],$$

$$j = 1, \dots, k,$$

$$(6_{2})$$

$$\nu_{l}(t) = P_{l}^{(j)} \left(-\sqrt{\theta_{t}} \right) + \left[g\left(\Delta_{j} \right) - P_{l}^{(j)} \left(-\sqrt{\theta_{t}} \right) \right] \times \left[1 - e_{01} \left(2\sqrt{l} \left(\Delta_{j} + \sqrt{\theta_{t}} \right) / \tau_{j}; 1/2, 1 \right) \right], \tag{6}_{3}$$

$$\theta_t \in \left(\left(\Delta_j - \tau_j / \left(4\sqrt{l} \right) \right)^2, \left(\Delta_j - \tau_j / \left(2\sqrt{l} \right) \right)^2 \right), \quad j = 1, \dots, k+1,$$

$$\nu_{l}(t) = g\left(\Delta_{j}\right) + \left[P_{l}^{(j+1)}\left(-\sqrt{\theta_{t}}\right) - g\left(\Delta_{j}\right)\right] \times \left[1 - e_{01}\left(2\sqrt{l}\left(\Delta_{j} + \sqrt{\theta_{t}}\right) \middle/ \tau_{j+1}; -1, -1/2\right)\right], \tag{6}_{4}$$

$$\theta_t \in \left(\left(\Delta_j + \tau_{j+1} / \left(2\sqrt{l} \right) \right)^2, \left(\Delta_j + \tau_{j+1} / \left(4\sqrt{l} \right) \right)^2 \right), \qquad j = 0, \dots, k,$$

$$\nu_l(t) = g(\alpha_1), \qquad \theta_t \ge \left(\alpha_1 + \tau_1 / \left(4\sqrt{l}\right)\right)^2,$$

$$(6_5)$$

$$\nu_l(t) = g(\alpha_2), \qquad \theta_t \le \left(\alpha_2 - \tau_{k+1} / \left(4\sqrt{l}\right)\right)^2.$$

$$(6_6)$$

Relations (6_1) – (6_6) define the function ν_l in the entire quadrant $R_{>1}^2$. We set the desired function ν in the "basic" strips $\Pi(l)$ to be equal to the function ν_l ; i.e.,

$$\nu(t) = \nu_l(t), \qquad t \in \Pi(l), \qquad l \in N. \tag{7}_1$$

In the "transition" strips, we pass from the function ν_{l-1} to the function ν_l :

$$\nu(t) = \nu_{l-1}(t) + \left[\nu_l(t) - \nu_{l-1}(t)\right] e_{01} \left(\ln \zeta(t); \ln \gamma_l, \ln \delta_l\right), \qquad t \in \tilde{\Pi}(l), \qquad l = 2, 3, \dots$$
 (7₂)

Finally, we set

$$\nu(t) = \nu_1(t)e_{01}\left(\ln \zeta(t); \ln \gamma_1, \ln \delta_1\right), \qquad t \in T \cup \tilde{\Pi}(1). \tag{7_3}$$

2. CONSTRUCTION OF THE LOWER CHARACTERISTIC SET OF THE SOLUTION \boldsymbol{x}

2.1. Construction of the Lower Characteristic Set of the Function ϕ

Let us show that the set

$$P \equiv \left\{ p \in R_{-}^{2} : \ p_{1}p_{2} = 1, \ \alpha_{1} \leq p_{1} \leq \alpha_{2} \right\}$$

is the lower characteristic set of the function ϕ . Obviously, the inequalities

$$2\sqrt{t_1t_2} + t_2/\alpha_1 \ge -\sqrt{2}t_2/\alpha_1 + t_2/\alpha_1 = -\left(\sqrt{2} - 1\right)t_2/\alpha_1 \ge 0,$$

$$2\sqrt{t_1t_2} + \alpha_2t_1 \ge -\sqrt{2}\alpha_2t_1 + \alpha_2t_1 = -\alpha_2\left(\sqrt{2} - 1\right)t_1 \ge 0$$

are valid for $\alpha_2^2/2 \le \theta_t \le 2\alpha_1^2$. We take an arbitrary vector $p \in P$ and set $R_{\phi}(p,t) \equiv \ln \phi(t) - (p,t)$; then we estimate the quantity $R_{\phi}(p,t)$ from below. For $\alpha_2^2/2 \le \theta_t \le 2\alpha_1^2$, we obtain the inequality

$$R_{\phi}(p,t) \ge -2\sqrt{t_1 t_2} - p_1 t_1 - t_2/p_1 = -t_1 \left(p_1 + \sqrt{\theta_t}\right)^2 / p_1 \ge 0.$$
 (8₁)

Relation (4) with $\theta_t \geq 2\alpha_1^2$ implies the estimate

$$R_{\phi}(p,t) = t_2/\alpha_1 - p_1t_1 - t_2/p_1 \ge (1/\alpha_1 - 1/p_1)t_2 - p_1t_1 \ge -p_1t_1 > 0.$$
 (8₂)

Finally, by using (4), we obtain the inequality

$$R_{\phi}(p,t) = \alpha_2 t_1 - p_1 t_1 - t_2 / p_1 \ge (\alpha_2 - p_1) t_1 \ge 0 \tag{8_3}$$

for $\theta_t \leq \alpha_2^2/2$. The estimates (8_1) – (8_3) imply the inequality

$$\underline{l}_{\phi}(p) \equiv \underline{\lim}_{t \to \infty} R_{\phi}(p, t) / ||t|| \ge 0.$$

The relation $\underline{l}_{\phi}(p) = 0$ and the second condition $\underline{l}_{\phi}(p + \varepsilon e_i) < 0$, $\varepsilon > 0$, i = 1, 2, in the definition [3] of the lower characteristic vector are established in the direction $t_2 = p_1^2 t_1$, $t_1 \to +\infty$. We have thereby justified the inclusion $P \subset P_{\phi}$. On the other hand, for an arbitrary lower characteristic vector $p = (p_1, p_2) \in P_{\phi}$, in the directions $t_2 = e$, $t_1 \to +\infty$, and $t_1 = e$, $t_2 \to +\infty$, we obtain the inequalities $p_1 \le \alpha_2$ and $p_2 \le 1/\alpha_1$, respectively. Since the set P_{ϕ} can be represented [3] by a strictly monotone decreasing curve, we find that it necessarily coincides with P.

2.2. PROOF OF THE COINCIDENCE OF THE LOWER CHARACTERISTIC SET OF THE SOLUTION x WITH THE SET P

Let us show that the lower characteristic set P_x of the solution x coincides with the lower characteristic set P_{ϕ} of the function ϕ . To this end, we prove the existence of the limit

$$\lim_{t \to \infty} ||t||^{-1} \nu(t) \ln \psi(t) = 0. \tag{9}$$

By setting $\Pi L(l) = \tilde{\Pi}(l) \cup \Pi(l) \cup \tilde{\Pi}(l+1)$, $l \in N$, and by taking some $l \in N$, we estimate the function ν_l in the strip $\Pi L(l)$. Note first that since θ_t belongs to the interval

$$\left[\left(\Delta_{j}-\tau_{j}\Big/\Big(2\sqrt{l}\,\Big)\right)^{2},\left(\Delta_{j-1}+\tau_{j}\Big/\Big(2\sqrt{l}\,\Big)\right)^{2}\right],$$

we have the inequalities $\Delta_{j-1} < \Delta_{j-1} + \tau_j/(2\sqrt{l}) \le -\sqrt{\theta_t} \le \Delta_j - \tau_j/(2\sqrt{l}) < \Delta_j$, which imply that $\left| P_l^{(j)} \left(-\sqrt{\theta_t} \right) \right| \le \mu_l$. Since $\zeta(t) \ge \mu_l^4 \left(1 + \alpha_1^2 \right)$ in the strip $\Pi L(l)$, it follows from (6_1) that

$$|\nu_{l}(t)| = \left| P_{l}^{(j)} \left(-\sqrt{\theta_{t}} \right) \right| \leq \mu_{l} \leq \sqrt[4]{t_{1}},$$

$$\theta_{t} \in \left[\left(\Delta_{j} - \tau_{j} / \left(2\sqrt{l} \right) \right)^{2}, \left(\Delta_{j-1} + \tau_{j} / \left(2\sqrt{l} \right) \right)^{2} \right],$$

$$j = 1, \dots, k+1, \qquad t \in \Pi l(l).$$

$$(10_{1})$$

By using the inequality $\zeta(t) \ge (\max_{j=0,\dots,k+1} |g(\Delta_j)|)^4 (1+2\alpha_1^2)$, which is valid in each strip $\Pi L(l)$, $l \in N$, from relation (6₂), we obtain the estimates

$$|\nu_{l}(t)| = |g(\Delta_{j})| \leq \sqrt[4]{t_{1}},$$

$$\theta_{t} \in \left[\left(\Delta_{j} + \tau_{j+1} / \left(4\sqrt{l} \right) \right)^{2}, \left(\Delta_{j} - \tau_{j} / \left(4\sqrt{l} \right) \right)^{2} \right],$$

$$j = 1, \dots, k, \qquad t \in \Pi L(l).$$

$$(10_{2})$$

By virtue of (6_5) and (6_6) , we have the inequalities

$$|\nu_l(t)| = |g(\alpha_1)| \le \sqrt[4]{t_1}, \qquad 2\alpha_1^2 \ge \theta_t \ge \left(\alpha_1 + \tau_1 / \left(4\sqrt{l}\right)\right)^2, \qquad t \in \Pi L(l), \tag{10_3}$$

$$|\nu_l(t)| = |g(\alpha_2)| \le \sqrt[4]{t_1}, \qquad \theta_t \le \left(\alpha_2 - \tau_{k+1} / \left(4\sqrt{l}\right)\right)^2, \qquad t \in \Pi L(l). \tag{104}$$

Now let

$$heta_t \in \left(\left(\Delta_j - au_j \middle/ \left(4\sqrt{l} \;
ight) \right)^2, \left(\Delta_j - au_j \middle/ \left(2\sqrt{l} \;
ight) \right)^2
ight)$$

with some $j \in \{1, \ldots, k+1\}$ and $t \in \Pi L(l)$. If $g(\Delta_j) - P_l^{(j)}(-\sqrt{\theta_t}) \ge 0$, then from (6₃), we obtain the estimates

$$\nu_{l}(t) \geq P_{l}^{(j)}\left(-\sqrt{\theta_{t}}\right) \geq -\left|P_{l}^{(j)}\left(-\sqrt{\theta_{t}}\right)\right| \geq -\sqrt[4]{t_{1}},$$

$$\nu_{l}(t) \leq P_{l}^{(j)}\left(-\sqrt{\theta_{t}}\right) + g\left(\Delta_{j}\right) - P_{l}^{(j)}\left(-\sqrt{\theta_{t}}\right) \leq |g\left(\Delta_{j}\right)| \leq \sqrt[4]{t_{1}}.$$

But if $g(\Delta_j) - P_l^{(j)}(-\sqrt{\theta_t}) < 0$, then we have the inequalities

$$\nu_{l}(t) \leq P_{l}^{(j)}\left(-\sqrt{\theta_{t}}\right) \leq \sqrt[4]{t_{1}},$$

$$\nu_{l}(t) \geq P_{l}^{(j)}\left(-\sqrt{\theta_{t}}\right) + g\left(\Delta_{j}\right) - P_{l}^{(j)}\left(-\sqrt{\theta_{t}}\right) \geq -\left|g\left(\Delta_{j}\right)\right| \geq -\sqrt[4]{t_{1}}.$$

We have thereby proved the estimate

$$|\nu_l(t)| \le \sqrt[4]{t_1}, \qquad \theta_t \in \left(\left(\Delta_j - \tau_j / \left(4\sqrt{l} \right) \right)^2, \left(\Delta_j - \tau_j / \left(2\sqrt{l} \right) \right)^2 \right),$$

$$j = 1, \dots, k+1, \qquad t \in \Pi L(l).$$
(10₅)

In a similar way, one can show that

$$|\nu_l(t)| \le \sqrt[4]{t_1}, \qquad \theta_t \in \left(\left(\Delta_j + \tau_{j+1} / \left(2\sqrt{l} \right) \right)^2, \left(\Delta_j + \tau_{j+1} / \left(4\sqrt{l} \right) \right)^2 \right),$$

$$j = 0, \dots, k, \qquad t \in \Pi L(l).$$

$$(10_6)$$

Therefore, for each $l \in N$ from the estimates (10_1) – (10_6) , we obtain the inequality

$$|\nu_l(t)| \le \sqrt[4]{t_1}, \qquad t \in \Pi L(l), \qquad \theta_t \le 2\alpha_1^2. \tag{11}$$

By virtue of definitions (7_1) – (7_3) of the function $\nu(t)$ and inequality (11), we have the estimate

$$|\nu(t)| \le \sqrt[4]{t_1}, \qquad t \in \mathbb{R}^2_{>1}, \qquad \theta_t \le 2\alpha_1^2. \tag{12}$$

By using relation (5) and the estimate (12), we obtain the inequality

$$|\nu(t)\ln\psi(t)| \le \sqrt[4]{t_1}\ln t_1, \qquad t \in \mathbb{R}^2_{>1},$$
 (13)

which implies (9). We have thereby shown that the lower characteristic set P_x of the solution x of Eq. (1_1) coincides with P.

3. PROOF OF RELATION (2) FOR THE SOLUTION x

We take an arbitrary interior point $p = (p_1, \varphi(p_1))$, $\alpha_1 < p_1 < \alpha_2$, of the lower characteristic set P_x . Let the limit $\underline{\ln}_x(p,0)$ be realized along a sequence $\{t(m)\}$ [6] for which there exists a finite limit $\underline{\lim}_{m\to\infty} \theta_{t(m)} = \theta > 0$. There are only two possible cases: $\theta \neq p_1^2$ and $\theta = p_1^2$.

Let $\theta \neq p_1^2$. Since $\lim_{m\to\infty} (p_1 + \sqrt{\theta_{t(m)}})^2 = (p_1 + \sqrt{\theta})^2 > 0$, without loss of generality, one can assume that the sequence $\{t(m)\}$ satisfies the inequality

$$\left(p_1 + \sqrt{\theta_{t(m)}}\right)^2 \ge \left(p_1 + \sqrt{\theta}\right)^2/2 > 0, \quad m \in \mathbb{N}.$$

It follows from (8_1) – (8_3) that

$$R_{\phi}(p,t) \ge Mt_1(m), \qquad M = \min\left\{-\left(p_1 + \sqrt{\theta}\right)^2/(2p_1); -p_1; \alpha_2 - p_1\right\} > 0.$$

Then, by using (3), we obtain the estimate

$$\underline{\ln}_x(p,0) \ge \lim_{m \to \infty} \left(M t_1(m) - \sqrt[4]{t_1(m)} \ln t_1(m) \right) / \|\ln t(m)\| = +\infty.$$

Now we suppose that $\theta = p_1^2$. Without loss of generality, we assume that all elements of the sequence t(m) realizing the lower limit $\underline{\ln}_x(p,0)$ belong to the strips $\tilde{\Pi}(l_m) \cup \Pi(l_m)$ with distinct indices $l_m > 1$, $l_{m+1} > l_m \to +\infty$ as $m \to +\infty$. The following two cases are possible: (i) either p_1 does not coincide with any point of discontinuity of the function $g(\Delta)$, i.e., $p_1 \in (\Delta_{j_0-1}, \Delta_{j_0})$, $j_0 \in \{1, \ldots, k+1\}$, or (ii) p_1 coincides with some point of discontinuity Δ_{j_0} , $j_0 \in \{1, \ldots, k\}$, of the function $g(\Delta)$.

By virtue of the inclusion

$$\lim_{m \to \infty} \theta_{t(m)} = p_1^2 \in \left(\left(\Delta_{j_0} - \tau_{j_0} / \left(2\sqrt{l_0} \right) \right)^2, \left(\Delta_{j_0 - 1} + \tau_{j_0} / \left(2\sqrt{l_0} \right) \right)^2 \right)$$

with some $l_0 \in N$, in the first case without loss of generality, we assume that the sequence $\{t(m)\}$ satisfies the inequalities $(\Delta_{j_0} - \tau_{j_0}/(2\sqrt{l_0}))^2 < \theta_{t(m)} < (\Delta_{j_0-1} + \tau_{j_0}/(2\sqrt{l_0}))^2$ for all $m \in N$. Again, without loss of generality, we assume that $l_m - 1 \ge l_0$ for all $m \in N$. Consequently,

$$\left(\Delta_{j_0} - \tau_{j_0} / \left(2\sqrt{l_m - 1}\right)\right)^2 < \theta_{t(m)} < \left(\Delta_{j_0 - 1} + \tau_{j_0} / \left(2\sqrt{l_m - 1}\right)\right)^2, \quad \forall m \in \mathbb{N}.$$
 (14)

Without loss of generality, one can restrict considerations to the following two possibilities:

- (1) $t(m) \in \Pi(l_m)$ for all $m \in N$;
- (2) $t(m) \in \Pi(l_m)$ for all $m \in N$ as well.

In the first possible case, by using (7_1) , (6_1) , and inequality (14), we obtain

$$\nu(t(m)) = P_{l_m}^{(j_0)} \left(-\sqrt{\theta_{t(m)}} \right),\,$$

and relations (5) and (14) imply that $\ln \phi(t(m)) = \ln t_1(m)$. Since the polynomials $P_{l_m}^{(j_0)}(\Delta)$ uniformly converge to the function $g_{j_0}(\Delta)$ as $m \to \infty$ on the interval $[\Delta_{j_0-1}, \Delta_{j_0}], \Delta_{j_0-1} < -\sqrt{\theta_{t(m)}} < \Delta_{j_0}$ for all $m \in N$ and since g_{j_0} is a continuous function on the interval $[\Delta_{j_0-1}, \Delta_{j_0}],$ it follows from (8_1) – (8_3) that

$$\underline{\ln}_{x}(p,0) \ge \lim_{m \to \infty} \left(P_{l_{m}}^{(j_{0})} \left(-\sqrt{\theta_{t(m)}} \right) \ln t_{1}(m) \right) / \|\ln t(m)\|$$

$$= \lim_{m \to \infty} P_{l_{m}}^{(j_{0})} \left(-\sqrt{\theta_{t(m)}} \right) / \sqrt{2} = g(p_{1}) / \sqrt{2}.$$

But if the second possibility takes place, then, without loss of generality, we consider only two cases: either $\nu_{l_m}(t(m)) \leq \nu_{l_m-1}(t(m))$ for all $m \in N$, or $\nu_{l_m}(t(m)) > \nu_{l_m-1}(t(m))$ for all $m \in N$. In the first case, from (7_2) , we obtain the estimate $\nu(t(m)) \geq \nu_{l_m}(t(m))$, whence it follows that $\underline{\ln}_x(p,0) \geq g(p_1)/\sqrt{2}$. In the second case, from (7_2) and (14), we have

$$\nu(t(m)) \ge \nu_{l_m-1}(t(m)) = P_{l_m-1}^{(j_0)} \left(-\sqrt{\theta_{t(m)}}\right).$$

Therefore, we have again obtained the estimates

$$\underline{\ln}_{x}(p,0) \ge \lim_{m \to \infty} \left(P_{l_{m}-1}^{(j_{0})} \left(-\sqrt{\theta_{t(m)}} \right) \ln t_{1}(m) \right) / \|\ln t(m)\| = g\left(p_{1}\right) / \sqrt{2}.$$

By virtue of the inequalities $(\Delta_{j_0} - \tau_{j_0}/(2\sqrt{m}\,))^2 < \theta_{\tau(m)} < (\Delta_{j_0-1} + \tau_{j_0}/(2\sqrt{m}\,))^2, m \ge l_0, m \in N$, along some sequence $\{\tau(m)\}, \tau(m) \in \Pi(m), \theta_{\tau(m)} = p_1^2, m \ge l_0, m \in N$, relations (7_1) and (6_1) imply that $\nu(\tau(m)) = \nu_m(\tau(m)) = P_m^{(j_0)} \left(-\sqrt{\theta_{\tau(m)}}\,\right)$, and consequently,

$$\lim_{m \to \infty} \left(R_{\phi}(p, \tau(m)) + P_{m}^{(j_{0})} \left(-\sqrt{\theta_{\tau(m)}} \right) \ln \tau_{1}(m) \right) / \| \ln \tau(m) \|$$

$$= \lim_{m \to \infty} P_{m}^{(j_{0})} \left(-\sqrt{\theta_{t(m)}} \right) / \sqrt{2} = g(p_{1}) / \sqrt{2}.$$

We have thereby proved the desired inequality (2) for all points p_1 of continuity of the function g. Now let p_1 coincide with some point of discontinuity Δ_{j_0} , $j_0 \in \{1, \ldots, k\}$, of the function g. Without loss of generality, we consider the following three possible cases:

(1)
$$\left(\Delta_{j_0} + \tau_{j_0+1}/\left(4\sqrt{l_m}\right)\right)^2 \le \theta_{t(m)} \le \left(\Delta_{j_0} - \tau_{j_0}/\left(4\sqrt{l_m}\right)\right)^2$$
 for all $m \in N$;

(2)
$$\alpha_1^2 > \theta_{t(m)} > (\Delta_{j_0} - \tau_{j_0} / (4\sqrt{l_m}))^2$$
 for all $m \in N$;

(3)
$$\alpha_2^2 < \theta_{t(m)} < (\Delta_{j_0} + \tau_{j_0+1}/(4\sqrt{l_m}))^2$$
 for all $m \in N$.

(3) $\alpha_2^2 < \theta_{t(m)} < (\Delta_{j_0} + \tau_{j_0+1}/(4\sqrt{l_m}))^2$ for all $m \in N$. In the first case, we have $\nu_{l_m}(t(m)) = g(\Delta_{j_0}), m \in N$, and the inequalities

$$\left(\Delta_{j_0} + \tau_{j_0+1} / \left(4\sqrt{l_m - 1}\right)\right)^2 \le \theta_{t(m)} \le \left(\Delta_{j_0} - \tau_{j_0} / \left(4\sqrt{l_m - 1}\right)\right)^2, \quad m \in N,$$

and (6_2) imply that

$$\nu_{l_m-1}(t(m)) = g\left(\Delta_{j_0}\right), \qquad m \in N.$$

It follows from (7_1) and (7_2) that $\nu(t(m)) = g(\Delta_{i_0}), m \in \mathbb{N}$. Therefore, we obtain the estimates

$$\underline{\ln}_x(p,0) \ge \lim_{m \to \infty} \left(g\left(\Delta_{j_0}\right) \ln t_1(m) \right) / \|\ln t(m)\| = g\left(\Delta_{j_0}\right) / \sqrt{2}.$$

If the second possibility takes place, then

$$\sqrt{\theta_{t(m)}} > -\Delta_{j_0} + \tau_{j_0} / \left(4\sqrt{l_m}\right), \qquad m \in N.$$

Since $t(m) \in \tilde{\Pi}(l_m) \cup \Pi(l_m)$, it follows from the definition of the strips that $\zeta(t(m)) \geq l_m^2 (1 + \alpha_1^2)$, $m \in N$, whence $\sqrt{t_1(m)} \ge l_m$. By using (8_1) , we obtain the estimates

$$R_{\phi}(p, t(m)) \ge -t_1(m) \left(\Delta_{j_0} + \sqrt{\theta_{t(m)}}\right)^2 / \Delta_{j_0} \ge -t_1(m)\tau_{j_0}^2 / (16l_m \Delta_{j_0})$$

$$\ge -\sqrt{t_1(m)}\tau_{j_0}^2 / (16\Delta_{j_0}).$$

Consequently, by virtue of (13), we have

$$\underline{\ln}_{x}(p,0) \ge \lim_{m \to \infty} \left(-\sqrt{t_{1}(m)} \tau_{j_{0}}^{2} / (16\Delta_{j_{0}}) - \sqrt[4]{t_{1}(m)} \ln t_{1}(m) \right) / \|\ln t(m)\| = +\infty.$$

For the third possibility, we have

$$\sqrt{\theta_{t(m)}} < -\left(\Delta_{j_0} + \tau_{j_0+1}/\left(4\sqrt{l_m}\right)\right), \quad m \in N.$$

Since $t(m) \in \tilde{\Pi}(l_m) \cup \Pi(l_m)$, we again have the inequality $\sqrt{t_1(m)} \ge l_m$. By using inequality (8_1) , we obtain the estimates

$$R_{\phi}(p, t(m)) \ge -t_1(m) \left(\Delta_{j_0} + \sqrt{\theta_{t(m)}}\right)^2 / \Delta_{j_0} \ge -t_1(m) \tau_{j_0+1}^2 / (16l_m \Delta_{j_0})$$

$$\ge -\sqrt{t_1(m)} \tau_{j_0+1}^2 / (16\Delta_{j_0}),$$

whence it follows that

$$\underline{\ln}_x(p,0) \ge \lim_{m \to \infty} \left(-\sqrt{t_1(m)} \tau_{j_0+1}^2 / (16\Delta_{j_0}) - \sqrt[4]{t_1(m)} \ln t_1(m) \right) / \|\ln t(m)\| = +\infty.$$

In addition, the inequality $\nu(\tau(m)) = g(\Delta_{j_0})$ is valid along the sequence $\{\tau(m)\}, \tau(m) \in \Pi(m),$ $\theta_{\tau(m)} = \Delta_{j_0}^2, m \in N$; consequently,

$$\lim_{m \to \infty} (R_{\phi}(p, \tau(m)) + g(\Delta_{j_0}) \ln \tau_1(m)) / \| \ln \tau(m) \| = g(\Delta_{j_0}) / \sqrt{2}.$$

This completes the proof of relation (2) for points Δ_j , $j=1,\ldots,k$, of discontinuity of the function g as well.

DIFFERENTIAL EQUATIONS Vol. 41 No. 2

4. CONSTRUCTION OF THE EQUATION. BOUNDEDNESS OF THE COEFFICIENTS

The function x > 0 given by (3) is a solution of Eq. (1₁) with the coefficients $a_i(t) = \partial \ln x(t)/\partial t_i$, $t \in \mathbb{R}^2_{>1}$, i = 1, 2, satisfying the condition of the complete integrability by virtue of the infinite differentiability of $\ln x$ in $\mathbb{R}^2_{>1}$.

By using the inequality

$$0 \le \frac{de_{01}(\tau; \tau_1, \tau_2)}{d\tau} \le \begin{cases} 2 \exp\left[2(\tau_2 - \tau_1)^{-2}\right] & \text{if } \tau_2 - \tau_1 \le 1/2\\ 4 & \text{if } \tau_2 - \tau_1 \ge 2, \end{cases}$$
(15)

from the lemma in [11], we show that these coefficients are bounded.

First, let us show that the derivatives $\partial \ln \phi(t)/\partial t_i$, i=1,2, are bounded. If $\alpha_2^2/2 \leq \theta_t \leq 2\alpha_1^2$, then we have the estimates

$$|\partial \ln \phi(t)/\partial t_1| \leq 3\sqrt{\theta_t} - \alpha_2 + e^8 \left(2\theta_t^{3/2} - \theta_t^2/\alpha_1\right) / \alpha_1^2 + 2e^8 \left(2\theta_t^{3/2} - \alpha_2\theta_t\right) / \alpha_2^2 \leq \sigma_1,$$

$$|\partial \ln \phi(t)/\partial t_2| \leq 3\sqrt{\theta_t^{-1}} - 1/\alpha_1 + e^8 \left(2\sqrt{\theta_t} - \theta_t/\alpha_1\right) / \alpha_1^2 + 2e^8 \left(2\sqrt{\theta_t} - \alpha_2\right) / \alpha_2^2 \leq \sigma_1$$

with some constant $\sigma_1 > 0$. The fact that the same derivatives are bounded for $\theta_t < \alpha_2^2/2$ and $\theta_t > 2\alpha_1^2$ is obvious.

Let us now proceed to proving the boundedness of partial derivatives of the product $\nu(t) \ln \psi(t)$. By (5), we have

$$\nu(t)\ln\psi(t) = 0, \qquad t \in \mathbb{R}^2_{>1}, \qquad \theta_t \in (0, \alpha_2^2/2] \cup [2\alpha_1^2, +\infty), \tag{16}$$

which implies that it suffices to prove the boundedness of the derivatives $\partial(\nu(t) \ln \psi(t))/\partial t_i$, i = 1, 2, for $\theta_t \in (\alpha_2^2/2, 2\alpha_1^2)$. By using (12) and (5), we obtain

$$|\nu(t)\partial \ln \psi(t)/\partial t_{1}| \leq \sqrt[4]{t_{1}} \left(2e^{8} \left(2\alpha_{1}^{2}/\alpha_{2}^{2}+1\right) (\ln t_{1})/t_{1}+1/t_{1}\right) \leq \sigma_{2},$$

$$t \in R_{>1}^{2}, \qquad \theta_{t} \in \left(\alpha_{2}^{2}/2, 2\alpha_{1}^{2}\right),$$

$$|\nu(t)\partial \ln \psi(t)/\partial t_{2}| \leq \sqrt[4]{t_{1}} \left(2e^{8}/\left(t_{1}\alpha_{2}^{2}\right)+e^{8}/\left(t_{1}\alpha_{1}^{2}\right)\right) \ln t_{1} \leq \sigma_{2},$$

$$t \in R_{>1}^{2}, \qquad \theta_{t} \in \left(\alpha_{2}^{2}/2, 2\alpha_{1}^{2}\right),$$

with some constant $\sigma_2 > 0$.

We take some $l \in N$ and estimate the derivatives of the function ν_l in the strip $\Pi L(l)$. Let

$$\theta_t \in \left[\left(\Delta_j - \tau_j / \left(2\sqrt{l} \right) \right)^2, \left(\Delta_{j-1} + \tau_j / \left(2\sqrt{l} \right) \right)^2 \right]$$

with some $j \in \{1, ..., k+1\}$, $t \in \Pi L(l)$. Then from (6_1) and from the inequality $\zeta(t) \geq \varrho_l^2 (1 + \alpha_1^2)$, $t \in \Pi L(l)$, we obtain

$$|\partial \nu_l(t)/\partial t_1| = \left| dP_l^{(j)}(\Delta)/d\Delta \right|_{\Delta = -\sqrt{\theta_t}} \sqrt{\theta_t}/(2t_1) \le -\varrho_l \alpha_1/(2t_1) \le -\alpha_1/\left(2\sqrt{t_1}\right), \tag{17_1}$$

$$|\partial \nu_l(t)/\partial t_2| \le \varrho_l / \left(2\sqrt{\theta_t}t_1\right) \le -1/\left(2\alpha_2\sqrt{t_1}\right). \tag{17_2}$$

But if either

$$\theta_{t} \in \left[\left(\Delta_{j} + \tau_{j+1} / \left(4\sqrt{l} \right) \right)^{2}, \left(\Delta_{j} - \tau_{j} / \left(4\sqrt{l} \right) \right)^{2} \right], \quad j \in \{1, \dots, k\},$$
or $\theta_{t} \geq \left(\alpha_{1} + \tau_{1} / \left(4\sqrt{l} \right) \right)^{2}$ or $\theta_{t} \leq \left(\alpha_{2} - \tau_{k+1} / \left(4\sqrt{l} \right) \right)^{2}$, then
$$\frac{\partial \nu_{l}(t)}{\partial t_{i}} = 0, \quad i = 1, 2. \tag{17_{3}}$$

If $\theta_t \in \left(\left(\Delta_j - \tau_j / \left(4\sqrt{l}\right)\right)^2, \left(\Delta_j - \tau_j / \left(2\sqrt{l}\right)\right)^2\right)$, $j \in \{1, \dots, k+1\}$, $t \in \Pi L(l)$, then, by analogy with (17_1) and (17_2) , from (6_3) and the inequalities $t_1 \geq \mu_l^4 l^2$ and $t_1 \geq |g(\Delta_j)|^4 l^2$, we obtain the estimates

$$|\partial \nu_l(t)/\partial t_1| \leq -\alpha_1/\sqrt{t_1} + 2e^8 \left(|g(\Delta_j)| + \mu_l\right) \sqrt{l} \sqrt{\theta_t}/(t_1 \tau_j)$$

$$\leq -\alpha_1/\sqrt{t_1} - 4e^8 \alpha_1 / \left(\sqrt[4]{t_1^3} \tau_j\right), \tag{174}$$

$$|\partial \nu_{l}(t)/\partial t_{2}| \leq -1/\left(\alpha_{2}\sqrt{t_{1}}\right) + 2e^{8}\left(|g\left(\Delta_{j}\right)| + \mu_{l}\right)\sqrt{l}/\left(\sqrt{\theta_{t}}t_{1}\tau_{j}\right)$$

$$\leq -1/\left(\alpha_{2}\sqrt{t_{1}}\right) - 4e^{8}/\left(\alpha_{2}\sqrt[4]{t_{1}^{3}}\tau_{j}\right).$$
(17₅)

Finally, if $\theta_t \in \left(\left(\Delta_j + \tau_{j+1} \middle/ \left(2\sqrt{l}\right)\right)^2, \left(\Delta_j + \tau_{j+1} \middle/ \left(4\sqrt{l}\right)\right)^2\right), j \in \{0, \dots, k\}, t \in \Pi L(l), \text{ then,}$ in a similar way, it follows from (6_4) that

$$|\partial \nu_{l}(t)/\partial t_{1}| \leq -\alpha_{1}/(2\sqrt{t_{1}}) + 2e^{8} \left(\mu_{l} + |g(\Delta_{j})|\right) \sqrt{l} \sqrt{\theta_{t}}/(t_{1}\tau_{j+1})$$

$$\leq -\alpha_{1}/(2\sqrt{t_{1}}) - 4e^{8} \alpha_{1}/(\sqrt[4]{t_{1}^{3}}\tau_{j+1}),$$
(17₆)

$$|\partial \nu_{l}(t)/\partial t_{2}| \leq -1/(2\alpha_{2}\sqrt{t_{1}}) + 2e^{8} \left(\mu_{l} + |g(\Delta_{j})|\right) \sqrt{l} / \left(\sqrt{\theta_{t}}t_{1}\tau_{j+1}\right)$$

$$\leq -1/(2\alpha_{2}\sqrt{t_{1}}) - 4e^{8} / \left(\alpha_{2}\sqrt[4]{t_{1}^{3}}\tau_{j+1}\right).$$
(17₇)

The estimates (17_1) – (17_7) imply the inequality

$$|\partial \nu_l(t)/\partial t_i| \le \sigma_3/\sqrt{t_1}, \qquad t \in \Pi L(l), \qquad i = 1, 2,$$
 (18)

with some constant $\sigma_3 > 0$.

From definition (7₁) of the function $\nu(t)$ in the "basic" strips $\Pi(l)$ and from (18), we obtain the estimates

$$|\partial \nu(t)/\partial t_i| \le \sigma_3/\sqrt{t_1}, \qquad t \in \Pi(l), \qquad l \in N, \qquad i = 1, 2.$$
 (19₁)

By using (7_2) , (7_3) , (18), (11), and the second inequality in (15), we obtain the estimates

$$|\partial \nu(t)/\partial t_i| \le \sigma_3/\sqrt{t_1} + 8\sqrt[4]{t_1}/\zeta(t) \le \sigma_3/\sqrt{t_1} + 8/\sqrt[4]{t_1^3},$$

 $t \in \tilde{\Pi}(l), \quad l \in N, \quad \theta_t \le 2\alpha_1^2, \quad i = 1, 2.$ (19₂)

Therefore, it follows from inequalities (19_1) , (19_2) , the relation $\nu(t) = 0$, $t \in T$, the estimate $|\ln \psi(t)| \le \ln t_1$, $t \in R_{>1}^2$, and from (16) that the products $(\partial \nu(t)/\partial t_i) \ln \psi(t)$, $t \in R_{>1}^2$, i = 1, 2, are bounded. We have thereby shown that the coefficients of system (1_1) are bounded. The proof of Theorem 1 for $\alpha_1 < \alpha_2 < 0$ is complete.

But if $\alpha_2 \geq 0$, then on the basis of the function g, we introduce a new function

$$q_1: [\alpha_1 - \alpha_2 - 1, -1] \to R$$

by setting $g_1(\Delta) = g(\Delta + \alpha_2 + 1)$. Then, just as above, for the function g_1 , we construct an infinitely differentiable function $x_1 > 0$ so as to ensure that this function has bounded derivatives $\partial \ln x_1(t)/\partial t_i$, i = 1, 2, the domain of the curve of its lower characteristic set P_{x_1} coincides with the interval $[\alpha_1 - \alpha_2 - 1, -1]$, and the function itself satisfies the relation $\underline{c}_{x_1}(p_1[x_1]) = g_1(p_1[x_1])$ for all $p_1[x_1] \in (\alpha_1 - \alpha_2 - 1, -1)$. The lower characteristic vectors $(p_1[x], \varphi(p_1[x])) \in P_x$ and $(p_1[x_1], \varphi_1(p_1[x_1])) \in P_{x_1}$ of the functions $x(t) = x_1(t) \exp[(\alpha_2 + 1) t_1]$ and $x_1(t)$, respectively, are related by the conditions $p_1[x] = p_1[x_1] + \alpha_2 + 1 \in [\alpha_1, \alpha_2]$ and $\varphi(p_1[x]) = \varphi_1(p_1[x] - \alpha_2 - 1)$, and the lower characteristic degree functions are related by the formulas

$$\underline{c}_x(p_1[x]) = \underline{c}_{x_1}(p_1[x_1]) = g_1(p_1[x_1]) = g(p_1[x]).$$

Obviously, the function x is a solution of a completely integrable Pfaff equation (1_1) with bounded infinitely differentiable coefficients, which completes the proof of Theorem 1.

Theorem 2. For an arbitrary positive integer n and for an arbitrary piecewise continuous function $g:[a_1,a_2]\to R$, there exists a completely integrable Pfaff system (1_n) with infinitely differentiable bounded coefficients such that, for each nontrivial solution $x:R^2_{>1}\to R^n\setminus\{0\}$ of this system, the domain of the curve Λ_x coincides with the interval $[a_1,a_2]$ and $\bar{c}_x(\lambda_1)=g(\lambda_1)$ for all $\lambda_1\in(a_1,a_2)$.

Proof. We use the function q to introduce a new piecewise continuous function

$$g_1: [-a_2, -a_1] \to R$$

by setting $g_1(\Delta) = -g(-\Delta)$. Following Theorem 1, we construct an infinitely differentiable function $x_1 > 0$ such that the function has bounded derivatives $\partial \ln x_1(t)/\partial t_i$, i = 1, 2, the domain of the curve P_{x_1} of this function coincides with the interval $[-\alpha_2, -\alpha_1]$, and $\underline{c}_{x_1}(p_1[x_1]) = g_1(p_1[x_1])$ for all $p_1[x_1] \in (-\alpha_2, -\alpha_1)$. We use the function x_1 to define a solution $x = x_1^{-1}$ of the completely integrable Pfaff equation (1_1) with bounded infinitely differentiable coefficients $a_i(t) = \partial \ln x(t)/\partial t_i$, $t \in \mathbb{R}^2_{>1}$, i = 1, 2. Note that the characteristic vector $\lambda[x]$ of the solution x is equal to the lower characteristic vector $p[x_1]$ of the function x_1 with the opposite sign, i.e., $\lambda[x] = -p[x_1]$. Therefore,

$$\bar{c}_x(\lambda_1[x]) = \sqrt{2} \, \overline{\ln}_x(\lambda[x], 0) = -\sqrt{2} \, \underline{\ln}_{x_1}(p[x_1], 0) = -\underline{c}_{x_1}(p_1[x_1])
= -g_1(p_1[x_1]) = g(-p_1[x_1]) = g(\lambda_1[x])$$

for all $\lambda_1[x] \in (a_1, a_2)$, which completes the proof of Theorem 2.

REFERENCES

- 1. Gaishun, I.V., *Vpolne razreshimye mnogomernye differentsial'nye uravneniya* (Completely Integrable Multidimensional Differential Equations), Minsk, 1983.
- Gaishun, I.V., Lineinye uravneniya v polnykh proizvodnykh (Linear Equations in Total Derivatives), Minsk, 1989.
- 3. Izobov, N.A., Differents. Uravn., 1997, vol. 33, no. 12, pp. 1623–1630.
- 4. Grudo, E.I., Differents. Uravn., 1976, vol. 12, no. 12, pp. 2115–2128.
- 5. Demidovich, B.P., Mat. Sb., 1965, vol. 66, no. 3, pp. 344–353.
- 6. Krupchik, E.N., Differents. Uravn., 1999, vol. 35, no. 7, pp. 899–908.
- 7. Lasyi, P.G., A Remark on the Theory of Characteristic Vector Degrees of Solutions of Pfaff Linear Systems, *Preprint IM AS BSSR*, Minsk, 1982, no. 14.
- 8. Izobov, N.A. and Krupchik, E.N., Differents. Uravn., 2001, vol. 37, no. 5, pp. 616–627.
- 9. Korn, G. and Korn, T., Mathematical Handbook for Scientists and Engineers, New York: McGraw-Hill, 1968. Translated under the title Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov, Moscow: Nauka, 1977.
- 10. Gelbaum, B. and Olmsted, J., Counterexamples in Analysis, San Francisco, 1964. Translated under the title Kontrprimery v analize, Moscow: Mir, 1967.
- 11. Izobov, N.A. and Krupchik, E.N., Differents. Uravn., 2003, vol. 39, no. 3, pp. 308–319.