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Consider the Pfaff linear system

∂x/∂ti = Ai(t)x, x ∈ Rn, t = (t1, t2) ∈ R2
>1, i = 1, 2, (1)

with continuously differentiable bounded matrix functions Ai(t) in R2
>1 satisfying the complete

integrability condition [1, pp. 14–24; 2, pp. 16–26]

∂A1(t)/∂t2 +A1(t)A2(t) = ∂A2(t)/∂t1 +A2(t)A1(t), t ∈ R2
>1.

Let Px be the lower characteristic set [3] of a nontrivial solution x : R2
>1 → Rn\{0} of system (1),

and let p′ be a left boundary point of Px. The corresponding lower characteristic exponent [4]
d = dx (p′) ∈ R2 of the solution is determined by the conditions

lnx (p′, d) ≡ lim
t→∞

ln ‖x(t)‖ − (p′, t)− (d, ln t)
‖ ln t‖ = 0, ln t ≡ (ln t1, ln t2) ∈ R2

+, (21)

lnx (p′, d+ εei) < 0, ei = (2− i, i− 1) ∈ R2, ∀ε > 0, i = 1, 2. (22)

Necessary properties of the left boundary lower exponent set D x (p′) ≡
⋃
{dx (p′)} of a solution

x(t) of system (1) were obtained in [5] for the nontrivial case in which the set Px consists of more
than one point; more precisely, it was shown that a nonempty left boundary lower exponent set is
a closed concave monotone decreasing right- and lower-unbounded curve on the two-dimensional
plane with negative slope ≥ −1.

In the present paper, we prove the sufficiency of these properties for the complete description
of a left boundary exponent set. In particular, for any curve D in the two-dimensional plane with
the above-mentioned properties, we construct a Pfaff equation

∂x/∂t1 = a(t)x, ∂x/∂t2 = b(t)x, x ∈ R, t ∈ R2
>1, (11)

with continuously differentiable bounded functions a(t) and b(t) satisfying the complete integrability
condition

∂a(t)/∂t2 = ∂b(t)/∂t1, t ∈ R2
>1, (3)

such that the left boundary lower exponent set D x (p′) of any nontrivial solution x(t) of the equation
coincides with D.

Theorem 1. For each bounded concave monotone decreasing right- and lower-unbounded curve
D on the two-dimensional plane with negative slope ≥ −1, there exists an equation (11) with
infinitely differentiable bounded coefficients a : R2

>1 → R and b : R2
>1 → R satisfying condi-

tion (3) such that each nontrivial solution x : R2
>1 → R\{0} has the left boundary lower exponent

set D x (p′) = D.
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Remark. If D is bounded on the left by a finite point ∆(0, 0), then the tangent to D at the
endpoint ∆(0, 0) is defined as the line with slope k(0, 0) equal to the right limit value [at the point
∆(0, 0) ∈ D] of the slopes of D at points d ∈ D.

Proof of Theorem 1. We construct the desired Pfaff equation (11) by constructing its non-
trivial solution.

It follows from properties of the curve D that the curve can be of one of the following three
forms:

(a) unbounded on the left and bounded above;
(b) unbounded on the left and above;
(c) bounded on the left and above.

1. A PARTITION OF THE CURVE D

To construct a solution x(t) with left boundary lower exponent set D x (p′) = D, we construct the
following partition of the curve D. We take a number γ > 0. In cases (a) and (b), in which the curve
D is unbounded on the left and right, the first partition D1 consists of points ∆(i, 1) ∈ D, i = 0, 1, 2,
of this curve with the first coordinates ∆1(i, 1) = (i − 1)γ, i = 0, 1, 2, respectively. The second
partition D2 =

⋃2×22

i=0 {∆(i, 2)} ⊂ D consists of points ∆(i, 2) ∈ D with the first components
∆1(i, 2) = (i−4)γ/2, i = 0, 1, . . . , 2×22. Finally, the lth partition Dl =

⋃l×2l

i=0 {∆(i, l)} ⊂ D consists
of points ∆(i, l) ∈ D with the first components ∆1(i, l) =

(
i× 21−l − l

)
γ, i ∈

{
0, 1, . . . , l × 2l

}
≡ Il.

Therefore, for each subsequent partition of the domain of D, the partition interval is increased by γ
on both sides, and each new partition includes all points of the previous partition as well as the
midpoints of the intervals formed by neighboring points of the previous partition. By continuing
the partition of the curve D unboundedly, we obtain a countable set

D∞ =
+∞⋃
l=1

l×2l⋃
i=0

{∆(i, l)} ⊂ D,

which is everywhere dense on D.
In case (c), in which the curveD is bounded on the left by a finite point ∆(0, 0) ∈ D, the partition

Dl of this curve consists of points ∆(i, l) ∈ D with the first components

∆1(i, l) = ∆1(0, 0) + iγ × 21−l, i ∈ Il.

Finally, just as in cases (a) and (b), in a similar way, we obtain a countable set D∞ everywhere
dense on the curve D : D∞ = D.

We also introduce the set D(l) that is the part of D lying between the points ∆(0, l) ∈ Dl and
∆
(
l × 2l, l

)
∈ Dl, including the points themselves.

2. THE CONSTRUCTION OF A SOLUTION

We define the desired solution x(t) by the relation x(t) = ϕ(t)ψ(t), where ϕ(t) = e−t1 + e−t2 .
The function ψ(t) is constructed in such a way that the left boundary lower exponent set of x(t)
coincides with D and its left characteristic set Px satisfies the relation Px = Pϕ.

At the ith point ∆(i, l) ∈ D, i ∈ Il, of the lth partition, l ∈ N , we draw some tangent

d2 −∆2(i, l) = k(i, l)(d1 −∆1(i, l)) , k(i, l) ∈ [−1, 0), (d1, d2) ∈ R2,

to D, which does not lie below the curve. The existence of such a tangent follows from the concavity
of D. Moreover, if a point ∆ ∈ D belongs to the partition, then we draw the same tangent at that
point for all subsequent partitions. This will ensure the existence of a sequence providing the lower
limit at the point ∆ in condition (21) for the lower characteristic exponent.
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To match different infinitely differentiable functions with the preservation of this property,
we shall use the infinitely differentiable functions

e101 (τ ;α1, α2, α3) = e01 (τ ;α2, α3) + [1− e01 (τ ;α1, α2)] , (4)
e0110 (τ ;α1, α2, α3, α4) = e01 (τ ;α1, α2)(1− e01 (τ ;α3, α4)) , (5)

α1 < α2 < α3 < α4, τ ∈ R,
defined on the basis of the function [6]

e01(τ ; τ1, τ2) =

{
exp

{
−(τ − τ1)

−2 exp
[
−(τ2 − τ)−2

]}
for τ ∈ (τ1, τ2)

[1 + sgn (τ − 2−1 (τ1 + τ2))]/2 for τ ∈ (−∞, τ1] ∪ [τ2,+∞),

−∞ < τ1 < τ2 < +∞.
For each l ∈ N and i ∈ Il, we introduce the function

lnψi,l(t) ≡ (∆(i, l), ln t)e0110

(
ln t2
ln t1

; Θi,l − τl −
1
4
,Θi,l − τl,Θi,l + τl,Θi,l + τl +

1
4

)
+ ‖ln t‖2e101

(
ln t2
ln t1

; Θi,l − τl,Θi,l,Θi,l + τl

)
, t ∈ R2

>1,

(6)

Θi,l ≡ 1/|k(i, l)|, τl ≡ min
{

1/2; 2−l
∥∥∆
(
l × 2l, l

)
−∆(0, l)

∥∥−1
}
, (7)

which takes the value equal to the inner product (∆(i, l), ln t) in the direction
ln t2
ln t1

= Θi,l and

is equal to ‖ln t‖2 for all t ∈ R2
>1 such that

ln t2
ln t1

≥ Θi,l + τl +
1
4

or
ln t2
ln t1

≤ Θi,l − τl −
1
4

. Note

that from the definition of the function lnψi,l(t) in neighborhoods of the coordinate axes t1 and t2,
we eliminate the inner product (∆(i, l), ln t) so as to make the coefficients of Eq. (11) bounded.

By virtue of the definition of the set D(l) and the monotone decay of the curve D, the inequalities

∆1(0, l) ≤ d1 ≤ ∆1

(
l × 2l, l

)
, ∆2

(
l × 2l, l

)
≤ d2 ≤ ∆2(0, l) (8)

are valid for any given l ∈ N and for any d ∈ D(l). By using (8), for the function lnψi,l(t), i ∈ Il,
we obtain the estimates

lnψi,l(t)− (d, ln t) ≥ ‖ln t‖2 − (|∆(i, l)|, ln t)−∆1

(
l × 2l, l

)
ln t1 −∆2(0, l) ln t2

≥ ‖ln t‖2 −
(
c1(l) + ∆1

(
l × 2l, l

))
ln t1 − (c2(l) + ∆2(0, l)) ln t2 ≡ fl(t),

ck(l) = max
{
|∆k(0, l)| ,

∣∣∆k

(
l × 2l, l

)∣∣} , k = 1, 2, t ∈ R2
>1\S(i, l),

∀d ∈ D(l), i ∈ Il, l ∈ N,

where S(i, l) ≡
{
t ∈ R2

>1 :
∣∣∣∣ ln t2ln t1

−Θi,l

∣∣∣∣ ≤ τl}. Since

lim
t→∞, t∈R2

>1\S(i,l)
fl(t) = +∞,

it follows that there exists a number Tl ≥ 1 such that

lnψi,l(t)− (d, ln t) ≥ 0, t ∈ R2
>1\S(i, l), ‖t‖ ≥ Tl, ∀d ∈ D(l), i ∈ Il, l ∈ N.

(9)
By using some values η1 ≥ 2 and c ≥ exp(100), we introduce the numbers

νl = cΘ6
l

(
∆2(l) + exp

(
4τ−2
l

))
, %l = 2

(
Tl + ν4Θl

l

)
,

Θl = max
i∈Il
{Θi,l} , ∆(l) = max

i∈Il
{‖∆(i, l)‖}, (101)

αi,l = (ηl + %l)× 22i, βi,l = 2αi,l, ηl+1 = βl×2l,l + 2l+1, i ∈ Il, l ∈ N, (102)
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as well as the “basic” strips

Π(i, l) =
{
t ∈ R2

>1 : βi,l ≤ t1 + t2 ≤ αi+1,l

}
, i = 0, 1, . . . , l × 2l − 1,

Π
(
l × 2l, l

)
=
{
t ∈ R2

>1 : βl×2l,l ≤ t1 + t2 ≤ α0,l+1

}
, l ∈ N,

and the “transition” strips

Π̃(i, l) =
{
t ∈ R2

>1 : αi,l < t1 + t2 < βi,l
}
, i ∈ Il, l ∈ N,

and the closed triangle T = {t ∈ R2
>1 : t1 + t2 ≤ α0,1}. Therefore, the whole quadrant R2

>1 [the do-
main of the desired solution x(t)] splits into the strips R2

>1 = T ∪
(⋃

l∈N
⋃
i∈Il

(
Π(i, l) ∪ Π̃(i, l)

))
.

By setting

ΠL(i, l) ≡ Π̃(i, l) ∪Π(i, l) ∪ Π̃(i+ 1, l), i = 0, 1, . . . , l × 2l − 1, l ∈ N,
ΠL

(
l × 2l, l

)
≡ Π̃

(
l × 2l, l

)
∪Π

(
l × 2l, l

)
∪ Π̃(0, l + 1), l ∈ N,

SΠ(i, l) ≡ S(i, l) ∩ΠL(i, l), i ∈ Il, l ∈ N,

from (9), we obtain the estimate

lnψi,l(t)− (d, ln t) ≥ 0, ∀t ∈ ΠL(i, l)\SΠ(i, l), ∀d ∈ D(l), i ∈ Il, l ∈ N, (11)

since ‖t‖ ≥ (t1 + t2) /2 ≥ Tl in each strip ΠL(i, l), i ∈ Il, l ∈ N .
Note also that in each strip ΠL(i, l), i ∈ Il, l ∈ N , from relations (101) and (102) and from the

definition of the strip, we obtain√
‖t‖ ≥

√
(t1 + t2) /2 ≥ ∆(l), t ∈ ΠL(i, l), i ∈ Il, l ∈ N. (12)

Let us now proceed to the construction of the auxiliary function ψ̃(t). First, in the closed
triangle T , we define this function as

ln ψ̃(t) = 0, t ∈ T. (131)

In each “basic” strip Π(i, l), i ∈ Il, l ∈ N , we set the function ψ̃(t) equal to the function ψi,l(t), i.e.,

ln ψ̃(t) = lnψi,l(t), t ∈ Π(i, l), i ∈ Il, l ∈ N. (132)

Therefore, in all “basic” strips Π(i, l), the function ln ψ̃(t) is defined on the basis of the ith point
∆(i, l) of the lth partition of the curve D. In each “transition” strip Π̃(i+1, l), i = 0, 1, . . . , l×2l−1,
l ∈ N , we define the function ln ψ̃(t) by the relation

ln ψ̃(t) = lnψi,l(t) + [lnψi+1,l(t)− lnψi,l(t)] e01

(
ln
√
t1 + t2; ln

√
αi+1,l, ln

√
βi+1,l

)
,

t ∈ Π̃(i+ 1, l), i = 0, 1, . . . , l × 2l − 1, l ∈ N,
(133)

and in the “global transition” strips Π̃(0, l + 1), l ∈ N , we set

ln ψ̃(t) = lnψl×2l,l(t) + [lnψ0,l+1(t)− lnψl×2l,l(t)] e01

(
ln
√
t1 + t2; ln

√
α0,l+1, ln

√
β0,l+1

)
,

t ∈ Π̃(0, l + 1), l ∈ N.
(134)

Finally, in the strip Π̃(0, 1), we set

ln ψ̃(t) = lnψ0,1(t)e01

(
ln
√
t1 + t2; ln

√
α0,1, ln

√
β0,1

)
, t ∈ Π̃(0, 1). (135)
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In cases (a) and (b), in which the curve D is unbounded on the left and right, we define the
function ψ(t) by the formula ψ(t) = ψ̃(t), t ∈ R2

>1.
But in case (c), in which the curve D is bounded on the left by a finite point ∆(0, 0) ∈ D,

to provide that the curve D belongs to the left boundary exponent set D x (p′) and that the curve
D x (p′) is not larger than the given curve D, near the t2-axis, we define the function lnψ(t) as the
inner product (∆(0, 0), ln t); more precisely, we set

lnψ(t) = ln ψ̃(t) +
[
(∆(0, 0), ln t)− ln ψ̃(t)

]
e01

(
ln t2
ln t1

;
3

|k(0, 0)| ,
3

|k(0, 0)| +
1
2

)
, t ∈ R2

>1.

(14)
Since the curve D is monotone decreasing and concave, it follows that in case (c), the slopes
at the point ∆(0, 0) ∈ D and at an arbitrary point d of the curve D satisfy the inequality
0 > k(∆(0, 0)) ≥ k(d) and hence the equivalent inequality 1/|k(∆(0, 0))| ≥ 1/|k(d)|. Therefore,

for each point d ∈ D∞ in the direction
ln t2
ln t1

=
1
|k(d)| , the function lnψ(t) coincides with the func-

tion ln ψ̃(t), more precisely, with the inner product (d, ln t). This is necessary for the existence of a
direction in which the lower limit in condition (21) of the lower characteristic exponent is realized.

3. THE CONSTRUCTION OF THE LOWER CHARACTERISTIC SET

Let us show that the lower characteristic set of the solution x(t) of Eq. (11) constructed above
coincides with the lower characteristic set Pϕ ≡

{
p ∈ R2

− : p1 + p2 = −1
}

of the function ϕ(t). To
this end, we prove the existence of the limit

lim
t→∞

(
‖t‖−1 lnψ(t)

)
= 0. (15)

By (132), (6), and (12), the estimates∣∣∣ln ψ̃(t)
∣∣∣/‖t‖ = |lnψi,l(t)|/‖t‖ ≤ |(∆(i, l), ln t)|/‖t‖ + ‖ln t‖2/‖t‖

≤ ∆(l)‖ ln t‖/‖t‖+ ‖ ln t‖2/‖t‖ ≤ ‖ ln t‖/
√
‖t‖+ ‖ ln t‖2/‖t‖,

t ∈ Π(i, l), i ∈ Il, l ∈ N,

(161)

are valid in each “basic” strip Π(i, l), i ∈ Il, l ∈ N . In a similar way, in each “transition” strip
Π̃(i+ 1, l), i = 0, 1, . . . , l × 2l − 1, l ∈ N , from (133), (6), and (12), we obtain the estimates∣∣∣ln ψ̃(t)

∣∣∣/‖t‖ ≤ 2 |lnψi,l(t)|/‖t‖+ |lnψi+1,l(t)| /‖t‖

≤ 3
(
‖ ln t‖/

√
‖t‖+ ‖ ln t‖2/‖t‖

)
,

t ∈ Π̃(i+ 1, l), i = 0, 1, . . . l × 2l − 1, l ∈ N.

(162)

In the “transition” strips Π̃(0, l + 1), l ∈ N , from (134), we obtain∣∣∣ln ψ̃(t)
∣∣∣/‖t‖ ≤ 3

(
‖ ln t‖/

√
‖t‖+ ‖ ln t‖2/‖t‖

)
, t ∈ Π̃(0, l + 1), l ∈ N. (163)

Likewise, from (135) in the strip Π̃(0, 1), we obtain the inequality∣∣∣ln ψ̃(t)
∣∣∣/‖t‖ ≤ ‖ ln t‖/

√
‖t‖+ ‖ ln t‖2/‖t‖, t ∈ Π̃(0, 1). (164)

Therefore, it follows from (161)–(164) and (131) that∣∣∣ln ψ̃(t)
∣∣∣/‖t‖ ≤ 3

(
‖ ln t‖/

√
‖t‖+ ‖ ln t‖2/‖t‖

)
, t ∈ R2

>1, (17)

which implies (15) in cases (a) and (b) of a curve D unbounded on the left and right.
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But in case (c), in which the curve D is bounded on the left by a finite point ∆(0, 0) ∈ D,
from (14) and (17), we obtain the estimates

|lnψ(t)|/‖t‖ ≤ 2
∣∣∣ln ψ̃(t)

∣∣∣/‖t‖+ ‖∆(0, 0)‖‖ ln t‖/‖t‖

≤ 6
(
‖ ln t‖/

√
‖t‖+ ‖ ln t‖2/‖t‖

)
+ ‖∆(0, 0)‖‖ ln t‖/‖t‖, t ∈ R2

>1,

which imply that relation (15) is valid in this case as well.
We have thereby shown that the lower characteristic set Px of the solution x(t) of Eq. (11)

coincides with the set
{
p ∈ R2

− : p1 + p2 = −1
}

.

4. PROOF OF THE COINCIDENCE
OF THE LEFT BOUNDARY LOWER DEGREE SET

WITH A GIVEN CURVE D

We choose an arbitrary point d̃ =
(
d̃1, d̃2

)
∈ D of the curve D. Since the partition D∞ is dense

everywhere on D, it follows that for this point, there exists a sequence {d(n)}n∈N , d(n) ∈ D∞, of
partition points converging to the point d̃, i.e., d(n) →

n→∞
d̃. Now if we prove that the partition

points d(n) belong to the left boundary lower exponent set D x (p′), then it will follow from its
closedness [5] that the limit point d̃ also belongs to it, i.e., d̃ ∈ D x (p′). This will imply the
inclusion D ⊂ D x (p′).

Let us now show that, indeed, each point d = (d1, d2) ∈ D∞ of the partition belongs to the left
boundary lower exponent set.

We introduce the notation

β(d) ≡ lim
t→∞

ln |x(t)|+ t1 − (d, ln t)
‖ln t‖

for the lower limit in condition (21), where p′ = (−1, 0) is the left boundary point of the lower
characteristic set of the constructed solution x(t). Let us show that β(d) = 0.

First, we show that the limit β(d) is nonpositive. Since the point d belongs to the countable
partition D∞ of the curve D and each new finite partition Dl+1 contains all points of the previous
finite partition Dl, it follows that there exists an index l(d) ∈ N such that d ∈ Dl for all l > l(d)
and d 6∈ Dl for all l ≤ l(d). If the point d coincides with the point ∆(0, 0) [in case (c)], then
we set l(d) = 0. Suppose that the point d is the i1th point of the (l(d) + 1)st partition, the
i2th point of the (l(d) + 2)nd partition, and, finally, the imth point of the (l(d) + m)th partition.
By definition, for each partition at the point d, we draw the same tangent with some slope k(d),
i.e., Θi1,l(d)+1 = Θi2,l(d)+2 = · · · = 1/|k(d)|. In each strip Π (im, l(d) +m), m ∈ N , where lnψ(t) is
a function defined on the basis of the point d = ∆ (im, l(d) +m), we choose one point τ(m) in each

closed interval
ln t2
ln t1

=
1
|k(d)| ≥ 1. We thereby obtain a sequence {τ(m)} ↑ +∞ such that

lnψ(τ(m)) = (d, ln τ(m)), lim
m→∞

[lnx(τ(m)) + τ1(m)− (d, ln τ(m))] /‖ ln τ(m)‖ = 0,

which implies that β(d) ≤ 0.
By {t(m)} ↑ ∞ we denote the sequence on which the lower limit β(d) is attained. Without loss of

generality, one can assume that all elements t(m) of this sequence belong to strips of the quadrant
R2
>1 with the different indices lm, lm > 1, and lm+1 > lm → +∞ as m → +∞. The sequence
{t(m)} ↑ ∞ is assumed to satisfy the inclusion

d ∈ D (lm) , m ∈ N. (18)

Let us prove the inequality β(d) ≥ 0. If the sequence {t(m)} contains an infinite subsequence
{t (mj)} such that each of its points t (mj) satisfies the estimate lnψ (t (mj)) − (d, ln t (mj)) ≥ 0,
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then, obviously, the inequality β(d) ≥ 0 is necessarily valid. Therefore, without loss of generality,
one can assume that

R(m,d) ≡ lnψ(t(m)) − (d, ln t(m)) < 0, ∀m ∈ N. (19)

Let us consider cases (a) and (b), in which the curve D is unbounded on the right and left, and
take an arbitrary m ∈ N . If t(m) belongs to the “basic” strip Π (im, lm), then from (19) and (132),
we obtain the inequality lnψim,lm(t(m)) − (d, ln t(m)) < 0, which, together with (11) and (18),
implies that t(m) ∈ SΠ (im, lm). Then from the definition of the sector SΠ (im, lm) and from (7),
we obtain the estimates∣∣∣∣ ln t2(m)

ln t1(m)
−Θim,lm

∣∣∣∣ ≤ τlm ≤ 2−lm
∥∥∆
(
lm × 2lm , lm

)
−∆ (0, lm)

∥∥−1
. (20)

Let us now write out an equation of the tangent of the curve D at the point ∆ (im, lm):

δ2 −∆2 (im, lm) = k (im, lm)(δ1 −∆1 (im, lm)) , δ ∈ R2.

Since the curve D is concave, it follows that the point d ∈ D does not lie above this tangent;
therefore, d2 −∆2 (im, lm) ≤ k (im, lm)(d1 −∆1 (im, lm)), and consequently,

∆1 (im, lm)− d1 + Θim,lm (∆2 (im, lm)− d2) ≥ 0. (21)

Let us now estimate the quantity R(m,d) below. It follows from the inclusion t(m) ∈ SΠ (im, lm),
(6), (21), and (20) that

R(m,d) = lnψim,lm(t(m)) − (d, ln t(m)) ≥ (∆ (im, lm)− d, ln t(m))
= (∆1 (im, lm)− d1) ln t1(m) + (∆2 (im, lm)− d2) ln t2(m)

=

[
{(∆1(im, lm)− d1) + Θim,lm (∆2(im, lm)− d2)}

+ (∆2 (im, lm)− d2)
(

ln t2(m)
ln t1(m)

−Θim,lm

)]
ln t1(m)

≥ −|∆2 (im, lm)− d2|
∣∣∣∣ ln t2(m)
ln t1(m)

−Θim,lm

∣∣∣∣ ln t1(m)

≥ −2−lm
(
|∆2 (im, lm)− d2|/

∥∥∆
(
lm × 2lm , lm

)
−∆ (0, lm)

∥∥) ln t1(m)

≥ −2−lm (|∆2 (im, lm)− d2|/‖∆ (im, lm)− d‖) ln t1(m)

≥ −2−lm ln t1(m) ≥ −2−lm‖ ln t(m)‖.

Let t(m) lie in the “transition” strip Π̃ (im + 1, lm), im < lm × 2lm . First, we suppose that

lnψim+1,lm(t(m)) ≥ lnψim,lm(t(m))

at the point t(m). Then it follows from (19) and (133) that lnψim,lm(t(m)) − (d, ln t(m)) < 0,
so that, just as in the case in which t(m) belongs to the “basic” strip Π (im, lm), one can obtain
the estimate R(m,d) ≥ −2−lm‖ln t(m)‖. But if lnψim+1,lm(t(m)) < lnψim,lm(t(m)) at the point
t(m), then it follows from (19) and (133) that lnψim+1,lm(t(m)) − (d, ln t(m)) < 0. This, together
with (11) and (18), implies that t(m) ∈ SΠ (im + 1, lm). From this inclusion, from the definition of
the sector SΠ (im + 1, lm), and from (7), we obtain the estimates∣∣∣∣ ln t2(m)

ln t1(m)
−Θim+1,lm

∣∣∣∣ ≤ τlm ≤ 2−lm
∥∥∆
(
lm × 2lm , lm

)
−∆ (0, lm)

∥∥−1
. (22)
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Below we perform the same considerations as in the case of the inclusion t(m) ∈ Π (im, lm) with
the only difference that we write out an equation of the tangent of the curve D not at the point
∆ (im, lm) but at the point ∆ (im + 1, lm). The desired equation has the form

δ2 −∆2 (im + 1, lm) = k (im + 1, lm)(δ1 −∆1(im + 1, lm)) , δ ∈ R2.

Since the curve D is concave, it follows that the point d ∈ D does not lie above this tangent, i.e.,
d2 −∆2(im + 1, lm) ≤ k (im + 1, lm)(d1 −∆1(im + 1, lm)). By dividing both sides of this inequality
by (−k (im + 1, lm)), we obtain

∆1 (im + 1, lm)− d1 + Θim+1,lm (∆2 (im + 1, lm)− d2) ≥ 0. (23)

Let us now estimate R(m,d) below with the use of (133), the inclusion t(m) ∈ SΠ (im + 1, lm),
formula (6), and inequalities (22) and (23):

R(m,d) ≥ lnψim+1,lm(t(m))− (d, ln t(m)) ≥ (∆(im + 1, lm)− d, ln t(m))

=

[
{(∆1(im + 1, lm)− d1) + Θim+1,lm (∆2(im + 1, lm)− d2)}

+ (∆2(im + 1, lm)− d2)
(

ln t2(m)
ln t1(m)

−Θim+1,lm

)]
ln t1(m)

≥ −|∆2 (im + 1, lm)− d2|
∣∣∣∣ ln t2(m)
ln t1(m)

−Θim+1,lm

∣∣∣∣ ln t1(m)

≥ −2−lm
(
|∆2 (im + 1, lm)− d2|/

∥∥∆
(
lm × 2lm , lm

)
−∆ (0, lm)

∥∥) ln t1(m)

≥ −2−lm‖ln t(m)‖.

Now let t(m) belong to the “global transition” strip Π̃ (0, lm + 1). If

lnψ0,lm+1(t(m)) ≥ lnψlm×2lm,lm(t(m))

at the point t(m), then it follows from (19) and (134) that

lnψlm×2lm, lm(t(m))− (d, ln t(m)) < 0.

Just as in the case of the inclusion t(m) ∈ Π (im, lm), we write out the equation of the tangent of
the curve D at the point ∆

(
lm × 2lm , lm

)
and obtain the estimate R(m,d) ≥ −2−lm‖ ln t(m)‖. If

lnψ0,lm+1(t(m)) < lnψlm×2lm, lm(t(m)),

then it follows from (19) and (134) that lnψ0,lm+1(t(m)) − (d, ln t(m)) < 0, which, together with
the equation of the tangent at the point ∆ (0, lm + 1), implies the estimate

R(m,d) ≥ −2−lm−1‖ln t(m)‖.

Therefore, in cases (a) and (b), in which the curve D is unbounded on the left and right,
we obtain the estimate

R(m,d) ≥ −2−lm‖ln t(m)‖, ∀m ∈ N, lm > 1, lm → +∞, m→∞,

which implies the desired property

β(d) = lim
m→∞

[
ln
(
1 + e−t2(m)+t1(m)

)
+ lnψ(t(m)) − (d, ln t(m))

]
/‖ln t(m)‖

≥ lim
m→∞

(
−2−lm

)
= 0.
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The second condition (22) in the definition of the lower characteristic exponent for a given vector
d can be proved with the use of the above-constructed sequence τ(m). We have thereby proved
the inclusion D ⊂ D x (p′) in cases (a) and (b), and since the curve D is unbounded on the left and
right, it follows that the left boundary lower exponent set D x (p′) = D coincides with D.

Let us now consider case (c), in which D is bounded on the left by a finite point ∆(0, 0) ∈ D.

If either
ln t2(m)
ln t1(m)

<
3

|k(0, 0)| or
ln t2(m)
ln t1(m)

≥ 3
|k(0, 0)| and ln ψ̃(t(m)) ≤ (∆(0, 0), ln t(m)) for some

m ∈ N , then, just as in cases (a) and (b), by virtue of the relation lnψ(t(m)) ≥ ln ψ̃(t(m)),

we have the estimate R(m,d) ≥ −2−lm‖ln t(m)‖ for this m. But if
ln t2(m)
ln t1(m)

≥ 3
|k(0, 0)| , and

ln ψ̃(t(m)) > (∆(0, 0), ln t(m)), then we obtain the estimate

R(m,d) ≥ (∆(0, 0) − d, ln t(m)) =
[
(∆1(0, 0) − d1) +

ln t2(m)
ln t1(m)

(∆2(0, 0) − d2)
]

ln t1(m)

≡ (ln t1(m)) f
(

ln t2(m)
ln t1(m)

)
.

Obviously, if the point d coincides with the point ∆(0, 0), then R(m,d) ≥ 0. Therefore,
we suppose that the points d and ∆(0, 0) are distinct. Since ∆(0, 0) ∈ D is the left bound-
ary point of the curve D and the curve D is monotone decreasing, we have ∆1(0, 0) − d1 < 0

and ∆2(0, 0) − d2 > 0. Hence we find that the function f

(
ln t2(m)
ln t1(m)

)
attains its minimum

value if its argument
ln t2(m)
ln t1(m)

is minimum, i.e., if
ln t2(m)
ln t1(m)

=
3

|k(0, 0)| . Let us now write out

the equation of the tangent δ2 − ∆2(0, 0) = k(0, 0)(δ1 −∆1(0, 0)) of the curve D at the point
∆(0, 0). Since the curve D is concave, it follows that the point d ∈ D is not above this tan-
gent, and consequently, (d2 −∆2(0, 0)) ≤ k(0, 0)(d1 −∆1(0, 0)), and the equivalent inequality
∆1(0, 0) − d1 + (∆2(0, 0) − d2)/|k(0, 0)| ≥ 0 is valid. This implies the estimates

R(m,d) ≥ [∆1(0, 0) − d1 + 3 (∆2(0, 0) − d2)/|k(0, 0)|] ln t1(m) ≥ 0.

We have thereby proved the estimate R(m,d) ≥ −2−lm‖ln t(m)‖, m ∈ N , lm > 1, lm → +∞ as
m→∞, in case (c). Therefore, just as in cases (a) and (b), we have D ⊂ Dx (p′).

Let us now show that the left boundary exponent set Dx (p′) of a nontrivial solution x(t) does not
lie above the curve D. We choose an arbitrary point d of the left boundary exponent set Dx (p′).
Since the relation lnψ (t′) = (∆(0, 0), ln t′) is valid in the direction t′ = (t′1, t

′
2), where t′1 = e,

ln t′2 > 3/|k(0, 0)| + 1/2, t′2 → +∞, and the limit

lim
t→∞,t=t′

[
ln
(

1 + et
′
1−t
′
2

)
+ lnψ (t′)− (d, ln t′)

]/
‖ln t′‖ = ∆2(0, 0) − d2

is nonnegative [otherwise we would arrive at a contradiction with condition (21) for the lower
characteristic exponent d ], we have the inequality d2 ≤ ∆2(0, 0). And since the point ∆(0, 0)
belongs to the left boundary lower exponent set Dx (p′) and the curve Dx (p′) is strictly monotone
decreasing, we have Dx (p′) = D.

5. THE CONSTRUCTION OF AN EQUATION.
BOUNDEDNESS OF THE COEFFICIENTS

The constructed function x(t) > 0 is a solution of Eq. (11) with the coefficients

a(t) = x−1(t)∂x(t)/∂t1 = ∂ lnx(t)/∂t1,
b(t) = x−1(t)∂x(t)/∂t2 = ∂ lnx(t)/∂t2, t ∈ R2

>1,

satisfying the complete integrability condition (3) in view of the infinite differentiability of lnx(t)
in R2

>1.
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By using the inequality∣∣∣∣de01(τ ; τ1, τ2)
dτ

∣∣∣∣ ≤ 2 exp
[
2 (τ2 − τ1)−2

]
, τ ∈ [τ1, τ2] , (24)

which is a simple consequence of the lemma in [7] and is valid on any closed interval [τ1, τ2] of
length τ2 − τ1 ≤ 1/2, we prove that these coefficients are bounded.

We first prove that the partial derivatives ∂ lnψi,l(t)/∂tk, k = 1, 2, are bounded in the strip
ΠL(i, l), i ∈ Il, l ∈ N . By taking account of (6), we note that the inner product (∆(i, l), ln t)
occurs in the definition of the function lnψi,l(t) only in the sector

S̃(i, l) ≡
{
t ∈ R2

>1 : Θi,l − τl −
1
4
≤ ln t2

ln t1
≤ Θi,l + τl +

1
4

}
;

therefore, it suffices to prove the boundedness of the partial derivatives

∂

∂tk

[
(∆(i, l), ln t)e0110

(
ln t2
ln t1

; Θi,l − τl −
1
4
,Θi,l − τl,Θi,l + τl,Θi,l + τl +

1
4

)]
, k = 1, 2,

in the intersection S̃(i, l) ∩ ΠL(i, l). Since t1 + t2 ≥ 2ν4Θl
l in the strip ΠL(i, l), i ∈ Il, l ∈ N , and

τl ≤ 1/2, we have the estimates

tk ≥ νl, 1/tk ≤ 1/νl, k = 1, 2, (25)

in the intersection S̃(i, l) ∩ΠL(i, l), i ∈ Il, l ∈ N .
Note also that, obviously, 1/Θi,l ≤ 1, exp

(
2τ−2
l

)
≥ 1, and 1/νl ≤ 1. It follows from (25) that∣∣∣∣ ∂∂tk (∆(i, l), ln t)

∣∣∣∣ ≤ |∆k(i, l)|
tk

≤ ∆(l)
νl
≤ 1, k = 1, 2, (26k)

for t ∈ S̃(i, l) ∩ΠL(i, l), i ∈ Il, and l ∈ N . By using (24) and (25), in the intersection

S̃(i, l) ∩ΠL(i, l), i ∈ Il, l ∈ N,

we obtain the estimates∣∣∣∣(∆(i, l), ln t)
∂

∂t1

(
1− e01

(
ln t2
ln t1

; Θi,l + τl,Θi,l + τl +
1
4

))∣∣∣∣
≤ ‖∆(i, l)‖ (ln t1 + ln t2)× 2e32(ln t2)/

(
t1 ln2 t1

)
≤ 2e32(∆(l)/t1)

(
(ln t2)/ln t1 + ((ln t2)/ln t1)2

)
≤ 2e32(∆(l)/νl)

(
2Θl + 4Θ2

l

)
≤ 1,

(271)

∣∣∣∣(∆(i, l), ln t)
∂

∂t2

(
1− e01

(
ln t2
ln t1

; Θi,l + τl,Θi,l + τl +
1
4

))∣∣∣∣
≤ ‖∆(i, l)‖(ln t1 + ln t2)× 2e32/(t2 ln t1) ≤ 2e32(∆(l)/t2)(1 + ((ln t2)/ln t1))

≤ 2e32(∆(l)/νl)(1 + 2Θl) ≤ 1,

(272)

∣∣∣∣(∆(i, l), ln t)
∂

∂t1
e01

(
ln t2
ln t1

; Θi,l − τl −
1
4
,Θi,l − τl

)∣∣∣∣
≤ ‖∆(i, l)‖(ln t1 + ln t2)× 2e32(ln t2)/

(
t1 ln2 t1

)
≤ 2e32(∆(l)/t1)

(
(ln t2)/ln t1 + ((ln t2)/ln t1)2

)
≤ 2e32(∆(l)/νl)

(
2Θl + 4Θ2

l

)
≤ 1,

(281)

∣∣∣∣(∆(i, l), ln t)
∂

∂t2
e01

(
ln t2
ln t1

; Θi,l − τl −
1
4
,Θi,l − τl

)∣∣∣∣ ≤ 2e32(∆(l)/t2)(1 + (ln t2)/ln t1) ≤ 1. (282)
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By taking account of (6), we estimate the partial derivatives

∂

∂tk

[
e101

(
ln t2
ln t1

; Θi,l − τl,Θi,l,Θi,l + τl

)
‖ln t‖2

]
, k = 1, 2.

Note that the partial derivatives
∂

∂tk
e101

(
ln t2
ln t1

; Θi,l − τl,Θi,l,Θi,l + τl

)
, k = 1, 2, vanish outside

the sector S(i, l). This, together with (25) and the inequalities
ln t2
ln t1

≥ Θi,l − τl ≥
1
2

, t ∈ S(i, l),

implies the following estimates in the strip ΠL(i, l), i ∈ Il, l ∈ N :∣∣∣∣( ∂

∂t1
e01

(
ln t2
ln t1

; Θi,l,Θi,l + τl

))
‖ln t‖2

∣∣∣∣ ≤ 2
(
exp
(
2τ−2
l

)) ln t2
t1 ln2 t1

(
ln2 t1 + ln2 t2

)
≤
(
2
(
exp

(
2τ−2
l

))
(ln t2)/t1

)(
1 + ((ln t2)/ln t1)2

)
≤
(
4
(
exp

(
2τ−2
l

))
Θl(ln t1)/t1

)(
1 + 4Θ2

l

)
≤
(
8
(
exp
(
2τ−2
l

))
Θl

(
ln
√
t1
)
/t1
)(

1 + 4Θ2
l

)
≤
(
8
(
exp

(
2τ−2
l

))
Θl/
√
νl
)(

1 + 4Θ2
l

)
≤ 1,

(291)

∣∣∣∣( ∂

∂t2
e01

(
ln t2
ln t1

; Θi,l,Θi,l + τl

))
‖ln t‖2

∣∣∣∣ ≤ 2 exp
(
2τ−2
l

)
t2 ln t1

(
ln2 t1 + ln2 t2

)
≤
(
2
(
exp
(
2τ−2
l

))
(ln t1)/t2

)(
1 + ((ln t2)/ln t1)2

)
≤
(
4
(
exp
(
2τ−2
l

))
(ln t2)/t2

)(
1 + 4Θ2

l

)
≤
(
8
(
exp
(
2τ−2
l

))(
ln
√
t2
)
/t2
)(

1 + 4Θ2
l

)
≤
(
8
(
exp
(
2τ−2
l

))
/
√
νl
)(

1 + 4Θ2
l

)
≤ 1,

(292)

∣∣∣∣( ∂

∂t1

[
1− e01

(
ln t2
ln t1

; Θi,l − τl,Θi,l

)])
‖ln t‖2

∣∣∣∣ ≤ 2
(
exp
(
2τ−2
l

)) ln t2
t1 ln2 t1

(
ln2 t1 + ln2 t2

)
≤ 1, (301)∣∣∣∣( ∂

∂t2

[
1− e01

(
ln t2
ln t1

; Θi,l − τl,Θi,l

)])
‖ln t‖2

∣∣∣∣ ≤ 2
(
exp
(
2τ−2
l

)) 1
t2 ln t1

(
ln2 t1 + ln2 t2

)
≤ 1. (302)

Furthermore, obviously,∣∣∣∣e101

(
ln t2
ln t1

; Θi,l − τl,Θi,l,Θi,l + τl

)
∂

∂tk
‖ln t‖2

∣∣∣∣ ≤ 2
ln tk
tk
≤ 2, k = 1, 2. (31k)

It follows from definitions (6), (4), and (5) of the function lnψi,l(t), i ∈ Il, l ∈ N , and from the
inequalities (26k)–(31k), k = 1, 2, in the strip ΠL(i, l), i ∈ Il, l ∈ N , that the partial derivatives
∂ lnψi,l(t)/∂tk, k = 1, 2, are bounded; more precisely,

|∂ lnψi,l(t)/∂tk| ≤ 5, k = 1, 2.

Therefore, by (132), we have proved the boundedness of the partial derivatives ∂ ln ψ̃(t)/∂tk,
k = 1, 2, in the “basic” strips Π(i, l), i ∈ Il, l ∈ N .

By taking account of the definition (133) of the function ln ψ̃(t) in the “transition” strip Π̃(i+1, l),
i = 0, 1, . . . , l × 2l − 1, l ∈ N , we prove the boundedness of the products

[lnψi+1,l(t)− lnψi,l(t)](∂/∂tk) e01

(
ln
√
t1 + t2; ln

√
αi+1,l, ln

√
βi+1,l

)
, k = 1, 2.

Let us prove the boundedness of some of these products, say,

lnψi,l(t)(∂/∂tk) e01

(
ln
√
t1 + t2; ln

√
αi+1,l, ln

√
βi+1,l

)
, k = 1, 2;
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the boundedness of the other product can be proved in a similar way. From (6), (24), and (102),
we obtain the estimates∣∣∣∣lnψi,l(t) ∂

∂tk
e01

(
ln
√
t1 + t2; ln

√
αi+1,l, ln

√
βi+1,l

)∣∣∣∣
≤
(
|(∆(i, l), ln t)|+

(
ln2 t1 + ln2 t2

))
× 2 exp

2

(
ln

√
βi+1,l

αi+1,l

)−2
 1

2 (t1 + t2)

≤ exp
[
2
(

ln
√

2
)−2
](
‖∆(i, l)‖(ln t1 + ln t2) +

(
ln2 t1 + ln2 t2

)) 1
t1 + t2

≤ 1, k = 1, 2.

Since the derivatives ∂ lnψi,l(t)/∂tk and ∂ lnψi+1,l(t)/∂tk are bounded in the “transition” strip
Π̃(i + 1, l), i = 0, 1, . . . , l × 2l − 1, l ∈ N , it follows from definition (133) of the function ln ψ̃(t)
that the partial derivatives ∂ ln ψ̃(t)/∂tk, k = 1, 2, are bounded in the “transition” strip Π̃(i+ 1, l),
i = 0, 1, . . . , l × 2l − 1, l ∈ N , as well. The boundedness of the derivatives ∂ ln ψ̃(t)/∂tk, k = 1, 2,
in the “global transition” strips Π̃(0, l + 1), l ∈ N , and in the strip Π̃(0, 1) can be proved in a
similar way.

We have thereby completely proved the boundedness of the partial derivatives ∂ ln ψ̃(t)/∂tk,
k = 1, 2, in cases (a) and (b), in which the curve D is unbounded on the left and right, and the
boundedness of the partial derivatives ∂ lnψ(t)/∂tk, k = 1, 2, in the entire quadrant R2

>1, where
equation (11) constructed above is defined.

Let us now proceed to the proof of the boundedness of the partial derivatives ∂ lnψ(t)/∂tk ,
k = 1, 2, in the quadrant R2

>1 in case (c), in which the curve D is bounded on the left by a finite
point. Obviously, the estimates∣∣∣∣(∆(0, 0), ln t)

∂

∂t1
e01

(
ln t2
ln t1

;
3

|k(0, 0)| ,
3

|k(0, 0)| +
1
2

)∣∣∣∣
≤ 2e8‖∆(0, 0)‖(ln t1 + ln t2)

ln t2
t1 ln2 t1

≤ 2e8‖∆(0, 0)‖
(
3/|k(0, 0)| + 1/2 + (3/|k(0, 0)| + 1/2)2

)
,

(321)

∣∣∣∣(∆(0, 0), ln t)
∂

∂t2
e01

(
ln t2
ln t1

;
3

|k(0, 0)| ,
3

|k(0, 0)| +
1
2

)∣∣∣∣
≤ 2e8‖∆(0, 0)‖(ln t1 + ln t2)/(t2 ln t1)

≤ 2e8‖∆(0, 0)‖(3/|k(0, 0)| + 3/2)

(322)

are valid in the quadrant R2
>1. In view of definition (14) of the function lnψ(t), to prove the

boundedness of the partial derivatives ∂ lnψ(t)/∂tk, k = 1, 2, in the quadrant R2
>1, we need to

justify the boundedness of the products ln ψ̃(t)(∂/∂tk) e01 (ln t2/ln t1; 3/|k(0, 0)|, 3/|k(0, 0)| + 1/2)
in this quadrant. From (6), in each strip ΠL(i, l), i ∈ Il, l ∈ N , we obtain the estimate∣∣∣∣lnψi,l(t) ∂

∂t1
e01

(
ln t2
ln t1

;
3

|k(0, 0)| ,
3

|k(0, 0)| +
1
2

)∣∣∣∣
≤ 2e8 ln t2

t1 ln2 t1

(
‖∆(i, l)‖(ln t1 + ln t2)

× e0110

(
ln t2
ln t1

; Θi,l − τl −
1
4
,Θi,l − τl,Θi,l + τl,Θi,l + τl +

1
4

)
+ ln2 t1 + ln2 t2

)
≤ 2e8

(
(∆(l)/νl)

(
(ln t2)/ln t1 + ((ln t2)/ln t1)2

)
+ ((ln t2)/t1)

(
1 + ((ln t2)/ln t1)2

))
≤ 2e8

(
3/|k(0, 0)| + 1/2 + (3/|k(0, 0)| + 1/2)2 + (3/|k(0, 0)| + 1/2)

(
1 + (3/|k(0, 0)| + 1/2)2

))
,
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∂t2
e01

(
ln t2
ln t1

;
3

|k(0, 0)| ,
3

|k(0, 0)| +
1
2

)∣∣∣∣
≤ 2e8

t2 ln t1

(
‖∆(i, l)‖(ln t1 + ln t2)

× e0110

(
ln t2
ln t1

; Θi,l − τl −
1
4
,Θi,l − τl,Θi,l + τl,Θi,l + τl +

1
4

)
+ ln2 t1 + ln2 t2

)
≤ 2e8

(
(∆(l)/νl)(1 + (ln t2)/ln t1) + ((ln t1)/t2)

(
1 + ((ln t2)/ln t1)2

))
≤ 2e8

(
3/2 + 3/|k(0, 0)| + |k(0, 0)|

(
1 + (3/|k(0, 0)| + 1/2)2

)
/3
)
,

which, together with definitions (131)–(135) of the function ln ψ̃(t), implies that the products

ln ψ̃(t)(∂/∂tk) e01 (ln t2/ln t1; 3/|k(0, 0)|, 3/|k(0, 0)| + 1/2)

are bounded in the quadrant R2
>1. Since these products and the partial derivatives ∂ ln ψ̃(t)/∂tk,

k = 1, 2, are bounded, it follows from the estimates (321), (322), and (14) that the partial derivatives
∂ lnψ(t)/∂tk, k = 1, 2, of the function lnψ(t) are bounded in the quadrant R2

>1 in case (c) as well.
We have thereby proved that the coefficients of equation (11) are bounded in the quadrant R2

>1
and the assertion of the theorem is valid.

The following assertion gives a complete description of the left boundary lower exponent set.

Theorem 2. A set D is the left boundary lower exponent set D x (p′) of some nontrivial solu-
tion x(t), whose lower characteristic set Px consists of more than one point, of some completely
integrable Pfaff system (1) with bounded continuously differentiable coefficients if and only if it is
empty or can be represented in the form of a closed concave monotone decreasing right- and lower-
unbounded curve on the two-dimensional plane such that the slope of any tangent is negative and
is not less than −1.
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