MOCK MIDTERM 1

PEYAM RYAN TABRIZIAN

Instructions: This is a mock midterm, designed to give you some practice for the actual midterm. It should be similar in length (and in spirit) as the actual midterm.

1		25
2		15
3		30
4		30
Total		100

Date: Friday, October 20, 2017.

1. (25 points) Use the definition of the integral (in terms of Riemann sums) to evaluate

$$
\int_{1}^{4} x^{2} d x
$$

You are allowed to use the following facts:

$$
\sum_{i=1}^{n} 1=n, \quad \sum_{i=1}^{n} i=\frac{n(n+1)}{2}, \quad \sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}, \quad \sum_{i=1}^{n} i^{3}=\frac{n^{2}(n+1)^{2}}{4}
$$

2. (15 points, 5 points each) Find the following:
(a) The antiderivative F of $f(x)=\sec (x)(\sec (x)+\tan (x))$ that satisfies $F(0)=2$.
(b) $\int_{-3}^{3} \sqrt{9-x^{2}} d x$
(c) The derivative of $\int_{\frac{1}{x}}^{2} \sqrt{1+e^{t}} d t$
3. (30 points, 10 points each) Find the following integrals (a) $\int \frac{1+x}{1+x^{2}} d x$

Hint: Split the fraction up into two parts
(b) $\int x^{3} \sqrt{1+x^{2}} d x$
(c) $\int_{e^{-4}}^{e^{-1}} \frac{1}{x \ln (x)} d x$
4. (30 points)
(a) (10 points) Find the area of the region enclosed by the curves $y=x$ and $y=\sqrt{x}$. Illustrate with a picture.
(b) (20 points, 5 points each) Find an expression of but do not evaluate the volume obtained by rotating the region in (a) about:
(i) The x-axis
(ii) The y-axis
(iii) The line $x=-1$
(iv) The line $y=2$

