$$
x_{n+1}=x_{n}-\frac{x_{n}^{5}-(2+r) x_{n}^{4}+(1+2 r) x_{n}^{3}-(1+r) x_{n}^{2}+2(1-r) x_{n}+r-1}{5 x_{n}^{4}-4(2+r) x_{n}^{3}+3(1+2 r) x_{n}^{2}-2(1+r) x_{n}+2(1-r)} \text {. Again, we substitute }
$$

$r \approx 3.04042 \times 10^{-6} . L_{2}$ is slightly more than 1 AU from the sun and, judging from the result of part (a), probably less than 0.02 AU from earth. So we take $x_{1}=1.02$ and get $x_{2} \approx 1.01422, x_{3} \approx 1.01118, x_{4} \approx 1.01018$, $x_{5} \approx 1.01008 \approx x_{6}$. So, to five decimal places, L_{2} is located 1.01008 AU from the sun (or 0.01008 AU from the earth).

4.9 Antiderivatives

1. $f(x)=4 x+7=4 x^{1}+7 \quad \Rightarrow \quad F(x)=4 \frac{x^{1+1}}{1+1}+7 x+C=2 x^{2}+7 x+C$

Check: $F^{\prime}(x)=2(2 x)+7+0=4 x+7=f(x)$
2. $f(x)=x^{2}-3 x+2 \Rightarrow F(x)=\frac{x^{3}}{3}-3 \frac{x^{2}}{2}+2 x+C=\frac{1}{3} x^{3}-\frac{3}{2} x^{2}+2 x+C$

Check: $F^{\prime}(x)=\frac{1}{3}\left(3 x^{2}\right)-\frac{3}{2}(2 x)+2+0=x^{2}-3 x+2=f(x)$
3. $f(x)=2 x^{3}-\frac{2}{3} x^{2}+5 x \quad \Rightarrow \quad F(x)=2 \frac{x^{3+1}}{3+1}-\frac{2}{3} \frac{x^{2+1}}{2+1}+5 \frac{x^{1+1}}{1+1}=\frac{1}{2} x^{4}-\frac{2}{9} x^{3}+\frac{5}{2} x^{2}+C$

Check: $F^{\prime}(x)=\frac{1}{2}\left(4 x^{3}\right)-\frac{2}{9}\left(3 x^{2}\right)+\frac{5}{2}(2 x)+0=2 x^{3}-\frac{2}{3} x^{2}+5 x=f(x)$
4. $f(x)=6 x^{5}-8 x^{4}-9 x^{2} \Rightarrow F(x)=6 \frac{x^{6}}{6}-8 \frac{x^{5}}{5}-9 \frac{x^{3}}{3}+C=x^{6}-\frac{8}{5} x^{5}-3 x^{3}+C$
5. $f(x)=x(12 x+8)=12 x^{2}+8 x \quad \Rightarrow \quad F(x)=12 \frac{x^{3}}{3}+8 \frac{x^{2}}{2}+C=4 x^{3}+4 x^{2}+C$
6. $f(x)=(x-5)^{2}=x^{2}-10 x+25 \quad \Rightarrow \quad F(x)=\frac{x^{3}}{3}-10 \frac{x^{2}}{2}+25 x+C=\frac{1}{3} x^{3}-5 x^{2}+25 x+C$
7. $f(x)=7 x^{2 / 5}+8 x^{-4 / 5} \Rightarrow F(x)=7\left(\frac{5}{7} x^{7 / 5}\right)+8\left(5 x^{1 / 5}\right)+C=5 x^{7 / 5}+40 x^{1 / 5}+C$
8. $f(x)=x^{3.4}-2 x^{\sqrt{2}-1} \Rightarrow F(x)=\frac{x^{4.4}}{4.4}-2\left(\frac{x^{\sqrt{2}}}{\sqrt{2}}\right)+C=\frac{5}{22} x^{4.4}-\sqrt{2} x^{\sqrt{2}}+C$
9. $f(x)=\sqrt{2}$ is a constant function, so $F(x)=\sqrt{2} x+C$.
10. $f(x)=e^{2}$ is a constant function, so $F(x)=e^{2} x+C$.
11. $f(x)=3 \sqrt{x}-2 \sqrt[3]{x}=3 x^{1 / 2}-2 x^{1 / 3} \Rightarrow F(x)=3\left(\frac{2}{3} x^{3 / 2}\right)-2\left(\frac{3}{4} x^{4 / 3}\right)+C=2 x^{3 / 2}-\frac{3}{2} x^{4 / 3}+C$
12. $f(x)=\sqrt[3]{x^{2}}+x \sqrt{x}=x^{2 / 3}+x^{3 / 2} \Rightarrow F(x)=\frac{3}{5} x^{5 / 3}+\frac{2}{5} x^{5 / 2}+C$
13. $f(x)=\frac{1}{5}-\frac{2}{x}=\frac{1}{5}-2\left(\frac{1}{x}\right)$ has domain $(-\infty, 0) \cup(0, \infty)$, so $F(x)= \begin{cases}\frac{1}{5} x-2 \ln |x|+C_{1} & \text { if } x<0 \\ \frac{1}{5} x-2 \ln |x|+C_{2} & \text { if } x>0\end{cases}$

See Example 1(b) for a similar problem.
14. $f(t)=\frac{3 t^{4}-t^{3}+6 t^{2}}{t^{4}}=3-\frac{1}{t}+\frac{6}{t^{2}}$ has domain $(-\infty, 0) \cup(0, \infty)$, so $F(t)= \begin{cases}3 t-\ln |t|-\frac{6}{t}+C_{1} & \text { if } t<0 \\ 3 t-\ln |t|-\frac{6}{t}+C_{2} & \text { if } t>0\end{cases}$

See Example 1(b) for a similar problem.
15. $g(t)=\frac{1+t+t^{2}}{\sqrt{t}}=t^{-1 / 2}+t^{1 / 2}+t^{3 / 2} \Rightarrow G(t)=2 t^{1 / 2}+\frac{2}{3} t^{3 / 2}+\frac{2}{5} t^{5 / 2}+C$
16. $r(\theta)=\sec \theta \tan \theta-2 e^{\theta} \Rightarrow R(\theta)=\sec \theta-2 e^{\theta}+C_{n}$ on the interval $\left(n \pi-\frac{\pi}{2}, n \pi+\frac{\pi}{2}\right)$.
17. $h(\theta)=2 \sin \theta-\sec ^{2} \theta \Rightarrow H(\theta)=-2 \cos \theta-\tan \theta+C_{n}$ on the interval $\left(n \pi-\frac{\pi}{2}, n \pi+\frac{\pi}{2}\right)$.
18. $g(v)=2 \cos v-\frac{3}{\sqrt{1-v^{2}}} \Rightarrow G(v)=2 \sin v-3 \sin ^{-1} v+C$
19. $f(x)=2^{x}+4 \sinh x \quad \Rightarrow \quad F(x)=\frac{2^{x}}{\ln 2}+4 \cosh x+C$
20. $f(x)=1+2 \sin x+3 / \sqrt{x}=1+2 \sin x+3 x^{-1 / 2} \Rightarrow F(x)=x-2 \cos x+3 \frac{x^{1 / 2}}{1 / 2}+C=x-2 \cos x+6 \sqrt{x}+C$
21. $f(x)=\frac{2 x^{4}+4 x^{3}-x}{x^{3}}, x>0 ; f(x)=2 x+4-x^{-2} \Rightarrow$
$F(x)=2 \frac{x^{2}}{2}+4 x-\frac{x^{-2+1}}{-2+1}+C=x^{2}+4 x+\frac{1}{x}+C, x>0$
22. $f(x)=\frac{2 x^{2}+5}{x^{2}+1}=\frac{2\left(x^{2}+1\right)+3}{x^{2}+1}=2+\frac{3}{x^{2}+1} \quad \Rightarrow \quad F(x)=2 x+3 \tan ^{-1} x+C$
23. $f(x)=5 x^{4}-2 x^{5} \Rightarrow F(x)=5 \cdot \frac{x^{5}}{5}-2 \cdot \frac{x^{6}}{6}+C=x^{5}-\frac{1}{3} x^{6}+C$.
$F(0)=4 \quad \Rightarrow \quad 0^{5}-\frac{1}{3} \cdot 0^{6}+C=4 \quad \Rightarrow \quad C=4$, so $F(x)=x^{5}-\frac{1}{3} x^{6}+4$.
The graph confirms our answer since $f(x)=0$ when F has a local maximum, f is positive when F is increasing, and f is negative when F is decreasing.

24. $f(x)=4-3\left(1+x^{2}\right)^{-1}=4-\frac{3}{1+x^{2}} \quad \Rightarrow \quad F(x)=4 x-3 \tan ^{-1} x+C$.
$F(1)=0 \Rightarrow 4-3\left(\frac{\pi}{4}\right)+C=0 \quad \Rightarrow \quad C=\frac{3 \pi}{4}-4$, so
$F(x)=4 x-3 \tan ^{-1} x+\frac{3 \pi}{4}-4$. Note that f is positive and F is increasing on \mathbb{R}.
Also, f has smaller values where the slopes of the tangent lines of F are smaller.

25. $f^{\prime \prime}(x)=20 x^{3}-12 x^{2}+6 x \Rightarrow f^{\prime}(x)=20\left(\frac{x^{4}}{4}\right)-12\left(\frac{x^{3}}{3}\right)+6\left(\frac{x^{2}}{2}\right)+C=5 x^{4}-4 x^{3}+3 x^{2}+C \Rightarrow$ $f(x)=5\left(\frac{x^{5}}{5}\right)-4\left(\frac{x^{4}}{4}\right)+3\left(\frac{x^{3}}{3}\right)+C x+D=x^{5}-x^{4}+x^{3}+C x+D$

INSTTRU'CTTOR USE ONLY

26. $f^{\prime \prime}(x)=x^{6}-4 x^{4}+x+1 \quad \Rightarrow \quad f^{\prime}(x)=\frac{1}{7} x^{7}-\frac{4}{5} x^{5}+\frac{1}{2} x^{2}+x+C \quad \Rightarrow$ $f(x)=\frac{1}{56} x^{8}-\frac{2}{15} x^{6}+\frac{1}{6} x^{3}+\frac{1}{2} x^{2}+C x+D$
27. $f^{\prime \prime}(x)=2 x+3 e^{x} \Rightarrow f^{\prime}(x)=x^{2}+3 e^{x}+C \quad \Rightarrow \quad f(x)=\frac{1}{3} x^{3}+3 e^{x}+C x+D$
28. $f^{\prime \prime}(x)=1 / x^{2}=x^{-2} \Rightarrow f^{\prime}(x)=\left\{\begin{array}{ll}-1 / x+C_{1} & \text { if } x<0 \\ -1 / x+C_{2} & \text { if } x>0\end{array} \Rightarrow f(x)= \begin{cases}-\ln (-x)+C_{1} x+D_{1} & \text { if } x<0 \\ -\ln x+C_{2} x+D_{2} & \text { if } x>0\end{cases}\right.$
29. $f^{\prime \prime \prime}(t)=12+\sin t \quad \Rightarrow \quad f^{\prime \prime}(t)=12 t-\cos t+C_{1} \quad \Rightarrow \quad f^{\prime}(t)=6 t^{2}-\sin t+C_{1} t+D \quad \Rightarrow$ $f(t)=2 t^{3}+\cos t+C t^{2}+D t+E$, where $C=\frac{1}{2} C_{1}$.
30. $f^{\prime \prime \prime}(t)=\sqrt{t}-2 \cos t=t^{1 / 2}-2 \cos t \quad \Rightarrow \quad f^{\prime \prime}(t)=\frac{2}{3} t^{3 / 2}-2 \sin t+C_{1} \quad \Rightarrow \quad f^{\prime}(t)=\frac{4}{15} 5^{5 / 2}+2 \cos t+C_{1} t+D \quad \Rightarrow$ $f(t)=\frac{8}{105} t^{7 / 2}+2 \sin t+C t^{2}+D t+E$, where $C=\frac{1}{2} C_{1}$.
31. $f^{\prime}(x)=1+3 \sqrt{x} \Rightarrow f(x)=x+3\left(\frac{2}{3} x^{3 / 2}\right)+C=x+2 x^{3 / 2}+C . \quad f(4)=4+2(8)+C$ and $f(4)=25 \quad \Rightarrow$ $20+C=25 \quad \Rightarrow \quad C=5$, so $f(x)=x+2 x^{3 / 2}+5$.
32. $f^{\prime}(x)=5 x^{4}-3 x^{2}+4 \Rightarrow f(x)=x^{5}-x^{3}+4 x+C . \quad f(-1)=-1+1-4+C$ and $f(-1)=2 \Rightarrow$ $-4+C=2 \quad \Rightarrow \quad C=6$, so $f(x)=x^{5}-x^{3}+4 x+6$.
33. $f^{\prime}(t)=\frac{4}{1+t^{2}} \Rightarrow f(t)=4 \arctan t+C . \quad f(1)=4\left(\frac{\pi}{4}\right)+C$ and $f(1)=0 \Rightarrow \pi+C=0 \quad \Rightarrow \quad C=-\pi$, so $f(t)=4 \arctan t-\pi$.
34. $f^{\prime}(t)=t+\frac{1}{t^{3}}, t>0 \Rightarrow f(t)=\frac{1}{2} t^{2}-\frac{1}{2 t^{2}}+C . \quad f(1)=\frac{1}{2}-\frac{1}{2}+C$ and $f(1)=6 \Rightarrow C=6$, so $f(t)=\frac{1}{2} t^{2}-\frac{1}{2 t^{2}}+6$.
35. $f^{\prime}(x)=5 x^{2 / 3} \Rightarrow f(x)=5\left(\frac{3}{5} x^{5 / 3}\right)+C=3 x^{5 / 3}+C$.
$f(8)=3 \cdot 32+C$ and $f(8)=21 \quad \Rightarrow 96+C=21 \quad \Rightarrow \quad C=-75$, so $f(x)=3 x^{5 / 3}-75$.
36. $f^{\prime}(x)=\frac{x+1}{\sqrt{x}}=x^{1 / 2}+x^{-1 / 2} \Rightarrow f(x)=\frac{2}{3} x^{3 / 2}+2 x^{1 / 2}+C . \quad f(1)=\frac{2}{3}+2+C=\frac{8}{3}+C$ and $f(1)=5 \quad \Rightarrow$ $C=5-\frac{8}{3}=\frac{7}{3}$, so $f(x)=\frac{2}{3} x^{3 / 2}+2 \sqrt{x}+\frac{7}{3}$.
37. $f^{\prime}(t)=\sec t(\sec t+\tan t)=\sec ^{2} t+\sec t \tan t,-\frac{\pi}{2}<t<\frac{\pi}{2} \quad \Rightarrow \quad f(t)=\tan t+\sec t+C . \quad f\left(\frac{\pi}{4}\right)=1+\sqrt{2}+C$ and $f\left(\frac{\pi}{4}\right)=-1 \Rightarrow 1+\sqrt{2}+C=-1 \quad \Rightarrow \quad C=-2-\sqrt{2}$, so $f(t)=\tan t+\sec t-2-\sqrt{2}$.
Note: The fact that f is defined and continuous on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ means that we have only one constant of integration.

INSTRUCTOR USE ONLY

38. $f^{\prime}(t)=3^{t}-\frac{3}{t} \Rightarrow f(t)= \begin{cases}3^{t} / \ln 3-3 \ln (-t)+C & \text { if } t<0 \\ 3^{t} / \ln 3-3 \ln t+D & \text { if } t>0\end{cases}$
$f(-1)=\frac{1}{3 \ln 3}-3 \ln 1+C$ and $f(-1)=1 \quad \Rightarrow \quad C=1-\frac{1}{3 \ln 3}$.
$f(1)=\frac{3}{\ln 3}-3 \ln 1+D$ and $f(1)=2 \quad \Rightarrow \quad D=2-\frac{3}{\ln 3}$.
Thus, $f(t)= \begin{cases}3^{t} / \ln 3-3 \ln (-t)+1-1 /(3 \ln 3) & \text { if } t<0 \\ 3^{t} / \ln 3-3 \ln t+2-3 / \ln 3 & \text { if } t>0\end{cases}$
39. $f^{\prime \prime}(x)=-2+12 x-12 x^{2} \Rightarrow f^{\prime}(x)=-2 x+6 x^{2}-4 x^{3}+C . f^{\prime}(0)=C$ and $f^{\prime}(0)=12 \quad \Rightarrow \quad C=12$, so $f^{\prime}(x)=-2 x+6 x^{2}-4 x^{3}+12$ and hence, $f(x)=-x^{2}+2 x^{3}-x^{4}+12 x+D . f(0)=D$ and $f(0)=4 \quad \Rightarrow \quad D=4$, so $f(x)=-x^{2}+2 x^{3}-x^{4}+12 x+4$.
40. $f^{\prime \prime}(x)=8 x^{3}+5 \Rightarrow f^{\prime}(x)=2 x^{4}+5 x+C . f^{\prime}(1)=2+5+C$ and $f^{\prime}(1)=8 \quad \Rightarrow \quad C=1$, so
$f^{\prime}(x)=2 x^{4}+5 x+1 . f(x)=\frac{2}{5} x^{5}+\frac{5}{2} x^{2}+x+D . f(1)=\frac{2}{5}+\frac{5}{2}+1+D=D+\frac{39}{10}$ and $f(1)=0 \Rightarrow D=-\frac{39}{10}$, so $f(x)=\frac{2}{5} x^{5}+\frac{5}{2} x^{2}+x-\frac{39}{10}$.
41. $f^{\prime \prime}(\theta)=\sin \theta+\cos \theta \quad \Rightarrow \quad f^{\prime}(\theta)=-\cos \theta+\sin \theta+C . f^{\prime}(0)=-1+C$ and $f^{\prime}(0)=4 \quad \Rightarrow \quad C=5$, so $f^{\prime}(\theta)=-\cos \theta+\sin \theta+5$ and hence, $f(\theta)=-\sin \theta-\cos \theta+5 \theta+D . f(0)=-1+D$ and $f(0)=3 \quad \Rightarrow \quad D=4$, so $f(\theta)=-\sin \theta-\cos \theta+5 \theta+4$.
42. $f^{\prime \prime}(t)=t^{2}+\frac{1}{t^{2}}=t^{2}+t^{-2}, t>0 \Rightarrow f^{\prime}(t)=\frac{1}{3} t^{3}-\frac{1}{t}+C . \quad f^{\prime}(1)=\frac{1}{3}-1+C$ and $f^{\prime}(1)=2 \Rightarrow$ $C-\frac{2}{3}=2 \Rightarrow C=\frac{8}{3}$, so $f^{\prime}(t)=\frac{1}{3} t^{3}-\frac{1}{t}+\frac{8}{3}$ and hence, $f(t)=\frac{1}{12} t^{4}-\ln t+\frac{8}{3} t+D . \quad f(2)=\frac{4}{3}-\ln 2+\frac{16}{3}+D$ and $f(2)=3 \Rightarrow \frac{20}{3}-\ln 2+D=3 \Rightarrow D=\ln 2-\frac{11}{3}$, so $f(t)=\frac{1}{12} t^{4}-\ln t+\frac{8}{3} t+\ln 2-\frac{11}{3}$.
43. $f^{\prime \prime}(x)=4+6 x+24 x^{2} \Rightarrow f^{\prime}(x)=4 x+3 x^{2}+8 x^{3}+C \quad \Rightarrow \quad f(x)=2 x^{2}+x^{3}+2 x^{4}+C x+D . \quad f(0)=D$ and $f(0)=3 \Rightarrow D=3$, so $f(x)=2 x^{2}+x^{3}+2 x^{4}+C x+3 . \quad f(1)=8+C$ and $f(1)=10 \Rightarrow C=2$, so $f(x)=2 x^{2}+x^{3}+2 x^{4}+2 x+3$.
44. $f^{\prime \prime}(x)=x^{3}+\sinh x \Rightarrow f^{\prime}(x)=\frac{1}{4} x^{4}+\cosh x+C \quad \Rightarrow \quad f(x)=\frac{1}{20} x^{5}+\sinh x+C x+D . \quad f(0)=D$ and $f(0)=1 \Rightarrow D=1$, so $f(x)=\frac{1}{20} x^{5}+\sinh x+C x+1 . \quad f(2)=\frac{32}{20}+\sinh 2+2 C+1$ and $f(2)=2.6 \quad \Rightarrow$ $\sinh 2+2 C=0 \Rightarrow C=-\frac{1}{2} \sinh 2$, so $f(x)=\frac{1}{20} x^{5}+\sinh x-\frac{1}{2}(\sinh 2) x+1$.
45. $f^{\prime \prime}(x)=e^{x}-2 \sin x \Rightarrow f^{\prime}(x)=e^{x}+2 \cos x+C \quad \Rightarrow \quad f(x)=e^{x}+2 \sin x+C x+D$.
$f(0)=1+0+D$ and $f(0)=3 \Rightarrow D=2$, so $f(x)=e^{x}+2 \sin x+C x+2 . f\left(\frac{\pi}{2}\right)=e^{\pi / 2}+2+\frac{\pi}{2} C+2$ and $f\left(\frac{\pi}{2}\right)=0 \Rightarrow e^{\pi / 2}+4+\frac{\pi}{2} C=0 \Rightarrow \frac{\pi}{2} C=-e^{\pi / 2}-4 \quad \Rightarrow \quad C=-\frac{2}{\pi}\left(e^{\pi / 2}+4\right)$, so $f(x)=e^{x}+2 \sin x+-\frac{2}{\pi}\left(e^{\pi / 2}+4\right) x+2$.
46. $f^{\prime \prime}(t)=\sqrt[3]{t}-\cos t=t^{1 / 3}-\cos t \Rightarrow f^{\prime}(t)=\frac{3}{4} t^{4 / 3}-\sin t+C \quad \Rightarrow \quad f(t)=\frac{9}{28} t^{7 / 3}+\cos t+C t+D$.
$f(0)=0+1+0+D$ and $f(0)=2 \Rightarrow D=1$, so $f(t)=\frac{9}{28} t^{7 / 3}+\cos t+C t+1 . \quad f(1)=\frac{9}{28}+\cos 1+C+1$ and $f(1)=2 \Rightarrow C=2-\frac{9}{28}-\cos 1-1=\frac{19}{28}-\cos 1$, so $f(t)=\frac{9}{28} t^{7 / 3}+\cos t+\left(\frac{19}{28}-\cos 1\right) t+1$.
47. $f^{\prime \prime}(x)=x^{-2}, x>0 \Rightarrow f^{\prime}(x)=-1 / x+C \Rightarrow f(x)=-\ln |x|+C x+D=-\ln x+C x+D$ [since $\left.x>0\right]$.
$f(1)=0 \Rightarrow C+D=0$ and $f(2)=0 \Rightarrow-\ln 2+2 C+D=0 \Rightarrow-\ln 2+2 C-C=0[$ since $D=-C] \Rightarrow$ $-\ln 2+C=0 \Rightarrow C=\ln 2$ and $D=-\ln 2$. So $f(x)=-\ln x+(\ln 2) x-\ln 2$.
48. $f^{\prime \prime \prime}(x)=\cos x \Rightarrow f^{\prime \prime}(x)=\sin x+C \cdot f^{\prime \prime}(0)=C$ and $f^{\prime \prime}(0)=3 \Rightarrow C=3 . f^{\prime \prime}(x)=\sin x+3 \Rightarrow$ $f^{\prime}(x)=-\cos x+3 x+D . f^{\prime}(0)=-1+D$ and $f^{\prime}(0)=2 \Rightarrow D=3 . f^{\prime}(x)=-\cos x+3 x+3 \Rightarrow$ $f(x)=-\sin x+\frac{3}{2} x^{2}+3 x+E . f(0)=E$ and $f(0)=1 \Rightarrow E=1$. Thus, $f(x)=-\sin x+\frac{3}{2} x^{2}+3 x+1$.
49. "The slope of its tangent line at $(x, f(x))$ is $3-4 x "$ means that $f^{\prime}(x)=3-4 x$, so $f(x)=3 x-2 x^{2}+C$.
"The graph of f passes through the point $(2,5)$ " means that $f(2)=5$, but $f(2)=3(2)-2(2)^{2}+C$, so $5=6-8+C \Rightarrow$ $C=7$. Thus, $f(x)=3 x-2 x^{2}+7$ and $f(1)=3-2+7=8$.
50. $f^{\prime}(x)=x^{3} \Rightarrow f(x)=\frac{1}{4} x^{4}+C . \quad x+y=0 \Rightarrow y=-x \Rightarrow m=-1$. Now $m=f^{\prime}(x) \quad \Rightarrow \quad-1=x^{3} \Rightarrow$ $x=-1 \Rightarrow y=1$ (from the equation of the tangent line), so $(-1,1)$ is a point on the graph of f. From f, $1=\frac{1}{4}(-1)^{4}+C \Rightarrow C=\frac{3}{4}$. Therefore, the function is $f(x)=\frac{1}{4} x^{4}+\frac{3}{4}$.
51. b is the antiderivative of f. For small x, f is negative, so the graph of its antiderivative must be decreasing. But both a and c are increasing for small x, so only b can be f 's antiderivative. Also, f is positive where b is increasing, which supports our conclusion.
52. We know right away that c cannot be f 's antiderivative, since the slope of c is not zero at the x-value where $f=0$. Now f is positive when a is increasing and negative when a is decreasing, so a is the antiderivative of f.
53.

The graph of F must start at $(0,1)$. Where the given graph, $y=f(x)$, has a local minimum or maximum, the graph of F will have an inflection point.

Where f is negative (positive), F is decreasing (increasing).
Where f changes from negative to positive, F will have a minimum. Where f changes from positive to negative, F will have a maximum.

Where f is decreasing (increasing), F is concave downward (upward).
54.

Where v is positive (negative), s is increasing (decreasing).
Where v is increasing (decreasing), s is concave upward (downward).
Where v is horizontal (a steady velocity), s is linear.
55.

$$
\begin{aligned}
& f^{\prime}(x)=\left\{\begin{array}{ll}
2 & \text { if } 0 \leq x<1 \\
1 & \text { if } 1<x<2 \\
-1 & \text { if } 2<x<3
\end{array} \Rightarrow f(x)= \begin{cases}2 x+C & \text { if } 0 \leq x<1 \\
x+D & \text { if } 1<x<2 \\
-x+E & \text { if } 2<x<3\end{cases} \right. \\
& f(0)=-1 \Rightarrow 2(0)+C=-1 \Rightarrow C=-1 . \text { Starting at the point } \\
& (0,-1) \text { and moving to the right on a line with slope } 2 \text { gets us to the point }(1,1) .
\end{aligned}
$$

The slope for $1<x<2$ is 1 , so we get to the point $(2,2)$. Here we have used the fact that f is continuous. We can include the point $x=1$ on either the first or the second part of f. The line connecting $(1,1)$ to $(2,2)$ is $y=x$, so $D=0$. The slope for $2<x<3$ is -1 , so we get to $(3,1) . \quad f(2)=2 \Rightarrow-2+E=2 \Rightarrow E=4$. Thus,

$$
f(x)= \begin{cases}2 x-1 & \text { if } 0 \leq x \leq 1 \\ x & \text { if } 1<x<2 \\ -x+4 & \text { if } 2 \leq x<3\end{cases}
$$

Note that $f^{\prime}(x)$ does not exist at $x=1,2$, or 3 .
56. (a)

(b) Since $F(0)=1$, we can start our graph at $(0,1) . f$ has a minimum at about $x=0.5$, so its derivative is zero there. f is decreasing on $(0,0.5)$, so its derivative is negative and hence, F is CD on $(0,0.5)$ and has an IP at $x \approx 0.5$. On ($0.5,2.2$), f is negative and increasing (f^{\prime} is positive), so F is
 decreasing and CU . On $(2.2, \infty), f$ is positive and increasing, so F is increasing and CU.
(c) $f(x)=2 x-3 \sqrt{x} \Rightarrow F(x)=x^{2}-3 \cdot \frac{2}{3} x^{3 / 2}+C$. $F(0)=C$ and $F(0)=1 \Rightarrow C=1$, so $F(x)=x^{2}-2 x^{3 / 2}+1$.
(d)

57. $f(x)=\frac{\sin x}{1+x^{2}},-2 \pi \leq x \leq 2 \pi$

Note that the graph of f is one of an odd function, so the graph of F will be one of an even function.

58. $f(x)=\sqrt{x^{4}-2 x^{2}+2}-2,-3 \leq x \leq 3$

Note that the graph of f is one of an even function, so the graph of F will be one of an odd function.

59. $v(t)=s^{\prime}(t)=\sin t-\cos t \Rightarrow s(t)=-\cos t-\sin t+C . s(0)=-1+C$ and $s(0)=0 \Rightarrow C=1$, so $s(t)=-\cos t-\sin t+1$.
60. $v(t)=s^{\prime}(t)=t^{2}-3 \sqrt{t}=t^{2}-3 t^{1 / 2} \Rightarrow s(t)=\frac{1}{3} t^{3}-2 t^{3 / 2}+C . \quad s(4)=\frac{64}{3}-16+C$ and $s(4)=8 \Rightarrow$ $C=8-\frac{64}{3}+16=\frac{8}{3}$, so $s(t)=\frac{1}{3} t^{3}-2 t^{3 / 2}+\frac{8}{3}$.
61. $a(t)=v^{\prime}(t)=2 t+1 \Rightarrow v(t)=t^{2}+t+C . \quad v(0)=C$ and $v(0)=-2 \quad \Rightarrow \quad C=-2$, so $v(t)=t^{2}+t-2$ and $s(t)=\frac{1}{3} t^{3}+\frac{1}{2} t^{2}-2 t+D . \quad s(0)=D$ and $s(0)=3 \quad \Rightarrow \quad D=3$, so $s(t)=\frac{1}{3} t^{3}+\frac{1}{2} t^{2}-2 t+3$.
62. $a(t)=v^{\prime}(t)=3 \cos t-2 \sin t \Rightarrow v(t)=3 \sin t+2 \cos t+C . \quad v(0)=2+C$ and $v(0)=4 \Rightarrow C=2$, so $v(t)=3 \sin t+2 \cos t+2$ and $s(t)=-3 \cos t+2 \sin t+2 t+D . \quad s(0)=-3+D$ and $s(0)=0 \quad \Rightarrow \quad D=3$, so $s(t)=-3 \cos t+2 \sin t+2 t+3$.
63. $a(t)=v^{\prime}(t)=10 \sin t+3 \cos t \Rightarrow v(t)=-10 \cos t+3 \sin t+C \Rightarrow s(t)=-10 \sin t-3 \cos t+C t+D$.
$s(0)=-3+D=0$ and $s(2 \pi)=-3+2 \pi C+D=12 \Rightarrow D=3$ and $C=\frac{6}{\pi}$. Thus,
$s(t)=-10 \sin t-3 \cos t+\frac{6}{\pi} t+3$.
64. $a(t)=t^{2}-4 t+6 \Rightarrow v(t)=\frac{1}{3} t^{3}-2 t^{2}+6 t+C \Rightarrow s(t)=\frac{1}{12} t^{4}-\frac{2}{3} t^{3}+3 t^{2}+C t+D . s(0)=D$ and $s(0)=0 \Rightarrow D=0 . s(1)=\frac{29}{12}+C$ and $s(1)=20 \Rightarrow C=\frac{211}{12}$. Thus, $s(t)=\frac{1}{12} t^{4}-\frac{2}{3} t^{3}+3 t^{2}+\frac{211}{12} t$.
65. (a) We first observe that since the stone is dropped 450 m above the ground, $v(0)=0$ and $s(0)=450$.

$$
\begin{aligned}
& v^{\prime}(t)=a(t)=-9.8 \Rightarrow v(t)=-9.8 t+C . \text { Now } v(0)=0 \Rightarrow C=0 \text {, so } v(t)=-9.8 t \Rightarrow \\
& s(t)=-4.9 t^{2}+D . \text { Last, } s(0)=450 \Rightarrow D=450 \Rightarrow s(t)=450-4.9 t^{2} .
\end{aligned}
$$

(b) The stone reaches the ground when $s(t)=0.450-4.9 t^{2}=0 \Rightarrow t^{2}=450 / 4.9 \Rightarrow t_{1}=\sqrt{450 / 4.9} \approx 9.58 \mathrm{~s}$.
(c) The velocity with which the stone strikes the ground is $v\left(t_{1}\right)=-9.8 \sqrt{450 / 4.9} \approx-93.9 \mathrm{~m} / \mathrm{s}$.
(d) This is just reworking parts (a) and (b) with $v(0)=-5$. Using $v(t)=-9.8 t+C, v(0)=-5 \Rightarrow 0+C=-5 \Rightarrow$ $v(t)=-9.8 t-5$. So $s(t)=-4.9 t^{2}-5 t+D$ and $s(0)=450 \Rightarrow D=450 \Rightarrow s(t)=-4.9 t^{2}-5 t+450$.
Solving $s(t)=0$ by using the quadratic formula gives us $t=(5 \pm \sqrt{8845}) /(-9.8) \Rightarrow t_{1} \approx 9.09 \mathrm{~s}$.
66. $v^{\prime}(t)=a(t)=a \quad \Rightarrow \quad v(t)=a t+C$ and $v_{0}=v(0)=C \quad \Rightarrow \quad v(t)=a t+v_{0} \quad \Rightarrow$ $s(t)=\frac{1}{2} a t^{2}+v_{0} t+D \quad \Rightarrow \quad s_{0}=s(0)=D \quad \Rightarrow \quad s(t)=\frac{1}{2} a t^{2}+v_{0} t+s_{0}$
67. By Exercise 66 with $a=-9.8, s(t)=-4.9 t^{2}+v_{0} t+s_{0}$ and $v(t)=s^{\prime}(t)=-9.8 t+v_{0}$. So $[v(t)]^{2}=\left(-9.8 t+v_{0}\right)^{2}=(9.8)^{2} t^{2}-19.6 v_{0} t+v_{0}^{2}=v_{0}^{2}+96.04 t^{2}-19.6 v_{0} t=v_{0}^{2}-19.6\left(-4.9 t^{2}+v_{0} t\right)$.

But $-4.9 t^{2}+v_{0} t$ is just $s(t)$ without the s_{0} term; that is, $s(t)-s_{0}$. Thus, $[v(t)]^{2}=v_{0}^{2}-19.6\left[s(t)-s_{0}\right]$.
68. For the first ball, $s_{1}(t)=-16 t^{2}+48 t+432$ from Example 7. For the second ball, $a(t)=-32 \Rightarrow v(t)=-32 t+C$, but
$v(1)=-32(1)+C=24 \Rightarrow C=56$, so $v(t)=-32 t+56 \Rightarrow s(t)=-16 t^{2}+56 t+D$, but $s(1)=-16(1)^{2}+56(1)+D=432 \Rightarrow D=392$, and $s_{2}(t)=-16 t^{2}+56 t+392$. The balls pass each other when $s_{1}(t)=s_{2}(t) \Rightarrow-16 t^{2}+48 t+432=-16 t^{2}+56 t+392 \quad \Leftrightarrow \quad 8 t=40 \quad \Leftrightarrow \quad t=5 \mathrm{~s}$.

Another solution: From Exercise 66, we have $s_{1}(t)=-16 t^{2}+48 t+432$ and $s_{2}(t)=-16 t^{2}+24 t+432$.
We now want to solve $s_{1}(t)=s_{2}(t-1) \quad \Rightarrow \quad-16 t^{2}+48 t+432=-16(t-1)^{2}+24(t-1)+432 \Rightarrow$ $48 t=32 t-16+24 t-24 \quad \Rightarrow \quad 40=8 t \quad \Rightarrow \quad t=5 \mathrm{~s}$.
69. Using Exercise 66 with $a=-32, v_{0}=0$, and $s_{0}=h$ (the height of the cliff), we know that the height at time t is
$s(t)=-16 t^{2}+h . v(t)=s^{\prime}(t)=-32 t$ and $v(t)=-120 \Rightarrow-32 t=-120 \Rightarrow t=3.75$, so $0=s(3.75)=-16(3.75)^{2}+h \quad \Rightarrow \quad h=16(3.75)^{2}=225 \mathrm{ft}$.
70. (a) $E I y^{\prime \prime}=m g(L-x)+\frac{1}{2} \rho g(L-x)^{2} \Rightarrow E I y^{\prime}=-\frac{1}{2} m g(L-x)^{2}-\frac{1}{6} \rho g(L-x)^{3}+C \Rightarrow$
$E I y=\frac{1}{6} m g(L-x)^{3}+\frac{1}{24} \rho g(L-x)^{4}+C x+D$. Since the left end of the board is fixed, we must have $y=y^{\prime}=0$ when $x=0$. Thus, $0=-\frac{1}{2} m g L^{2}-\frac{1}{6} \rho g L^{3}+C$ and $0=\frac{1}{6} m g L^{3}+\frac{1}{24} \rho g L^{4}+D$. It follows that $E I y=\frac{1}{6} m g(L-x)^{3}+\frac{1}{24} \rho g(L-x)^{4}+\left(\frac{1}{2} m g L^{2}+\frac{1}{6} \rho g L^{3}\right) x-\left(\frac{1}{6} m g L^{3}+\frac{1}{24} \rho g L^{4}\right)$ and $f(x)=y=\frac{1}{E I}\left[\frac{1}{6} m g(L-x)^{3}+\frac{1}{24} \rho g(L-x)^{4}+\left(\frac{1}{2} m g L^{2}+\frac{1}{6} \rho g L^{3}\right) x-\left(\frac{1}{6} m g L^{3}+\frac{1}{24} \rho g L^{4}\right)\right]$
(b) $f(L)<0$, so the end of the board is a distance approximately $-f(L)$ below the horizontal. From our result in (a), we calculate

$$
-f(L)=\frac{-1}{E I}\left[\frac{1}{2} m g L^{3}+\frac{1}{6} \rho g L^{4}-\frac{1}{6} m g L^{3}-\frac{1}{24} \rho g L^{4}\right]=\frac{-1}{E I}\left(\frac{1}{3} m g L^{3}+\frac{1}{8} \rho g L^{4}\right)=-\frac{g L^{3}}{E I}\left(\frac{m}{3}+\frac{\rho L}{8}\right)
$$

Note: This is positive because g is negative.
71. Marginal cost $=1.92-0.002 x=C^{\prime}(x) \Rightarrow C(x)=1.92 x-0.001 x^{2}+K$. But $C(1)=1.92-0.001+K=562 \Rightarrow$ $K=560.081$. Therefore, $C(x)=1.92 x-0.001 x^{2}+560.081 \Rightarrow C(100)=742.081$, so the cost of producing 100 items is $\$ 742.08$.
72. Let the mass, measured from one end, be $m(x)$. Then $m(0)=0$ and $\rho=\frac{d m}{d x}=x^{-1 / 2} \Rightarrow m(x)=2 x^{1 / 2}+C$ and $m(0)=C=0$, so $m(x)=2 \sqrt{x}$. Thus, the mass of the 100 -centimeter rod is $m(100)=2 \sqrt{100}=20 \mathrm{~g}$.
73. Taking the upward direction to be positive we have that for $0 \leq t \leq 10$ (using the subscript 1 to refer to $0 \leq t \leq 10$),
$a_{1}(t)=-(9-0.9 t)=v_{1}^{\prime}(t) \Rightarrow v_{1}(t)=-9 t+0.45 t^{2}+v_{0}$, but $v_{1}(0)=v_{0}=-10 \Rightarrow$ $v_{1}(t)=-9 t+0.45 t^{2}-10=s_{1}^{\prime}(t) \quad \Rightarrow \quad s_{1}(t)=-\frac{9}{2} t^{2}+0.15 t^{3}-10 t+s_{0}$. But $s_{1}(0)=500=s_{0} \quad \Rightarrow$ $s_{1}(t)=-\frac{9}{2} t^{2}+0.15 t^{3}-10 t+500 . s_{1}(10)=-450+150-100+500=100$, so it takes
more than 10 seconds for the raindrop to fall. Now for $t>10, a(t)=0=v^{\prime}(t) \Rightarrow$
$v(t)=$ constant $=v_{1}(10)=-9(10)+0.45(10)^{2}-10=-55 \quad \Rightarrow \quad v(t)=-55$.
At $55 \mathrm{~m} / \mathrm{s}$, it will take $100 / 55 \approx 1.8 \mathrm{~s}$ to fall the last 100 m . Hence, the total time is $10+\frac{100}{55}=\frac{130}{11} \approx 11.8 \mathrm{~s}$.
74. $v^{\prime}(t)=a(t)=-22$. The initial velocity is $50 \mathrm{mi} / \mathrm{h}=\frac{50 \cdot 5280}{3600}=\frac{220}{3} \mathrm{ft} / \mathrm{s}$, so $v(t)=-22 t+\frac{220}{3}$.

The car stops when $v(t)=0 \quad \Leftrightarrow \quad t=\frac{220}{3 \cdot 22}=\frac{10}{3}$. Since $s(t)=-11 t^{2}+\frac{220}{3} t$, the distance covered is $s\left(\frac{10}{3}\right)=-11\left(\frac{10}{3}\right)^{2}+\frac{220}{3} \cdot \frac{10}{3}=\frac{1100}{9}=122 . \overline{\mathrm{ft}}$.
75. $a(t)=k$, the initial velocity is $30 \mathrm{mi} / \mathrm{h}=30 \cdot \frac{5280}{3600}=44 \mathrm{ft} / \mathrm{s}$, and the final velocity (after 5 seconds) is
$50 \mathrm{mi} / \mathrm{h}=50 \cdot \frac{5280}{3600}=\frac{220}{3} \mathrm{ft} / \mathrm{s}$. So $v(t)=k t+C$ and $v(0)=44 \Rightarrow C=44$. Thus, $v(t)=k t+44 \Rightarrow$ $v(5)=5 k+44$. But $v(5)=\frac{220}{3}$, so $5 k+44=\frac{220}{3} \quad \Rightarrow \quad 5 k=\frac{88}{3} \quad \Rightarrow \quad k=\frac{88}{15} \approx 5.87 \mathrm{ft} / \mathrm{s}^{2}$.
76. $a(t)=-16 \Rightarrow v(t)=-16 t+v_{0}$ where v_{0} is the car's speed (in ft / s) when the brakes were applied. The car stops when $-16 t+v_{0}=0 \Leftrightarrow t=\frac{1}{16} v_{0}$. Now $s(t)=\frac{1}{2}(-16) t^{2}+v_{0} t=-8 t^{2}+v_{0} t$. The car travels 200 ft in the time that it takes to stop, so $s\left(\frac{1}{16} v_{0}\right)=200 \quad \Rightarrow \quad 200=-8\left(\frac{1}{16} v_{0}\right)^{2}+v_{0}\left(\frac{1}{16} v_{0}\right)=\frac{1}{32} v_{0}^{2} \quad \Rightarrow \quad v_{0}^{2}=32 \cdot 200=6400 \Rightarrow$ $v_{0}=80 \mathrm{ft} / \mathrm{s}[54 . \overline{54} \mathrm{mi} / \mathrm{h}]$.
77. Let the acceleration be $a(t)=k \mathrm{~km} / \mathrm{h}^{2}$. We have $v(0)=100 \mathrm{~km} / \mathrm{h}$ and we can take the initial position $s(0)$ to be 0 .

We want the time t_{f} for which $v(t)=0$ to satisfy $s(t)<0.08 \mathrm{~km}$. In general, $v^{\prime}(t)=a(t)=k$, so $v(t)=k t+C$, where $C=v(0)=100$. Now $s^{\prime}(t)=v(t)=k t+100$, so $s(t)=\frac{1}{2} k t^{2}+100 t+D$, where $D=s(0)=0$.

Thus, $s(t)=\frac{1}{2} k t^{2}+100 t$. Since $v\left(t_{f}\right)=0$, we have $k t_{f}+100=0$ or $t_{f}=-100 / k$, so
$s\left(t_{f}\right)=\frac{1}{2} k\left(-\frac{100}{k}\right)^{2}+100\left(-\frac{100}{k}\right)=10,000\left(\frac{1}{2 k}-\frac{1}{k}\right)=-\frac{5,000}{k}$. The condition $s\left(t_{f}\right)$ must satisfy is $-\frac{5,000}{k}<0.08 \Rightarrow-\frac{5,000}{0.08}>k \quad[k$ is negative $] \Rightarrow k<-62,500 \mathrm{~km} / \mathrm{h}^{2}$, or equivalently, $k<-\frac{3125}{648} \approx-4.82 \mathrm{~m} / \mathrm{s}^{2}$.
78. (a) For $0 \leq t \leq 3$ we have $a(t)=60 t \Rightarrow v(t)=30 t^{2}+C \Rightarrow v(0)=0=C \quad \Rightarrow \quad v(t)=30 t^{2}$, so $s(t)=10 t^{3}+C \Rightarrow s(0)=0=C \quad \Rightarrow \quad s(t)=10 t^{3}$. Note that $v(3)=270$ and $s(3)=270$.

For $3<t \leq 17: a(t)=-g=-32 \mathrm{ft} / \mathrm{s} \quad \Rightarrow \quad v(t)=-32(t-3)+C \quad \Rightarrow \quad v(3)=270=C \quad \Rightarrow$ $v(t)=-32(t-3)+270 \Rightarrow s(t)=-16(t-3)^{2}+270(t-3)+C \Rightarrow s(3)=270=C \quad \Rightarrow$ $s(t)=-16(t-3)^{2}+270(t-3)+270$. Note that $v(17)=-178$ and $s(17)=914$.

For $17<t \leq 22$: The velocity increases linearly from $-178 \mathrm{ft} / \mathrm{s}$ to $-18 \mathrm{ft} / \mathrm{s}$ during this period, so
$\frac{\Delta v}{\Delta t}=\frac{-18-(-178)}{22-17}=\frac{160}{5}=32$. Thus, $v(t)=32(t-17)-178 \Rightarrow$
$s(t)=16(t-17)^{2}-178(t-17)+914$ and $s(22)=424 \mathrm{ft}$.
For $t>22: v(t)=-18 \Rightarrow s(t)=-18(t-22)+C$. But $s(22)=424=C \quad \Rightarrow \quad s(t)=-18(t-22)+424$.
Therefore, until the rocket lands, we have

$$
v(t)= \begin{cases}30 t^{2} & \text { if } 0 \leq t \leq 3 \\ -32(t-3)+270 & \text { if } 3<t \leq 17 \\ 32(t-17)-178 & \text { if } 17<t \leq 22 \\ -18 & \text { if } t>22\end{cases}
$$

and

$$
s(t)= \begin{cases}10 t^{3} & \text { if } 0 \leq t \leq 3 \\ -16(t-3)^{2}+270(t-3)+270 & \text { if } 3<t \leq 17 \\ 16(t-17)^{2}-178(t-17)+914 & \text { if } 17<t \leq 22 \\ -18(t-22)+424 & \text { if } t>22\end{cases}
$$

(b) To find the maximum height, set $v(t)$ on $3<t \leq 17$ equal to $0 .-32(t-3)+270=0 \Rightarrow t_{1}=11.4375 \mathrm{~s}$ and the maximum height is $s\left(t_{1}\right)=-16\left(t_{1}-3\right)^{2}+270\left(t_{1}-3\right)+270=1409.0625 \mathrm{ft}$.
(c) To find the time to land, set $s(t)=-18(t-22)+424=0$. Then $t-22=\frac{424}{18}=23 . \overline{5}$, so $t \approx 45.6 \mathrm{~s}$.

INSTRUCTOR USE ONLY

79. (a) First note that $90 \mathrm{mi} / \mathrm{h}=90 \times \frac{5280}{3600} \mathrm{ft} / \mathrm{s}=132 \mathrm{ft} / \mathrm{s}$. Then $a(t)=4 \mathrm{ft} / \mathrm{s}^{2} \Rightarrow v(t)=4 t+C$, but $v(0)=0 \Rightarrow$ $C=0$. Now $4 t=132$ when $t=\frac{132}{4}=33 \mathrm{~s}$, so it takes 33 s to reach $132 \mathrm{ft} / \mathrm{s}$. Therefore, taking $s(0)=0$, we have $s(t)=2 t^{2}, 0 \leq t \leq 33$. So $s(33)=2178 \mathrm{ft} .15$ minutes $=15(60)=900 \mathrm{~s}$, so for $33<t \leq 933$ we have $v(t)=132 \mathrm{ft} / \mathrm{s} \Rightarrow s(933)=132(900)+2178=120,978 \mathrm{ft}=22.9125 \mathrm{mi}$.
(b) As in part (a), the train accelerates for 33 s and travels 2178 ft while doing so. Similarly, it decelerates for 33 s and travels 2178 ft at the end of its trip. During the remaining $900-66=834 \mathrm{~s}$ it travels at $132 \mathrm{ft} / \mathrm{s}$, so the distance traveled is $132 \cdot 834=110,088 \mathrm{ft}$. Thus, the total distance is $2178+110,088+2178=114,444 \mathrm{ft}=21.675 \mathrm{mi}$.
(c) $45 \mathrm{mi}=45(5280)=237,600 \mathrm{ft}$. Subtract $2(2178)$ to take care of the speeding up and slowing down, and we have $233,244 \mathrm{ft}$ at $132 \mathrm{ft} / \mathrm{s}$ for a trip of $233,244 / 132=1767 \mathrm{~s}$ at $90 \mathrm{mi} / \mathrm{h}$. The total time is $1767+2(33)=1833 \mathrm{~s}=30 \mathrm{~min} 33 \mathrm{~s}=30.55 \mathrm{~min}$.
(d) $37.5(60)=2250$ s. $2250-2(33)=2184 \mathrm{~s}$ at maximum speed. $2184(132)+2(2178)=292,644$ total feet or $292,644 / 5280=55.425 \mathrm{mi}$.

4 Review

TRUE-FALSE QUIZ

1. False. For example, take $f(x)=x^{3}$, then $f^{\prime}(x)=3 x^{2}$ and $f^{\prime}(0)=0$, but $f(0)=0$ is not a maximum or minimum; $(0,0)$ is an inflection point.
2. False. For example, $f(x)=|x|$ has an absolute minimum at 0 , but $f^{\prime}(0)$ does not exist.
3. False. For example, $f(x)=x$ is continuous on $(0,1)$ but attains neither a maximum nor a minimum value on $(0,1)$. Don't confuse this with f being continuous on the closed interval $[a, b]$, which would make the statement true.
4. True. By the Mean Value Theorem, $f^{\prime}(c)=\frac{f(1)-f(-1)}{1-(-1)}=\frac{0}{2}=0$. Note that $|c|<1 \quad \Leftrightarrow \quad c \in(-1,1)$.
5. True. This is an example of part (b) of the I/D Test.
6. False. For example, the curve $y=f(x)=1$ has no inflection points but $f^{\prime \prime}(c)=0$ for all c.
7. False. $\quad f^{\prime}(x)=g^{\prime}(x) \Rightarrow f(x)=g(x)+C$. For example, if $f(x)=x+2$ and $g(x)=x+1$, then $f^{\prime}(x)=g^{\prime}(x)=1$, but $f(x) \neq g(x)$.
8. False. Assume there is a function f such that $f(1)=-2$ and $f(3)=0$. Then by the Mean Value Theorem there exists a number $c \in(1,3)$ such that $f^{\prime}(c)=\frac{f(3)-f(1)}{3-1}=\frac{0-(-2)}{2}=1$. But $f^{\prime}(x)>1$ for all x, a contradiction.
9. True. The graph of one such function is sketched.

10. False.
11. True.
12. False.
13. False.

Take $f(x)=x$ and $g(x)=x-1$. Then both f and g are increasing on $(0,1)$. But $f(x) g(x)=x(x-1)$ is not increasing on $(0,1)$.
14. True.

Let $x_{1}<x_{2}$ where $x_{1}, x_{2} \in I$. Then $0<f\left(x_{1}\right)<f\left(x_{2}\right)$ and $0<g\left(x_{1}\right)<g\left(x_{2}\right)$ [since f and g are both positive and increasing]. Hence, $f\left(x_{1}\right) g\left(x_{1}\right)<f\left(x_{2}\right) g\left(x_{1}\right)<f\left(x_{2}\right) g\left(x_{2}\right)$. So $f g$ is increasing on I.
15. True. Let $x_{1}, x_{2} \in I$ and $x_{1}<x_{2}$. Then $f\left(x_{1}\right)<f\left(x_{2}\right)[f$ is increasing $] \Rightarrow \frac{1}{f\left(x_{1}\right)}>\frac{1}{f\left(x_{2}\right)}$ [f is positive $] \Rightarrow$ $g\left(x_{1}\right)>g\left(x_{2}\right) \Rightarrow g(x)=1 / f(x)$ is decreasing on I.
16. False. If f is even, then $f(x)=f(-x)$. Using the Chain Rule to differentiate this equation, we get $f^{\prime}(x)=f^{\prime}(-x) \frac{d}{d x}(-x)=-f^{\prime}(-x)$. Thus, $f^{\prime}(-x)=-f^{\prime}(x)$, so f^{\prime} is odd.
17. True. If f is periodic, then there is a number p such that $f(x+p)=f(p)$ for all x. Differentiating gives $f^{\prime}(x)=f^{\prime}(x+p) \cdot(x+p)^{\prime}=f^{\prime}(x+p) \cdot 1=f^{\prime}(x+p)$, so f^{\prime} is periodic.
18. False. \quad The most general antiderivative of $f(x)=x^{-2}$ is $F(x)=-1 / x+C_{1}$ for $x<0$ and $F(x)=-1 / x+C_{2}$ for $x>0$ [see Example 4.9.1(b)].
19. True. By the Mean Value Theorem, there exists a number c in $(0,1)$ such that $f(1)-f(0)=f^{\prime}(c)(1-0)=f^{\prime}(c)$.

Since $f^{\prime}(c)$ is nonzero, $f(1)-f(0) \neq 0$, so $f(1) \neq f(0)$.
20. False. Let $f(x)=1+\frac{1}{x}$ and $g(x)=x$. Then $\lim _{x \rightarrow \infty} f(x)=1$ and $\lim _{x \rightarrow \infty} g(x)=\infty$, but
$\lim _{x \rightarrow \infty}[f(x)]^{g(x)}=\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}=e, \operatorname{not} 1$.
21. False. $\lim _{x \rightarrow 0} \frac{x}{e^{x}}=\frac{\lim _{x \rightarrow 0} x}{\lim _{x \rightarrow 0} e^{x}}=\frac{0}{1}=0$, not 1 .

EXERCISES

1. $f(x)=x^{3}-9 x^{2}+24 x-2,[0,5] . \quad f^{\prime}(x)=3 x^{2}-18 x+24=3\left(x^{2}-6 x+8\right)=3(x-2)(x-4) . \quad f^{\prime}(x)=0 \quad \Leftrightarrow$ $x=2$ or $x=4 . \quad f^{\prime}(x)>0$ for $0<x<2, f^{\prime}(x)<0$ for $2<x<4$, and $f^{\prime}(x)>0$ for $4<x<5$, so $f(2)=18$ is a local maximum value and $f(4)=14$ is a local minimum value. Checking the endpoints, we find $f(0)=-2$ and $f(5)=18$. Thus, $f(0)=-2$ is the absolute minimum value and $f(2)=f(5)=18$ is the absolute maximum value.

INSTRUCTOR USE ONLY

2. $f(x)=x \sqrt{1-x},[-1,1] . \quad f^{\prime}(x)=x \cdot \frac{1}{2}(1-x)^{-1 / 2}(-1)+(1-x)^{1 / 2}(1)=(1-x)^{-1 / 2}\left[-\frac{1}{2} x+(1-x)\right]=\frac{1-\frac{3}{2} x}{\sqrt{1-x}}$. $f^{\prime}(x)=0 \Rightarrow x=\frac{2}{3} . \quad f^{\prime}(x)$ does not exist $\Leftrightarrow x=1 . \quad f^{\prime}(x)>0$ for $-1<x<\frac{2}{3}$ and $f^{\prime}(x)<0$ for $\frac{2}{3}<x<1$, so $f\left(\frac{2}{3}\right)=\frac{2}{3} \sqrt{\frac{1}{3}}=\frac{2}{9} \sqrt{3}[\approx 0.38]$ is a local maximum value. Checking the endpoints, we find $f(-1)=-\sqrt{2}$ and $f(1)=0$. Thus, $f(-1)=-\sqrt{2}$ is the absolute minimum value and $f\left(\frac{2}{3}\right)=\frac{2}{9} \sqrt{3}$ is the absolute maximum value.
3. $f(x)=\frac{3 x-4}{x^{2}+1},[-2,2] . \quad f^{\prime}(x)=\frac{\left(x^{2}+1\right)(3)-(3 x-4)(2 x)}{\left(x^{2}+1\right)^{2}}=\frac{-\left(3 x^{2}-8 x-3\right)}{\left(x^{2}+1\right)^{2}}=\frac{-(3 x+1)(x-3)}{\left(x^{2}+1\right)^{2}}$. $f^{\prime}(x)=0 \Rightarrow x=-\frac{1}{3}$ or $x=3$, but 3 is not in the interval. $f^{\prime}(x)>0$ for $-\frac{1}{3}<x<2$ and $f^{\prime}(x)<0$ for $-2<x<-\frac{1}{3}$, so $f\left(-\frac{1}{3}\right)=\frac{-5}{10 / 9}=-\frac{9}{2}$ is a local minimum value. Checking the endpoints, we find $f(-2)=-2$ and $f(2)=\frac{2}{5}$. Thus, $f\left(-\frac{1}{3}\right)=-\frac{9}{2}$ is the absolute minimum value and $f(2)=\frac{2}{5}$ is the absolute maximum value.
4. $f(x)=\sqrt{x^{2}+x+1},[-2,1] . \quad f^{\prime}(x)=\frac{1}{2}\left(x^{2}+x+1\right)^{-1 / 2}(2 x+1)=\frac{2 x+1}{2 \sqrt{x^{2}+x+1}} . \quad f^{\prime}(x)=0 \quad \Rightarrow \quad x=-\frac{1}{2}$. $f^{\prime}(x)>0$ for $-\frac{1}{2}<x<1$ and $f^{\prime}(x)<0$ for $-2<x<-\frac{1}{2}$, so $f\left(-\frac{1}{2}\right)=\sqrt{3} / 2$ is a local minimum value. Checking the endpoints, we find $f(-2)=f(1)=\sqrt{3}$. Thus, $f\left(-\frac{1}{2}\right)=\sqrt{3} / 2$ is the absolute minimum value and $f(-2)=f(1)=\sqrt{3}$ is the absolute maximum value.
5. $f(x)=x+2 \cos x,[-\pi, \pi] . \quad f^{\prime}(x)=1-2 \sin x . \quad f^{\prime}(x)=0 \Rightarrow \sin x=\frac{1}{2} \quad \Rightarrow \quad x=\frac{\pi}{6}, \frac{5 \pi}{6} . \quad f^{\prime}(x)>0$ for $\left(-\pi, \frac{\pi}{6}\right)$ and $\left(\frac{5 \pi}{6}, \pi\right)$, and $f^{\prime}(x)<0$ for $\left(\frac{\pi}{6}, \frac{5 \pi}{6}\right)$, so $f\left(\frac{\pi}{6}\right)=\frac{\pi}{6}+\sqrt{3} \approx 2.26$ is a local maximum value and $f\left(\frac{5 \pi}{6}\right)=\frac{5 \pi}{6}-\sqrt{3} \approx 0.89$ is a local minimum value. Checking the endpoints, we find $f(-\pi)=-\pi-2 \approx-5.14$ and $f(\pi)=\pi-2 \approx 1.14$. Thus, $f(-\pi)=-\pi-2$ is the absolute minimum value and $f\left(\frac{\pi}{6}\right)=\frac{\pi}{6}+\sqrt{3}$ is the absolute maximum value.
6. $f(x)=x^{2} e^{-x},[-1,3] . \quad f^{\prime}(x)=x^{2}\left(-e^{-x}\right)+e^{-x}(2 x)=x e^{-x}(-x+2) . \quad f^{\prime}(x)=0 \quad \Rightarrow \quad x=0$ or $x=2$. $f^{\prime}(x)>0$ for $0<x<2$ and $f^{\prime}(x)<0$ for $-1<x<0$ and $2<x<3$, so $f(0)=0$ is a local minimum value and $f(2)=4 e^{-2} \approx 0.54$ is a local maximum value. Checking the endpoints, we find $f(-1)=e \approx 2.72$ and $f(3)=9 e^{-3} \approx 0.45$. Thus, $f(0)=0$ is the absolute minimum value and $f(-1)=e$ is the absolute maximum value.
7. This limit has the form $\frac{0}{0}$. $\lim _{x \rightarrow 0} \frac{e^{x}-1}{\tan x} \stackrel{H}{=} \lim _{x \rightarrow 0} \frac{e^{x}}{\sec ^{2} x}=\frac{1}{1}=1$
8. This limit has the form $\frac{0}{0}$. $\lim _{x \rightarrow 0} \frac{\tan 4 x}{x+\sin 2 x} \stackrel{H}{=} \lim _{x \rightarrow 0} \frac{4 \sec ^{2} 4 x}{1+2 \cos 2 x}=\frac{4(1)}{1+2(1)}=\frac{4}{3}$
9. This limit has the form $\frac{0}{0}$. $\lim _{x \rightarrow 0} \frac{e^{2 x}-e^{-2 x}}{\ln (x+1)} \stackrel{H}{=} \lim _{x \rightarrow 0} \frac{2 e^{2 x}+2 e^{-2 x}}{1 /(x+1)}=\frac{2+2}{1}=4$
10. This limit has the form $\frac{\infty}{\infty}$. $\lim _{x \rightarrow \infty} \frac{e^{2 x}-e^{-2 x}}{\ln (x+1)} \stackrel{H}{=} \lim _{x \rightarrow \infty} \frac{2 e^{2 x}+2 e^{-2 x}}{1 /(x+1)}=\lim _{x \rightarrow \infty} 2(x+1)\left(e^{2 x}+e^{-2 x}\right)=\infty$ since $2(x+1) \rightarrow \infty$ and $\left(e^{2 x}+e^{-2 x}\right) \rightarrow \infty$ as $x \rightarrow \infty$.
11. This limit has the form $\infty \cdot 0$.

$$
\begin{aligned}
\lim _{x \rightarrow-\infty}\left(x^{2}-x^{3}\right) e^{2 x} & =\lim _{x \rightarrow-\infty} \frac{x^{2}-x^{3}}{e^{-2 x}}\left[\frac{\infty}{\infty} \text { form }\right] \stackrel{\mathrm{H}}{=} \lim _{x \rightarrow-\infty} \frac{2 x-3 x^{2}}{-2 e^{-2 x}} \quad\left[\frac{\infty}{\infty} \text { form }\right] \\
& \stackrel{H}{=} \lim _{x \rightarrow-\infty} \frac{2-6 x}{4 e^{-2 x}}\left[\frac{\infty}{\infty} \text { form }\right] \stackrel{\mathrm{H}}{=} \lim _{x \rightarrow-\infty} \frac{-6}{-8 e^{-2 x}}=0
\end{aligned}
$$

12. This limit has the form $0 \cdot \infty . \quad \lim _{x \rightarrow \pi^{-}}(x-\pi) \csc x=\lim _{x \rightarrow \pi^{-}} \frac{x-\pi}{\sin x}\left[\frac{0}{0}\right.$ form $] \stackrel{H}{=} \lim _{x \rightarrow \pi^{-}} \frac{1}{\cos x}=\frac{1}{-1}=-1$
13. This limit has the form $\infty-\infty$.

$$
\begin{aligned}
\lim _{x \rightarrow 1^{+}}\left(\frac{x}{x-1}-\frac{1}{\ln x}\right) & =\lim _{x \rightarrow 1^{+}}\left(\frac{x \ln x-x+1}{(x-1) \ln x}\right) \stackrel{\mathrm{H}}{=} \lim _{x \rightarrow 1^{+}} \frac{x \cdot(1 / x)+\ln x-1}{(x-1) \cdot(1 / x)+\ln x}=\lim _{x \rightarrow 1^{+}} \frac{\ln x}{1-1 / x+\ln x} \\
& \stackrel{\mathrm{H}}{=} \lim _{x \rightarrow 1^{+}} \frac{1 / x}{1 / x^{2}+1 / x}=\frac{1}{1+1}=\frac{1}{2}
\end{aligned}
$$

14. $y=(\tan x)^{\cos x} \Rightarrow \ln y=\cos x \ln \tan x$, so
$\lim _{x \rightarrow(\pi / 2)^{-}} \ln y=\lim _{x \rightarrow(\pi / 2)^{-}} \frac{\ln \tan x}{\sec x} \stackrel{H}{=} \lim _{x \rightarrow(\pi / 2)^{-}} \frac{(1 / \tan x) \sec ^{2} x}{\sec x \tan x}=\lim _{x \rightarrow(\pi / 2)^{-}} \frac{\sec x}{\tan ^{2} x}=\lim _{x \rightarrow(\pi / 2)^{-}} \frac{\cos x}{\sin ^{2} x}=\frac{0}{1^{2}}=0$,
so $\lim _{x \rightarrow(\pi / 2)^{-}}(\tan x)^{\cos x}=\lim _{x \rightarrow(\pi / 2)^{-}} e^{\ln y}=e^{0}=1$.
15. $f(0)=0, f^{\prime}(-2)=f^{\prime}(1)=f^{\prime}(9)=0, \lim _{x \rightarrow \infty} f(x)=0, \lim _{x \rightarrow 6} f(x)=-\infty$,
$f^{\prime}(x)<0$ on $(-\infty,-2),(1,6)$, and $(9, \infty), f^{\prime}(x)>0$ on $(-2,1)$ and $(6,9)$,
$f^{\prime \prime}(x)>0$ on $(-\infty, 0)$ and $(12, \infty), f^{\prime \prime}(x)<0$ on $(0,6)$ and $(6,12)$

16. For $0<x<1, f^{\prime}(x)=2 x$, so $f(x)=x^{2}+C$. Since $f(0)=0$,
$f(x)=x^{2}$ on $[0,1]$. For $1<x<3, f^{\prime}(x)=-1$, so $f(x)=-x+D$.
$1=f(1)=-1+D \Rightarrow D=2$, so $f(x)=2-x$. For $x>3, f^{\prime}(x)=1$,

so $f(x)=x+E .-1=f(3)=3+E \quad \Rightarrow \quad E=-4$, so $f(x)=x-4$.
Since f is even, its graph is symmetric about the y-axis.
17. f is odd, $f^{\prime}(x)<0$ for $0<x<2, \quad f^{\prime}(x)>0$ for $x>2$,
$f^{\prime \prime}(x)>0$ for $0<x<3, \quad f^{\prime \prime}(x)<0$ for $x>3, \lim _{x \rightarrow \infty} f(x)=-2$

18. (a) Using the Test for Monotonic Functions we know that f is increasing on $(-2,0)$ and $(4, \infty)$ because $f^{\prime}>0$ on $(-2,0)$ and $(4, \infty)$, and that f is decreasing on $(-\infty,-2)$ and $(0,4)$ because $f^{\prime}<0$ on $(-\infty,-2)$ and $(0,4)$.
(b) Using the First Derivative Test, we know that f has a local maximum at $x=0$ because f^{\prime} changes from positive to negative at $x=0$, and that f has a local minimum at $x=4$ because f^{\prime} changes from negative to positive at $x=4$.
(c)

(d)

19. $y=f(x)=2-2 x-x^{3}$
A. $D=\mathbb{R} \quad$ B. y-intercept: $f(0)=2$.
H.

The x-intercept (approximately 0.770917) can be found using Newton's
Method.
C. No symmetry
D. No asymptote
E. $f^{\prime}(x)=-2-3 x^{2}=-\left(3 x^{2}+2\right)<0$, so f is decreasing on \mathbb{R}.
F. No extreme value G. $f^{\prime \prime}(x)=-6 x<0$ on $(0, \infty)$ and $f^{\prime \prime}(x)>0$ on
 $(-\infty, 0)$, so f is CD on $(0, \infty)$ and CU on $(-\infty, 0)$. There is an IP at $(0,2)$.
20. $y=f(x)=-2 x^{3}-3 x^{2}+12 x+5 \quad$ A. $D=\mathbb{R} \quad$ B. y-intercept: $f(0)=5 ; x$-intercept: $f(x)=0 \quad \Leftrightarrow$ $x \approx-3.15,-0.39,2.04$ C. No symmetry D. No asymptote
E. $f^{\prime}(x)=-6 x^{2}-6 x+12=-6\left(x^{2}+x-2\right)=-6(x+2)(x-1)$.
$f^{\prime}(x)>0$ for $-2<x<1$, so f is increasing on $(-2,1)$ and decreasing on $(-\infty,-2)$ and $(1, \infty)$. F. Local minimum value $f(-2)=-15$, local
maximum value $f(1)=12 \quad$ G. $f^{\prime \prime}(x)=-12 x-6=-12\left(x+\frac{1}{2}\right)$.
$f^{\prime \prime}(x)>0$ for $x<-\frac{1}{2}$, so f is CU on $\left(-\infty,-\frac{1}{2}\right)$ and CD on $\left(-\frac{1}{2}, \infty\right)$. There is an IP at $\left(-\frac{1}{2},-\frac{3}{2}\right)$.
21. $y=f(x)=3 x^{4}-4 x^{3}+2$
A. $D=\mathbb{R}$
B. y-intercept: $f(0)=2$; no x-intercept
C. No symmetry
D. No asymptote
E. $f^{\prime}(x)=12 x^{3}-12 x^{2}=12 x^{2}(x-1)$. $f^{\prime}(x)>0$ for $x>1$, so f is increasing on $(1, \infty)$ and decreasing on $(-\infty, 1)$. F. $f^{\prime}(x)$ does not change sign at $x=0$, so there is no local extremum there. $f(1)=1$ is a local minimum value. G. $f^{\prime \prime}(x)=36 x^{2}-24 x=12 x(3 x-2) . f^{\prime \prime}(x)<0$ for $0<x<\frac{2}{3}$, so f is CD on $\left(0, \frac{2}{3}\right)$ and f is CU on $(-\infty, 0)$ and $\left(\frac{2}{3}, \infty\right)$. There are inflection points at $(0,2)$ and $\left(\frac{2}{3}, \frac{38}{27}\right)$.
H.

22. $y=f(x)=\frac{x}{1-x^{2}}$
A. $D=(-\infty,-1) \cup(-1,1) \cup(1, \infty)$
B. y-intercept: $f(0)=0 ; x$-intercept: 0
C. $f(-x)=-f(x)$, so f is odd and the graph is symmetric about the origin.
D. $\lim _{x \rightarrow \pm \infty} \frac{x}{1-x^{2}}=0$, so $y=0$ is a HA.
$\lim _{x \rightarrow-1^{-}} \frac{x}{1-x^{2}}=\infty$ and $\lim _{x \rightarrow-1^{+}} \frac{x}{1-x^{2}}=-\infty$, so $x=-1$ is a VA. Similarly, $\lim _{x \rightarrow 1^{-}} \frac{x}{1-x^{2}}=\infty$ and
$\lim _{x \rightarrow 1^{+}} \frac{x}{1-x^{2}}=-\infty$, so $x=1$ is a VA. \quad E. $f^{\prime}(x)=\frac{\left(1-x^{2}\right)(1)-x(-2 x)}{\left(1-x^{2}\right)^{2}}=\frac{1+x^{2}}{\left(1-x^{2}\right)^{2}}>0$ for $x \neq \pm 1$, so f is
increasing on $(-\infty,-1),(-1,1)$, and $(1, \infty)$. F. No local extrema
G. $f^{\prime \prime}(x)=\frac{\left(1-x^{2}\right)^{2}(2 x)-\left(1+x^{2}\right) 2\left(1-x^{2}\right)(-2 x)}{\left[\left(1-x^{2}\right)^{2}\right]^{2}}$

$$
=\frac{2 x\left(1-x^{2}\right)\left[\left(1-x^{2}\right)+2\left(1+x^{2}\right)\right]}{\left(1-x^{2}\right)^{4}}=\frac{2 x\left(3+x^{2}\right)}{\left(1-x^{2}\right)^{3}}
$$

$f^{\prime \prime}(x)>0$ for $x<-1$ and $0<x<1$, and $f^{\prime \prime}(x)<0$ for $-1<x<0$ and $x>1$, so f is CU on $(-\infty,-1)$ and $(0,1)$, and f is CD on $(-1,0)$ and $(1, \infty)$.
H.
 $(0,0)$ is an IP.
23. $y=f(x)=\frac{1}{x(x-3)^{2}} \quad$ A. $D=\{x \mid x \neq 0,3\}=(-\infty, 0) \cup(0,3) \cup(3, \infty) \quad$ B. No intercepts. C. No symmetry.
D. $\lim _{x \rightarrow \pm \infty} \frac{1}{x(x-3)^{2}}=0$, so $y=0$ is a HA. $\lim _{x \rightarrow 0^{+}} \frac{1}{x(x-3)^{2}}=\infty, \lim _{x \rightarrow 0^{-}} \frac{1}{x(x-3)^{2}}=-\infty, \lim _{x \rightarrow 3} \frac{1}{x(x-3)^{2}}=\infty$, so $x=0$ and $x=3$ are VA. \quad E. $f^{\prime}(x)=-\frac{(x-3)^{2}+2 x(x-3)}{x^{2}(x-3)^{4}}=\frac{3(1-x)}{x^{2}(x-3)^{3}} \quad \Rightarrow \quad f^{\prime}(x)>0 \quad \Leftrightarrow \quad 1<x<3$,
so f is increasing on $(1,3)$ and decreasing on $(-\infty, 0),(0,1)$, and $(3, \infty)$.
F. Local minimum value $f(1)=\frac{1}{4} \quad$ G. $f^{\prime \prime}(x)=\frac{6\left(2 x^{2}-4 x+3\right)}{x^{3}(x-3)^{4}}$.

Note that $2 x^{2}-4 x+3>0$ for all x since it has negative discriminant.
So $f^{\prime \prime}(x)>0 \Leftrightarrow x>0 \Rightarrow f$ is CU on $(0,3)$ and $(3, \infty)$ and CD on $(-\infty, 0)$. No IP
H.

24. $y=f(x)=\frac{1}{x^{2}}-\frac{1}{(x-2)^{2}}$
A. $D=\{x \mid x \neq 0,2\}$
B. y-intercept: none; x-intercept: $f(x)=0 \quad \Rightarrow$ $\frac{1}{x^{2}}=\frac{1}{(x-2)^{2}} \Leftrightarrow(x-2)^{2}=x^{2} \quad \Leftrightarrow \quad x^{2}-4 x+4=x^{2} \quad \Leftrightarrow \quad 4 x=4 \quad \Leftrightarrow \quad x=1 \quad$ C. No symmetry
D. $\lim _{x \rightarrow 0} f(x)=\infty$ and $\lim _{x \rightarrow 2} f(x)=-\infty$, so $x=0$ and $x=2$ are VA; $\lim _{x \rightarrow \pm \infty} f(x)=0$, so $y=0$ is a HA E. $f^{\prime}(x)=-\frac{2}{x^{3}}+\frac{2}{(x-2)^{3}}>0 \Rightarrow \frac{-(x-2)^{3}+x^{3}}{x^{3}(x-2)^{3}}>0 \Leftrightarrow \frac{-x^{3}+6 x^{2}-12 x+8+x^{3}}{x^{3}(x-2)^{3}}>0 \Leftrightarrow$ $\frac{2\left(3 x^{2}-6 x+4\right)}{x^{3}(x-2)^{3}}>0$. The numerator is positive (the discriminant of the quadratic is negative), so $f^{\prime}(x)>0$ if $x<0$ or $x>2$, and hence, f is increasing on $(-\infty, 0)$ and $(2, \infty)$ and decreasing on $(0,2)$.
F. No local extreme values G. $f^{\prime \prime}(x)=\frac{6}{x^{4}}-\frac{6}{(x-2)^{4}}>0 \Rightarrow$
$\frac{(x-2)^{4}-x^{4}}{x^{4}(x-2)^{4}}>0 \Leftrightarrow \frac{x^{4}-8 x^{3}+24 x^{2}-32 x+16-x^{4}}{x^{4}(x-2)^{4}}>0 \Leftrightarrow$
$\frac{-8\left(x^{3}-3 x^{2}+4 x-2\right)}{x^{4}(x-2)^{4}}>0 \Leftrightarrow \frac{-8(x-1)\left(x^{2}-2 x+2\right)}{x^{4}(x-2)^{4}}>0$. So $f^{\prime \prime}$ is
positive for $x<1[x \neq 0]$ and negative for $x>1[x \neq 2]$. Thus, f is CU on
H.
 $(-\infty, 0)$ and $(0,1)$ and f is CD on $(1,2)$ and $(2, \infty)$. IP at $(1,0)$

INSTRUCTOR USE ONLY

25. $y=f(x)=\frac{(x-1)^{3}}{x^{2}}=\frac{x^{3}-3 x^{2}+3 x-1}{x^{2}}=x-3+\frac{3 x-1}{x^{2}} \quad$ A. $D=\{x \mid x \neq 0\}=(-\infty, 0) \cup(0, \infty)$
B. y-intercept: none; x-intercept: $f(x)=0 \quad \Leftrightarrow \quad x=1 \quad$ C. No symmetry
D. $\lim _{x \rightarrow 0^{-}} \frac{(x-1)^{3}}{x^{2}}=-\infty$ and
$\lim _{x \rightarrow 0^{+}} f(x)=-\infty$, so $x=0$ is a VA. $f(x)-(x-3)=\frac{3 x-1}{x^{2}} \rightarrow 0$ as $x \rightarrow \pm \infty$, so $y=x-3$ is a SA.
E. $f^{\prime}(x)=\frac{x^{2} \cdot 3(x-1)^{2}-(x-1)^{3}(2 x)}{\left(x^{2}\right)^{2}}=\frac{x(x-1)^{2}[3 x-2(x-1)]}{x^{4}}=\frac{(x-1)^{2}(x+2)}{x^{3}}$. $f^{\prime}(x)<0$ for $-2<x<0$,
so f is increasing on $(-\infty,-2)$, decreasing on $(-2,0)$, and increasing on $(0, \infty)$.
F. Local maximum value $f(-2)=-\frac{27}{4}$
G. $f(x)=x-3+\frac{3}{x}-\frac{1}{x^{2}} \Rightarrow$
$f^{\prime}(x)=1-\frac{3}{x^{2}}+\frac{2}{x^{3}} \Rightarrow f^{\prime \prime}(x)=\frac{6}{x^{3}}-\frac{6}{x^{4}}=\frac{6 x-6}{x^{4}}=\frac{6(x-1)}{x^{4}}$.
$f^{\prime \prime}(x)>0$ for $x>1$, so f is CD on $(-\infty, 0)$ and $(0,1)$, and f is CU on $(1, \infty)$.
H.

There is an inflection point at $(1,0)$.
26. $y=f(x)=\sqrt{1-x}+\sqrt{1+x} \quad$ A. $1-x \geq 0$ and $1+x \geq 0 \quad \Rightarrow \quad x \leq 1$ and $x \geq-1$, so $D=[-1,1]$.
B. y-intercept: $f(0)=1+1=2$; no x-intercept because $f(x)>0$ for all x.
C. $f(-x)=f(x)$, so the curve is symmetric about the y-axis. D. No asymptote
E. $f^{\prime}(x)=\frac{1}{2}(1-x)^{-1 / 2}(-1)+\frac{1}{2}(1+x)^{-1 / 2}=\frac{-1}{2 \sqrt{1-x}}+\frac{1}{2 \sqrt{1+x}}=\frac{-\sqrt{1+x}+\sqrt{1-x}}{2 \sqrt{1-x} \sqrt{1+x}}>0 \Rightarrow$ $-\sqrt{1+x}+\sqrt{1-x}>0 \Rightarrow \sqrt{1-x}>\sqrt{1+x} \Rightarrow 1-x>1+x \Rightarrow-2 x>0 \Rightarrow x<0$, so $f^{\prime}(x)>0$ for $-1<x<0$ and $f^{\prime}(x)<0$ for $0<x<1$. Thus, f is increasing on $(-1,0)$ and decreasing on $(0,1)$. F. Local maximum value $f(0)=2$
G. $f^{\prime \prime}(x)=-\frac{1}{2}\left(-\frac{1}{2}\right)(1-x)^{-3 / 2}(-1)+\frac{1}{2}\left(-\frac{1}{2}\right)(1+x)^{-3 / 2}$

$$
=\frac{-1}{4(1-x)^{3 / 2}}+\frac{-1}{4(1+x)^{3 / 2}}<0
$$

for all x in the domain, so f is CD on $(-1,1)$. No IP
H.

27. $y=f(x)=x \sqrt{2+x}$
A. $D=[-2, \infty)$
B. y-intercept: $f(0)=0 ; x$-intercepts: -2 and 0
C. No symmetry
D. No asymptote E. $f^{\prime}(x)=\frac{x}{2 \sqrt{2+x}}+\sqrt{2+x}=\frac{1}{2 \sqrt{2+x}}[x+2(2+x)]=\frac{3 x+4}{2 \sqrt{2+x}}=0$ when $x=-\frac{4}{3}$, so f is decreasing on $\left(-2,-\frac{4}{3}\right)$ and increasing on $\left(-\frac{4}{3}, \infty\right)$. F. Local minimum value $f\left(-\frac{4}{3}\right)=-\frac{4}{3} \sqrt{\frac{2}{3}}=-\frac{4 \sqrt{6}}{9} \approx-1.09$, no local maximum
G. $f^{\prime \prime}(x)=\frac{2 \sqrt{2+x} \cdot 3-(3 x+4) \frac{1}{\sqrt{2+x}}}{4(2+x)}=\frac{6(2+x)-(3 x+4)}{4(2+x)^{3 / 2}}$

$$
=\frac{3 x+8}{4(2+x)^{3 / 2}}
$$

$f^{\prime \prime}(x)>0$ for $x>-2$, so f is CU on $(-2, \infty)$. No IP
28. $y=f(x)=x^{2 / 3}(x-3)^{2} \quad$ A. $D=\mathbb{R} \quad$ B. y-intercept: $f(0)=0 ; x$-intercepts: $f(x)=0 \quad \Leftrightarrow \quad x=0,3$
C. No symmetry D. No asymptote
E. $f^{\prime}(x)=x^{2 / 3} \cdot 2(x-3)+(x-3)^{2} \cdot \frac{2}{3} x^{-1 / 3}=\frac{2}{3} x^{-1 / 3}(x-3)[3 x+(x-3)]=\frac{2}{3} x^{-1 / 3}(x-3)(4 x-3)$.
$f^{\prime}(x)>0 \Leftrightarrow 0<x<\frac{3}{4}$ or $x>3$, so f is decreasing on $(-\infty, 0)$, increasing on $\left(0, \frac{3}{4}\right)$, decreasing on $\left(\frac{3}{4}, 3\right)$, and increasing on $(3, \infty)$. F. Local minimum value $f(0)=f(3)=0$; local maximum value
$f\left(\frac{3}{4}\right)=\left(\frac{3}{4}\right)^{2 / 3}\left(-\frac{9}{4}\right)^{2}=\frac{81}{16} \sqrt[3]{\frac{9}{16}}=\frac{81}{32} \sqrt[3]{\frac{9}{2}} \quad[\approx 4.18]$
G. $f^{\prime}(x)=\left(\frac{2}{3} x^{-1 / 3}\right)\left(4 x^{2}-15 x+9\right) \Rightarrow$

$$
\begin{aligned}
f^{\prime \prime}(x) & =\left(\frac{2}{3} x^{-1 / 3}\right)(8 x-15)+\left(4 x^{2}-15 x+9\right)\left(-\frac{2}{9} x^{-4 / 3}\right) \\
& =\frac{2}{9} x^{-4 / 3}\left[3 x(8 x-15)-\left(4 x^{2}-15 x+9\right)\right] \\
& =\frac{2}{9} x^{-4 / 3}\left(20 x^{2}-30 x-9\right)
\end{aligned}
$$

$f^{\prime \prime}(x)=0 \quad \Leftrightarrow \quad x \approx-0.26$ or 1.76. $\quad f^{\prime \prime}(x)$ does not exist at $x=0$.
f is CU on $(-\infty,-0.26), \mathrm{CD}$ on $(-0.26,0), \mathrm{CD}$ on $(0,1.76)$, and CU on
H.

$(1.76, \infty)$. There are inflection points at $(-0.26,4.28)$ and $(1.76,2.25)$.
29. $y=f(x)=e^{x} \sin x,-\pi \leq x \leq \pi$
A. $D=[-\pi, \pi] \quad$ B. y-intercept: $f(0)=0 ; f(x)=0 \quad \Leftrightarrow \quad \sin x=0 \quad \Rightarrow$
$x=-\pi, 0, \pi$. C. No symmetry D. No asymptote E. $f^{\prime}(x)=e^{x} \cos x+\sin x \cdot e^{x}=e^{x}(\cos x+\sin x)$.
$f^{\prime}(x)=0 \Leftrightarrow-\cos x=\sin x \quad \Leftrightarrow \quad-1=\tan x \quad \Rightarrow \quad x=-\frac{\pi}{4}, \frac{3 \pi}{4} . \quad f^{\prime}(x)>0$ for $-\frac{\pi}{4}<x<\frac{3 \pi}{4}$ and $f^{\prime}(x)<0$ for $-\pi<x<-\frac{\pi}{4}$ and $\frac{3 \pi}{4}<x<\pi$, so f is increasing on $\left(-\frac{\pi}{4}, \frac{3 \pi}{4}\right)$ and f is decreasing on $\left(-\pi,-\frac{\pi}{4}\right)$ and $\left(\frac{3 \pi}{4}, \pi\right)$.
F. Local minimum value $f\left(-\frac{\pi}{4}\right)=(-\sqrt{2} / 2) e^{-\pi / 4} \approx-0.32$ and local maximum value $f\left(\frac{3 \pi}{4}\right)=(\sqrt{2} / 2) e^{3 \pi / 4} \approx 7.46$
G. $f^{\prime \prime}(x)=e^{x}(-\sin x+\cos x)+(\cos x+\sin x) e^{x}=e^{x}(2 \cos x)>0 \Rightarrow$ $-\frac{\pi}{2}<x<\frac{\pi}{2}$ and $f^{\prime \prime}(x)<0 \Rightarrow-\pi<x<-\frac{\pi}{2}$ and $\frac{\pi}{2}<x<\pi$, so f is CU on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, and f is CD on $\left(-\pi,-\frac{\pi}{2}\right)$ and $\left(\frac{\pi}{2}, \pi\right)$. There are inflection points at $\left(-\frac{\pi}{2},-e^{-\pi / 2}\right)$ and $\left(\frac{\pi}{2}, e^{\pi / 2}\right)$.
H.

30. $y=f(x)=4 x-\tan x,-\frac{\pi}{2}<x<\frac{\pi}{2}$
A. $D=\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.
B. y-intercept $=f(0)=0$
C. $f(-x)=-f(x)$, so the curve is symmetric about $(0,0)$. D. $\lim _{x \rightarrow \pi / 2^{-}}(4 x-\tan x)=-\infty, \lim _{x \rightarrow-\pi / 2^{+}}(4 x-\tan x)=\infty$, so $x=\frac{\pi}{2}$ and $x=-\frac{\pi}{2}$ are VA. E. $f^{\prime}(x)=4-\sec ^{2} x>0 \Leftrightarrow \sec x<2 \Leftrightarrow \cos x>\frac{1}{2} \Leftrightarrow-\frac{\pi}{3}<x<\frac{\pi}{3}$, so f is increasing on $\left(-\frac{\pi}{3}, \frac{\pi}{3}\right)$ and decreasing on $\left(-\frac{\pi}{2},-\frac{\pi}{3}\right)$ and $\left(\frac{\pi}{3}, \frac{\pi}{2}\right)$. F. $f\left(\frac{\pi}{3}\right)=\frac{4 \pi}{3}-\sqrt{3}$ is a local maximum value, $f\left(-\frac{\pi}{3}\right)=\sqrt{3}-\frac{4 \pi}{3}$ is a local minimum value.
G. $f^{\prime \prime}(x)=-2 \sec ^{2} x \tan x>0 \Leftrightarrow \tan x<0 \Leftrightarrow-\frac{\pi}{2}<x<0$,
so f is CU on $\left(-\frac{\pi}{2}, 0\right)$ and CD on $\left(0, \frac{\pi}{2}\right)$. IP at $(0,0)$
H.

31. $y=f(x)=\sin ^{-1}(1 / x)$
A. $D=\{x \mid-1 \leq 1 / x \leq 1\}=(-\infty,-1] \cup[1, \infty)$.
B. No intercept
C. $f(-x)=-f(x)$, symmetric about the origin
D. $\lim _{x \rightarrow \pm \infty} \sin ^{-1}(1 / x)=\sin ^{-1}$
$(0)=0$, so $y=0$ is a HA.
E. $f^{\prime}(x)=\frac{1}{\sqrt{1-(1 / x)^{2}}}\left(-\frac{1}{x^{2}}\right)=\frac{-1}{\sqrt{x^{4}-x^{2}}}<0$, so f is decreasing on $(-\infty,-1)$ and $(1, \infty)$.
F. No local extreme value, but $f(1)=\frac{\pi}{2}$ is the absolute maximum value and $f(-1)=-\frac{\pi}{2}$ is the absolute minimum value.
G. $f^{\prime \prime}(x)=\frac{4 x^{3}-2 x}{2\left(x^{4}-x^{2}\right)^{3 / 2}}=\frac{x\left(2 x^{2}-1\right)}{\left(x^{4}-x^{2}\right)^{3 / 2}}>0$ for $x>1$ and $f^{\prime \prime}(x)<0$
H.

for $x<-1$, so f is CU on $(1, \infty)$ and CD on $(-\infty,-1)$. No IP
32. $y=f(x)=e^{2 x-x^{2}}$
A. $D=\mathbb{R}$
B. y-intercept 1 ; no x-intercept
C. No symmetry
D. $\lim _{x \rightarrow \pm \infty} e^{2 x-x^{2}}=0$, so $y=0$ is a HA. E. $y=f(x)=e^{2 x-x^{2}} \quad \Rightarrow \quad f^{\prime}(x)=2(1-x) e^{2 x-x^{2}}>0 \quad \Leftrightarrow \quad x<1$, so f is increasing on $(-\infty, 1)$ and decreasing on $(1, \infty)$. F. $f(1)=e$ is a local and absolute maximum value.
G. $f^{\prime \prime}(x)=2\left(2 x^{2}-4 x+1\right) e^{2 x-x^{2}}=0 \quad \Leftrightarrow \quad x=1 \pm \frac{\sqrt{2}}{2}$.
$f^{\prime \prime}(x)>0 \quad \Leftrightarrow \quad x<1-\frac{\sqrt{2}}{2}$ or $x>1+\frac{\sqrt{2}}{2}$, so f is CU on $\left(-\infty, 1-\frac{\sqrt{2}}{2}\right)$ and $\left(1+\frac{\sqrt{2}}{2}, \infty\right)$, and CD on $\left(1-\frac{\sqrt{2}}{2}, 1+\frac{\sqrt{2}}{2}\right)$. IP at $\left(1 \pm \frac{\sqrt{2}}{2}, \sqrt{e}\right)$
H.

33. $y=f(x)=(x-2) e^{-x}$
A. $D=\mathbb{R}$
B. y-intercept: $f(0)=-2 ; x$-intercept: $f(x)=0 \quad \Leftrightarrow \quad x=2$
C. No symmetry D. $\lim _{x \rightarrow \infty} \frac{x-2}{e^{x}} \stackrel{H}{=} \lim _{x \rightarrow \infty} \frac{1}{e^{x}}=0$, so $y=0$ is a HA. No VA
E. $f^{\prime}(x)=(x-2)\left(-e^{-x}\right)+e^{-x}(1)=e^{-x}[-(x-2)+1]=(3-x) e^{-x}$. $f^{\prime}(x)>0$ for $x<3$, so f is increasing on $(-\infty, 3)$ and decreasing on $(3, \infty)$.
F. Local maximum value $f(3)=e^{-3}$, no local minimum value
G. $f^{\prime \prime}(x)=(3-x)\left(-e^{-x}\right)+e^{-x}(-1)=e^{-x}[-(3-x)+(-1)]$

$$
=(x-4) e^{-x}>0
$$

for $x>4$, so f is CU on $(4, \infty)$ and CD on $(-\infty, 4)$. IP at $\left(4,2 e^{-4}\right)$
H.

34. $y=f(x)=x+\ln \left(x^{2}+1\right)$
A. $D=\mathbb{R}$
B. y-intercept: $f(0)=0+\ln 1=0 ; x$-intercept: $f(x)=0 \Leftrightarrow$ $\ln \left(x^{2}+1\right)=-x \Leftrightarrow x^{2}+1=e^{-x} \Rightarrow x=0$ since the graphs of $y=x^{2}+1$ and $y=e^{-x}$ intersect only at $x=0$.
C. No symmetry D. No asymptote E. $f^{\prime}(x)=1+\frac{2 x}{x^{2}+1}=\frac{x^{2}+2 x+1}{x^{2}+1}=\frac{(x+1)^{2}}{x^{2}+1}$. $f^{\prime}(x)>0$ if $x \neq-1$ and f is increasing on \mathbb{R}. F. No local extreme values
G. $f^{\prime \prime}(x)=\frac{\left(x^{2}+1\right) 2-2 x(2 x)}{\left(x^{2}+1\right)^{2}}=\frac{2\left[\left(x^{2}+1\right)-2 x^{2}\right]}{\left(x^{2}+1\right)^{2}}=\frac{2\left(1-x^{2}\right)}{\left(x^{2}+1\right)^{2}}$.
$f^{\prime \prime}(x)>0 \quad \Leftrightarrow \quad-1<x<1$ and $f^{\prime \prime}(x)<0 \quad \Leftrightarrow \quad x<-1$ or $x>1$, so f is CU on $(-1,1)$ and f is CD on $(-\infty,-1)$ and $(1, \infty)$. IP at $(-1,-1+\ln 2)$ and $(1,1+\ln 2)$
H.

35. $f(x)=\frac{x^{2}-1}{x^{3}} \Rightarrow f^{\prime}(x)=\frac{x^{3}(2 x)-\left(x^{2}-1\right) 3 x^{2}}{x^{6}}=\frac{3-x^{2}}{x^{4}} \Rightarrow$ $f^{\prime \prime}(x)=\frac{x^{4}(-2 x)-\left(3-x^{2}\right) 4 x^{3}}{x^{8}}=\frac{2 x^{2}-12}{x^{5}}$

Estimates: From the graphs of f^{\prime} and $f^{\prime \prime}$, it appears that f is increasing on $(-1.73,0)$ and $(0,1.73)$ and decreasing on $(-\infty,-1.73)$ and $(1.73, \infty)$;

f has a local maximum of about $f(1.73)=0.38$ and a local minimum of about $f(-1.7)=-0.38 ; f$ is CU on $(-2.45,0)$ and $(2.45, \infty)$, and CD on $(-\infty,-2.45)$ and $(0,2.45)$; and f has inflection points at about $(-2.45,-0.34)$ and $(2.45,0.34)$.
Exact: Now $f^{\prime}(x)=\frac{3-x^{2}}{x^{4}}$ is positive for $0<x^{2}<3$, that is, f is increasing on $(-\sqrt{3}, 0)$ and $(0, \sqrt{3})$; and $f^{\prime}(x)$ is negative (and so f is decreasing) on $(-\infty,-\sqrt{3})$ and $(\sqrt{3}, \infty) \cdot f^{\prime}(x)=0$ when $x= \pm \sqrt{3}$.
f^{\prime} goes from positive to negative at $x=\sqrt{3}$, so f has a local maximum of $f(\sqrt{3})=\frac{(\sqrt{3})^{2}-1}{(\sqrt{3})^{3}}=\frac{2 \sqrt{3}}{9}$; and since f is odd, we know that maxima on the interval $(0, \infty)$ correspond to minima on $(-\infty, 0)$, so f has a local minimum of $f(-\sqrt{3})=-\frac{2 \sqrt{3}}{9}$. Also, $f^{\prime \prime}(x)=\frac{2 x^{2}-12}{x^{5}}$ is positive (so f is CU) on $(-\sqrt{6}, 0)$ and $(\sqrt{6}, \infty)$, and negative (so f is CD) on $(-\infty,-\sqrt{6})$ and
 $(0, \sqrt{6})$. There are IP at $\left(\sqrt{6}, \frac{5 \sqrt{6}}{36}\right)$ and $\left(-\sqrt{6},-\frac{5 \sqrt{6}}{36}\right)$.
36. $f(x)=\frac{x^{3}+1}{x^{6}+1} \Rightarrow f^{\prime}(x)=-\frac{3 x^{2}\left(x^{6}+2 x^{3}-1\right)}{\left(x^{6}+1\right)^{2}} \Rightarrow f^{\prime \prime}(x)=\frac{6 x\left(2 x^{12}+7 x^{9}-9 x^{6}-5 x^{3}+1\right)}{\left(x^{6}+1\right)^{3}}$.
$f(x)=0 \Leftrightarrow x=-1 . f^{\prime}(x)=0 \quad \Leftrightarrow \quad x=0$ or $x \approx-1.34,0.75 . f^{\prime \prime}(x)=0 \quad \Leftrightarrow \quad x=0$ or $x \approx-1.64,-0.82,0.54$,
1.09. From the graphs of f and f^{\prime}, it appears that f is decreasing on $(-\infty,-1.34)$, increasing on $(-1.34,0.75)$, and decreasing on $(0.75, \infty) . f$ has a local minimum value of $f(-1.34) \approx-0.21$ and a local maximum value of $f(0.75) \approx 1.21$. From the graphs of f and $f^{\prime \prime}$, it appears that f is CD on $(-\infty,-1.64), \mathrm{CU}$ on $(-1.64,-0.82), \mathrm{CD}$ on $(-0.82,0), \mathrm{CU}$ on $(0,0.54), \mathrm{CD}$ on $(0.54,1.09)$ and CU on $(1.09, \infty)$. There are inflection points at about $(-1.64,-0.17),(-0.82,0.34)$, $(0.54,1.13),(1.09,0.86)$, and at $(0,1)$.

| INSTRUTCT"ORUSE ONL

37. $f(x)=3 x^{6}-5 x^{5}+x^{4}-5 x^{3}-2 x^{2}+2 \quad \Rightarrow \quad f^{\prime}(x)=18 x^{5}-25 x^{4}+4 x^{3}-15 x^{2}-4 x \Rightarrow$ $f^{\prime \prime}(x)=90 x^{4}-100 x^{3}+12 x^{2}-30 x-4$

From the graphs of f^{\prime} and $f^{\prime \prime}$, it appears that f is increasing on $(-0.23,0)$ and $(1.62, \infty)$ and decreasing on $(-\infty,-0.23)$ and $(0,1.62) ; f$ has a local maximum of $f(0)=2$ and local minima of about $f(-0.23)=1.96$ and $f(1.62)=-19.2$; f is CU on $(-\infty,-0.12)$ and $(1.24, \infty)$ and CD on $(-0.12,1.24)$; and f has inflection points at about $(-0.12,1.98)$ and (1.24, -12.1).

38. $f(x)=x^{2}+6.5 \sin x,-5 \leq x \leq 5 \quad \Rightarrow \quad f^{\prime}(x)=2 x+6.5 \cos x \quad \Rightarrow \quad f^{\prime \prime}(x)=2-6.5 \sin x . \quad f(x)=0 \quad \Leftrightarrow$ $x \approx-2.25$ and $x=0 ; \quad f^{\prime}(x)=0 \quad \Leftrightarrow \quad x \approx-1.19,2.40,3.24 ; \quad f^{\prime \prime}(x)=0 \quad \Leftrightarrow \quad x \approx-3.45,0.31,2.83$.

From the graphs of f^{\prime} and $f^{\prime \prime}$, it appears that f is decreasing on $(-5,-1.19)$ and $(2.40,3.24)$ and increasing on $(-1.19,2.40)$ and $(3.24,5) ; f$ has a local maximum of about $f(2.40)=10.15$ and local minima of about $f(-1.19)=-4.62$ and $f(3.24)=9.86 ; f$ is CU on $(-3.45,0.31)$ and $(2.83,5)$ and CD on $(-5,-3.45)$ and $(0.31,2.83)$; and f has inflection points at about $(-3.45,13.93),(0.31,2.10)$, and $(2.83,10.00)$.

39.

From the graph, we estimate the points of inflection to be about $(\pm 0.82,0.22)$.
$f(x)=e^{-1 / x^{2}} \quad \Rightarrow \quad f^{\prime}(x)=2 x^{-3} e^{-1 / x^{2}} \quad \Rightarrow$
$f^{\prime \prime}(x)=2\left[x^{-3}\left(2 x^{-3}\right) e^{-1 / x^{2}}+e^{-1 / x^{2}}\left(-3 x^{-4}\right)\right]=2 x^{-6} e^{-1 / x^{2}}\left(2-3 x^{2}\right)$.
This is 0 when $2-3 x^{2}=0 \quad \Leftrightarrow \quad x= \pm \sqrt{\frac{2}{3}}$, so the inflection points $\operatorname{are}\left(\pm \sqrt{\frac{2}{3}}, e^{-3 / 2}\right)$.
40. (a)

(b) $f(x)=\frac{1}{1+e^{1 / x}}$.

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} f(x)=\frac{1}{1+1}=\frac{1}{2}, \lim _{x \rightarrow-\infty} f(x)=\frac{1}{1+1}=\frac{1}{2}, \\
& \text { as } x \rightarrow 0^{+}, 1 / x \rightarrow \infty, \text { so } e^{1 / x} \rightarrow \infty \Rightarrow \lim _{x \rightarrow 0^{+}} f(x)=0, \\
& \text { as } x \rightarrow 0^{-}, 1 / x \rightarrow-\infty, \text { so } e^{1 / x} \rightarrow 0 \Rightarrow \lim _{x \rightarrow 0^{-}} f(x)=\frac{1}{1+0}=1
\end{aligned}
$$

(c) From the graph of f, estimates for the IP are $(-0.4,0.9)$ and $(0.4,0.08)$.
(d) $f^{\prime \prime}(x)=-\frac{e^{1 / x}\left[e^{1 / x}(2 x-1)+2 x+1\right]}{x^{4}\left(e^{1 / x}+1\right)^{3}}$
(e) From the graph, we see that $f^{\prime \prime}$ changes sign at $x= \pm 0.417$
($x=0$ is not in the domain of f). IP are approximately $(0.417,0.083)$

and ($-0.417,0.917$).
41. $f(x)=\frac{\cos ^{2} x}{\sqrt{x^{2}+x+1}},-\pi \leq x \leq \pi \quad \Rightarrow \quad f^{\prime}(x)=-\frac{\cos x\left[(2 x+1) \cos x+4\left(x^{2}+x+1\right) \sin x\right]}{2\left(x^{2}+x+1\right)^{3 / 2}} \Rightarrow$
$f^{\prime \prime}(x)=-\frac{\left(8 x^{4}+16 x^{3}+16 x^{2}+8 x+9\right) \cos ^{2} x-8\left(x^{2}+x+1\right)(2 x+1) \sin x \cos x-8\left(x^{2}+x+1\right)^{2} \sin ^{2} x}{4\left(x^{2}+x+1\right)^{5 / 2}}$
$f(x)=0 \quad \Leftrightarrow \quad x= \pm \frac{\pi}{2} ; \quad f^{\prime}(x)=0 \quad \Leftrightarrow \quad x \approx-2.96,-1.57,-0.18,1.57,3.01 ;$
$f^{\prime \prime}(x)=0 \quad \Leftrightarrow \quad x \approx-2.16,-0.75,0.46$, and 2.21.

The x-coordinates of the maximum points are the values at which f^{\prime} changes from positive to negative, that is, -2.96 ,
-0.18 , and 3.01. The x-coordinates of the minimum points are the values at which f^{\prime} changes from negative to positive, that is, -1.57 and 1.57. The x-coordinates of the inflection points are the values at which $f^{\prime \prime}$ changes sign, that is, $-2.16,-0.75$, 0.46 , and 2.21 .
42. $f(x)=e^{-0.1 x} \ln \left(x^{2}-1\right) \Rightarrow f^{\prime}(x)=\frac{e^{-0.1 x}\left[\left(x^{2}-1\right) \ln \left(x^{2}-1\right)-20 x\right]}{10\left(1-x^{2}\right)} \Rightarrow$
$f^{\prime \prime}(x)=\frac{e^{-0.1 x}\left[\left(x^{2}-1\right)^{2} \ln \left(x^{2}-1\right)-40\left(x^{3}+5 x^{2}-x+5\right)\right]}{100\left(x^{2}-1\right)^{2}}$.
The domain of f is $(-\infty,-1) \cup(1, \infty) . f(x)=0 \quad \Leftrightarrow \quad x= \pm \sqrt{2} ; \quad f^{\prime}(x)=0 \quad \Leftrightarrow \quad x \approx 5.87$;
$f^{\prime \prime}(x)=0 \quad \Leftrightarrow \quad x \approx-4.31$ and 11.74.

f^{\prime} changes from positive to negative at $x \approx 5.87$, so 5.87 is the x-coordinate of the maximum point. There is no minimum point. The x-coordinates of the inflection points are the values at which $f^{\prime \prime}$ changes sign, that is, -4.31 and 11.74.
43. The family of functions $f(x)=\ln (\sin x+C)$ all have the same period and all have maximum values at $x=\frac{\pi}{2}+2 \pi n$. Since the domain of \ln is $(0, \infty), f$ has a graph only if $\sin x+C>0$ somewhere. Since $-1 \leq \sin x \leq 1$, this happens if $C>-1$, that is, f has no graph if $C \leq-1$. Similarly, if $C>1$, then $\sin x+C>0$ and f is continuous on $(-\infty, \infty)$. As C increases, the graph of

f is shifted vertically upward and flattens out. If $-1<C \leq 1, f$ is defined where $\sin x+C>0 \Leftrightarrow$ $\sin x>-C \Leftrightarrow \sin ^{-1}(-C)<x<\pi-\sin ^{-1}(-C)$. Since the period is 2π, the domain of f is $\left(2 n \pi+\sin ^{-1}(-C),(2 n+1) \pi-\sin ^{-1}(-C)\right), n$ an integer.
44. We exclude the case $c=0$, since in that case $f(x)=0$ for all x. To find the maxima and minima, we differentiate:

$$
f(x)=c x e^{-c x^{2}} \Rightarrow f^{\prime}(x)=c\left[x e^{-c x^{2}}(-2 c x)+e^{-c x^{2}}(1)\right]=c e^{-c x^{2}}\left(-2 c x^{2}+1\right)
$$

This is 0 where $-2 c x^{2}+1=0 \Leftrightarrow x= \pm 1 / \sqrt{2 c}$. So if $c>0$, there are two maxima or minima, whose x-coordinates approach 0 as c increases. The negative root gives a minimum and the positive root gives a maximum, by the First Derivative Test. By substituting back into the equation, we see that $f(\pm 1 / \sqrt{2 c})=c(\pm 1 / \sqrt{2 c}) e^{-c(\pm 1 / \sqrt{2 c})^{2}}= \pm \sqrt{c / 2 e}$. So as c increases, the extreme points become more pronounced. Note that if $c>0$, then $\lim _{x \rightarrow \pm \infty} f(x)=0$. If $c<0$, then there are no extreme values, and $\lim _{x \rightarrow \pm \infty} f(x)=\mp \infty$.

To find the points of inflection, we differentiate again: $f^{\prime}(x)=c e^{-c x^{2}}\left(-2 c x^{2}+1\right) \quad \Rightarrow$ $f^{\prime \prime}(x)=c\left[e^{-c x^{2}}(-4 c x)+\left(-2 c x^{2}+1\right)\left(-2 c x e^{-c x^{2}}\right)\right]=-2 c^{2} x e^{-c x^{2}}\left(3-2 c x^{2}\right)$. This is 0 at $x=0$ and where $3-2 c x^{2}=0 \Leftrightarrow x= \pm \sqrt{3 /(2 c)} \Rightarrow$ IP at $\left(\pm \sqrt{3 /(2 c)}, \pm \sqrt{3 c / 2} e^{-3 / 2}\right)$. If $c>0$ there are three inflection points, and as c increases, the x-coordinates of the nonzero inflection points approach 0 . If $c<0$, there is only one inflection point, the origin.

45. Let $f(x)=3 x+2 \cos x+5$. Then $f(0)=7>0$ and $f(-\pi)=-3 \pi-2+5=-3 \pi+3=-3(\pi-1)<0$, and since f is continuous on \mathbb{R} (hence on $[-\pi, 0]$), the Intermediate Value Theorem assures us that there is at least one zero of f in $[-\pi, 0]$. Now $f^{\prime}(x)=3-2 \sin x>0$ implies that f is increasing on \mathbb{R}, so there is exactly one zero of f, and hence, exactly one real root of the equation $3 x+2 \cos x+5=0$.
46. By the Mean Value Theorem, $f^{\prime}(c)=\frac{f(4)-f(0)}{4-0} \Leftrightarrow \quad 4 f^{\prime}(c)=f(4)-1$ for some c with $0<c<4$. Since $2 \leq f^{\prime}(c) \leq 5$, we have $4(2) \leq 4 f^{\prime}(c) \leq 4(5) \quad \Leftrightarrow \quad 4(2) \leq f(4)-1 \leq 4(5) \quad \Leftrightarrow \quad 8 \leq f(4)-1 \leq 20 \Leftrightarrow$ $9 \leq f(4) \leq 21$.
47. Since f is continuous on $[32,33]$ and differentiable on $(32,33)$, then by the Mean Value Theorem there exists a number c in $(32,33)$ such that $f^{\prime}(c)=\frac{1}{5} c^{-4 / 5}=\frac{\sqrt[5]{33}-\sqrt[5]{32}}{33-32}=\sqrt[5]{33}-2$, but $\frac{1}{5} c^{-4 / 5}>0 \Rightarrow \sqrt[5]{33}-2>0 \Rightarrow \sqrt[5]{33}>2$. Also f^{\prime} is decreasing, so that $f^{\prime}(c)<f^{\prime}(32)=\frac{1}{5}(32)^{-4 / 5}=0.0125 \Rightarrow 0.0125>f^{\prime}(c)=\sqrt[5]{33}-2 \Rightarrow \sqrt[5]{33}<2.0125$. Therefore, $2<\sqrt[5]{33}<2.0125$.
48. Since the point $(1,3)$ is on the curve $y=a x^{3}+b x^{2}$, we have $3=a(1)^{3}+b(1)^{2} \Rightarrow 3=a+b$ (1). $y^{\prime}=3 a x^{2}+2 b x \Rightarrow y^{\prime \prime}=6 a x+2 b . \quad y^{\prime \prime}=0$ [for inflection points] $\Leftrightarrow x=\frac{-2 b}{6 a}=-\frac{b}{3 a}$. Since we want $x=1$, $1=-\frac{b}{3 a} \Rightarrow b=-3 a$. Combining with (1) gives us $3=a-3 a \Leftrightarrow 3=-2 a \quad \Leftrightarrow \quad a=-\frac{3}{2}$. Hence, $b=-3\left(-\frac{3}{2}\right)=\frac{9}{2}$ and the curve is $y=-\frac{3}{2} x^{3}+\frac{9}{2} x^{2}$.
49. (a) $g(x)=f\left(x^{2}\right) \Rightarrow g^{\prime}(x)=2 x f^{\prime}\left(x^{2}\right)$ by the Chain Rule. Since $f^{\prime}(x)>0$ for all $x \neq 0$, we must have $f^{\prime}\left(x^{2}\right)>0$ for $x \neq 0$, so $g^{\prime}(x)=0 \Leftrightarrow x=0$. Now $g^{\prime}(x)$ changes sign (from negative to positive) at $x=0$, since one of its factors, $f^{\prime}\left(x^{2}\right)$, is positive for all x, and its other factor, $2 x$, changes from negative to positive at this point, so by the First Derivative Test, f has a local and absolute minimum at $x=0$.
(b) $g^{\prime}(x)=2 x f^{\prime}\left(x^{2}\right) \Rightarrow g^{\prime \prime}(x)=2\left[x f^{\prime \prime}\left(x^{2}\right)(2 x)+f^{\prime}\left(x^{2}\right)\right]=4 x^{2} f^{\prime \prime}\left(x^{2}\right)+2 f^{\prime}\left(x^{2}\right)$ by the Product Rule and the Chain Rule. But $x^{2}>0$ for all $x \neq 0, f^{\prime \prime}\left(x^{2}\right)>0$ [since f is CU for $x>0$], and $f^{\prime}\left(x^{2}\right)>0$ for all $x \neq 0$, so since all of its factors are positive, $g^{\prime \prime}(x)>0$ for $x \neq 0$. Whether $g^{\prime \prime}(0)$ is positive or 0 doesn't matter [since the sign of $g^{\prime \prime}$ does not change there]; g is concave upward on \mathbb{R}.
50. Call the two integers x and y. Then $x+4 y=1000$, so $x=1000-4 y$. Their product is $P=x y=(1000-4 y) y$, so our problem is to maximize the function $P(y)=1000 y-4 y^{2}$, where $0<y<250$ and y is an integer. $P^{\prime}(y)=1000-8 y$, so $P^{\prime}(y)=0 \Leftrightarrow y=125 . \quad P^{\prime \prime}(y)=-8<0$, so $P(125)=62,500$ is an absolute maximum. Since the optimal y turned out to be an integer, we have found the desired pair of numbers, namely $x=1000-4(125)=500$ and $y=125$.
51. If $B=0$, the line is vertical and the distance from $x=-\frac{C}{A}$ to $\left(x_{1}, y_{1}\right)$ is $\left|x_{1}+\frac{C}{A}\right|=\frac{\left|A x_{1}+B y_{1}+C\right|}{\sqrt{A^{2}+B^{2}}}$, so assume $B \neq 0$. The square of the distance from $\left(x_{1}, y_{1}\right)$ to the line is $f(x)=\left(x-x_{1}\right)^{2}+\left(y-y_{1}\right)^{2}$ where $A x+B y+C=0$, so
we minimize $f(x)=\left(x-x_{1}\right)^{2}+\left(-\frac{A}{B} x-\frac{C}{B}-y_{1}\right)^{2} \Rightarrow f^{\prime}(x)=2\left(x-x_{1}\right)+2\left(-\frac{A}{B} x-\frac{C}{B}-y_{1}\right)\left(-\frac{A}{B}\right)$. $f^{\prime}(x)=0 \Rightarrow x=\frac{B^{2} x_{1}-A B y_{1}-A C}{A^{2}+B^{2}}$ and this gives a minimum since $f^{\prime \prime}(x)=2\left(1+\frac{A^{2}}{B^{2}}\right)>0$. Substituting this value of x into $f(x)$ and simplifying gives $f(x)=\frac{\left(A x_{1}+B y_{1}+C\right)^{2}}{A^{2}+B^{2}}$, so the minimum distance is $\sqrt{f(x)}=\frac{\left|A x_{1}+B y_{1}+C\right|}{\sqrt{A^{2}+B^{2}}}$.
52. On the hyperbola $x y=8$, if $d(x)$ is the distance from the point $(x, y)=(x, 8 / x)$ to the point $(3,0)$, then $[d(x)]^{2}=(x-3)^{2}+64 / x^{2}=f(x) . f^{\prime}(x)=2(x-3)-128 / x^{3}=0 \quad \Rightarrow \quad x^{4}-3 x^{3}-64=0 \quad \Rightarrow$ $(x-4)\left(x^{3}+x^{2}+4 x+16\right)=0 \Rightarrow x=4$ since the solution must have $x>0$. Then $y=\frac{8}{4}=2$, so the point is $(4,2)$.
53.

By similar triangles, $\frac{y}{x}=\frac{r}{\sqrt{x^{2}-2 r x}}$, so the area of the triangle is

$$
\begin{aligned}
& A(x)=\frac{1}{2}(2 y) x=x y=\frac{r x^{2}}{\sqrt{x^{2}-2 r x}} \Rightarrow \\
& A^{\prime}(x)=\frac{2 r x \sqrt{x^{2}-2 r x}-r x^{2}(x-r) / \sqrt{x^{2}-2 r x}}{x^{2}-2 r x}=\frac{r x^{2}(x-3 r)}{\left(x^{2}-2 r x\right)^{3 / 2}}=0
\end{aligned}
$$

when $x=3 r$.
$A^{\prime}(x)<0$ when $2 r<x<3 r, A^{\prime}(x)>0$ when $x>3 r$. So $x=3 r$ gives a minimum and $A(3 r)=\frac{r\left(9 r^{2}\right)}{\sqrt{3} r}=3 \sqrt{3} r^{2}$.
54.

The volume of the cone is $V=\frac{1}{3} \pi y^{2}(r+x)=\frac{1}{3} \pi\left(r^{2}-x^{2}\right)(r+x),-r \leq x \leq r$.

$$
\begin{aligned}
V^{\prime}(x) & =\frac{\pi}{3}\left[\left(r^{2}-x^{2}\right)(1)+(r+x)(-2 x)\right]=\frac{\pi}{3}[(r+x)(r-x-2 x)] \\
& =\frac{\pi}{3}(r+x)(r-3 x)=0 \text { when } x=-r \text { or } x=r / 3 .
\end{aligned}
$$

Now $V(r)=0=V(-r)$, so the maximum occurs at $x=r / 3$ and the volume is

$$
V\left(\frac{r}{3}\right)=\frac{\pi}{3}\left(r^{2}-\frac{r^{2}}{9}\right)\left(\frac{4 r}{3}\right)=\frac{32 \pi r^{3}}{81} .
$$

56.

We minimize $L(x)=|P A|+|P B|+|P C|=2 \sqrt{x^{2}+16}+(5-x)$, $0 \leq x \leq 5 . L^{\prime}(x)=2 x / \sqrt{x^{2}+16}-1=0 \Leftrightarrow 2 x=\sqrt{x^{2}+16} \Leftrightarrow$ $4 x^{2}=x^{2}+16 \Leftrightarrow x=\frac{4}{\sqrt{3}} . L(0)=13, L\left(\frac{4}{\sqrt{3}}\right) \approx 11 \cdot 9, L(5) \approx 12.8$, so the minimum occurs when $x=\frac{4}{\sqrt{3}} \approx 2.3$.

If $|C D|=2$, the last part of $L(x)$ changes from $(5-x)$ to $(2-x)$ with
$0 \leq x \leq 2$. But we still get $L^{\prime}(x)=0 \quad \Leftrightarrow \quad x=\frac{4}{\sqrt{3}}$, which isn't in the interval $[0,2]$. Now $L(0)=10$ and $L(2)=2 \sqrt{20}=4 \sqrt{5} \approx 8.9$. The minimum occurs when $P=C$.

䟚
57. $v=K \sqrt{\frac{L}{C}+\frac{C}{L}} \Rightarrow \frac{d v}{d L}=\frac{K}{2 \sqrt{(L / C)+(C / L)}}\left(\frac{1}{C}-\frac{C}{L^{2}}\right)=0 \Leftrightarrow \frac{1}{C}=\frac{C}{L^{2}} \quad \Leftrightarrow \quad L^{2}=C^{2} \quad \Leftrightarrow \quad L=C$.

This gives the minimum velocity since $v^{\prime}<0$ for $0<L<C$ and $v^{\prime}>0$ for $L>C$.
58.

$$
\text { We minimize the surface area } S=\pi r^{2}+2 \pi r h+\frac{1}{2}\left(4 \pi r^{2}\right)=3 \pi r^{2}+2 \pi r h
$$

$$
\text { Solving } V=\pi r^{2} h+\frac{2}{3} \pi r^{3} \text { for } h \text {, we get } h=\frac{V-\frac{2}{3} \pi r^{3}}{\pi r^{2}}=\frac{V}{\pi r^{2}}-\frac{2}{3} r \text {, so }
$$

$$
S(r)=3 \pi r^{2}+2 \pi r\left[\frac{V}{\pi r^{2}}-\frac{2}{3} r\right]=\frac{5}{3} \pi r^{2}+\frac{2 V}{r}
$$

$$
S^{\prime}(r)=-\frac{2 V}{r^{2}}+\frac{10}{3} \pi r=\frac{\frac{10}{3} \pi r^{3}-2 V}{r^{2}}=0 \Leftrightarrow \frac{10}{3} \pi r^{3}=2 V \Leftrightarrow r^{3}=\frac{3 V}{5 \pi} \Leftrightarrow r=\sqrt[3]{\frac{3 V}{5 \pi}}
$$

This gives an absolute minimum since $S^{\prime}(r)<0$ for $0<r<\sqrt[3]{\frac{3 V}{5 \pi}}$ and $S^{\prime}(r)>0$ for $r>\sqrt[3]{\frac{3 V}{5 \pi}}$. Thus,

$$
h=\frac{V-\frac{2}{3} \pi \cdot \frac{3 V}{5 \pi}}{\pi \sqrt[3]{\frac{(3 V)^{2}}{(5 \pi)^{2}}}}=\frac{\left(V-\frac{2}{5} V\right) \sqrt[3]{(5 \pi)^{2}}}{\pi \sqrt[3]{(3 V)^{2}}}=\frac{3 V \sqrt[3]{(5 \pi)^{2}}}{5 \pi \sqrt[3]{(3 V)^{2}}}=\sqrt[3]{\frac{3 V}{5 \pi}}=r
$$

59. Let x denote the number of $\$ 1$ decreases in ticket price. Then the ticket price is $\$ 12-\$ 1(x)$, and the average attendance is $11,000+1000(x)$. Now the revenue per game is

$$
\begin{aligned}
R(x) & =(\text { price per person }) \times(\text { number of people per game }) \\
& =(12-x)(11,000+1000 x)=-1000 x^{2}+1000 x+132,000
\end{aligned}
$$

for $0 \leq x \leq 4$ [since the seating capacity is 15,000$] \Rightarrow R^{\prime}(x)=-2000 x+1000=0 \quad \Leftrightarrow \quad x=0.5$. This is a maximum since $R^{\prime \prime}(x)=-2000<0$ for all x. Now we must check the value of $R(x)=(12-x)(11,000+1000 x)$ at $x=0.5$ and at the endpoints of the domain to see which value of x gives the maximum value of R.

$$
R(0)=(12)(11,000)=132,000, R(0.5)=(11.5)(11,500)=132,250, \text { and } R(4)=(8)(15,000)=120,000 . \text { Thus, the }
$$ maximum revenue of $\$ 132,250$ per game occurs when the average attendance is 11,500 and the ticket price is $\$ 11.50$.

60. (a) $C(x)=1800+25 x-0.2 x^{2}+0.001 x^{3}$ and $R(x)=x p(x)=48.2 x-0.03 x^{2}$.

The profit is maximized when $C^{\prime}(x)=R^{\prime}(x)$.
From the figure, we estimate that the tangents are parallel when $x \approx 160$.

(b) $C^{\prime}(x)=25-0.4 x+0.003 x^{2}$ and $R^{\prime}(x)=48.2-0.06 x . C^{\prime}(x)=R^{\prime}(x) \quad \Rightarrow \quad 0.003 x^{2}-0.34 x-23.2=0 \Rightarrow$ $x_{1} \approx 161.3(x>0) . R^{\prime \prime}(x)=-0.06$ and $C^{\prime \prime}(x)=-0.4+0.006 x$, so $R^{\prime \prime}\left(x_{1}\right)=-0.06<C^{\prime \prime}\left(x_{1}\right) \approx 0.57 \Rightarrow$ profit is maximized by producing 161 units.
(c) $c(x)=\frac{C(x)}{x}=\frac{1800}{x}+25-0.2 x+0.001 x^{2}$ is the average cost. Since the average cost is minimized when the marginal cost equals the average cost, we graph $c(x)$ and $C^{\prime}(x)$ and estimate the point of intersection.

From the figure, $C^{\prime}(x)=c(x) \quad \Leftrightarrow \quad x \approx 144$.

61. $f(x)=x^{5}-x^{4}+3 x^{2}-3 x-2 \Rightarrow f^{\prime}(x)=5 x^{4}-4 x^{3}+6 x-3$, so $x_{n+1}=x_{n}-\frac{x_{n}^{5}-x_{n}^{4}+3 x_{n}^{2}-3 x_{n}-2}{5 x_{n}^{4}-4 x_{n}^{3}+6 x_{n}-3}$.

Now $x_{1}=1 \Rightarrow x_{2}=1.5 \Rightarrow x_{3} \approx 1.343860 \Rightarrow x_{4} \approx 1.300320 \Rightarrow x_{5} \approx 1.297396 \Rightarrow$ $x_{6} \approx 1.297383 \approx x_{7}$, so the root in [1, 2] is 1.297383, to six decimal places.
62. Graphing $y=\sin x$ and $y=x^{2}-3 x+1$ shows that there are two roots, one about 0.3 and the other about 2.8. $f(x)=\sin x-x^{2}+3 x-1 \Rightarrow$
$f^{\prime}(x)=\cos x-2 x+3 \quad \Rightarrow \quad x_{n+1}=x_{n}-\frac{\sin x_{n}-x_{n}^{2}+3 x_{n}-1}{\cos x_{n}-2 x_{n}+3}$.
Now $x_{1}=0.3 \quad \Rightarrow \quad x_{2} \approx 0.268552 \quad \Rightarrow \quad x_{3} \approx 0.268881 \approx x_{4}$ and $x_{1}=2.8 \Rightarrow x_{2} \approx 2.770354 \Rightarrow x_{3} \approx 2.770058 \approx x_{4}$, so to six
 decimal places, the roots are 0.268881 and 2.770058 .
63. $f(t)=\cos t+t-t^{2} \quad \Rightarrow \quad f^{\prime}(t)=-\sin t+1-2 t . \quad f^{\prime}(t)$ exists for all t, so to find the maximum of f, we can examine the zeros of f^{\prime}.

From the graph of f^{\prime}, we see that a good choice for t_{1} is $t_{1}=0.3$.
Use $g(t)=-\sin t+1-2 t$ and $g^{\prime}(t)=-\cos t-2$ to obtain
$t_{2} \approx 0.33535293, t_{3} \approx 0.33541803 \approx t_{4}$. Since $f^{\prime \prime}(t)=-\cos t-2<0$

for all $t, f(0.33541803) \approx 1.16718557$ is the absolute maximum.
64. $y=f(x)=x \sin x, 0 \leq x \leq 2 \pi$. A. $D=[0,2 \pi]$ B. y-intercept: $f(0)=0 ; x$-intercepts: $f(x)=0 \quad \Leftrightarrow \quad x=0$ or $\sin x=0 \quad \Leftrightarrow \quad x=0, \pi$, or 2π. C. There is no symmetry on D, but if f is defined for all real numbers x, then f is an even function. D. No asymptote E. $f^{\prime}(x)=x \cos x+\sin x$. To find critical numbers in $(0,2 \pi)$, we graph f^{\prime} and see that there are two critical numbers, about 2 and 4.9. To find them more precisely, we use Newton's method, setting
$g(x)=f^{\prime}(x)=x \cos x+\sin x$, so that $g^{\prime}(x)=f^{\prime \prime}(x)=2 \cos x-x \sin x$ and $x_{n+1}=x_{n}-\frac{x_{n} \cos x_{n}+\sin x_{n}}{2 \cos x_{n}-x_{n} \sin x_{n}}$.
$x_{1}=2 \Rightarrow x_{2} \approx 2.029048, x_{3} \approx 2.028758 \approx x_{4}$ and $x_{1}=4.9 \quad \Rightarrow \quad x_{2} \approx 4.913214, x_{3} \approx 4.913180 \approx x_{4}$, so the critical numbers, to six decimal places, are $r_{1}=2.028758$ and $r_{2}=4.913180$. By checking sample values of f^{\prime} in $\left(0, r_{1}\right)$, $\left(r_{1}, r_{2}\right)$, and $\left(r_{2}, 2 \pi\right)$, we see that f is increasing on $\left(0, r_{1}\right)$, decreasing on $\left(r_{1}, r_{2}\right)$, and increasing on $\left(r_{2}, 2 \pi\right)$. F. Local maximum value $f\left(r_{1}\right) \approx 1.819706$, local minimum value $f\left(r_{2}\right) \approx-4.814470$. G. $f^{\prime \prime}(x)=2 \cos x-x \sin x$. To find points where $f^{\prime \prime}(x)=0$, we graph $f^{\prime \prime}$ and find that $f^{\prime \prime}(x)=0$ at about 1 and 3.6 . To find the values more precisely,
we use Newton's method. Set $h(x)=f^{\prime \prime}(x)=2 \cos x-x \sin x$. Then $h^{\prime}(x)=-3 \sin x-x \cos x$, so $x_{n+1}=x_{n}-\frac{2 \cos x_{n}-x_{n} \sin x_{n}}{-3 \sin x_{n}-x_{n} \cos x_{n}} . \quad x_{1}=1 \quad \Rightarrow \quad x_{2} \approx 1.078028, x_{3} \approx 1.076874 \approx x_{4}$ and $x_{1}=3.6 \quad \Rightarrow$ $x_{2} \approx 3.643996, x_{3} \approx 3.643597 \approx x_{4}$, so the zeros of $f^{\prime \prime}$, to six decimal places, are $r_{3}=1.076874$ and $r_{4}=3.643597$.

By checking sample values of $f^{\prime \prime}$ in $\left(0, r_{3}\right),\left(r_{3}, r_{4}\right)$, and $\left(r_{4}, 2 \pi\right)$, we see that f is CU on $\left(0, r_{3}\right), \mathrm{CD}$ on $\left(r_{3}, r_{4}\right)$, and CU on $\left(r_{4}, 2 \pi\right) . f$ has inflection points at $\left(r_{3}, f\left(r_{3}\right) \approx 0.948166\right)$ and $\left(r_{4}, f\left(r_{4}\right) \approx-1.753240\right)$.

H.

65. $f(x)=4 \sqrt{x}-6 x^{2}+3=4 x^{1 / 2}-6 x^{2}+3 \quad \Rightarrow \quad F(x)=4\left(\frac{2}{3} x^{3 / 2}\right)-6\left(\frac{1}{3} x^{3}\right)+3 x+C=\frac{8}{3} x^{3 / 2}-2 x^{3}+3 x+C$
66. $g(x)=\frac{1}{x}+\frac{1}{x^{2}+1} \Rightarrow G(x)= \begin{cases}\ln x+\tan ^{-1} x+C_{1} & \text { if } x>0 \\ \ln (-x)+\tan ^{-1} x+C_{2} & \text { if } x<0\end{cases}$
67. $f(t)=2 \sin t-3 e^{t} \Rightarrow F(t)=-2 \cos t-3 e^{t}+C$
68. $f(x)=x^{-3}+\cosh x \Rightarrow F(x)= \begin{cases}-1 /\left(2 x^{2}\right)+\sinh x+C_{1} & \text { if } x>0 \\ -1 /\left(2 x^{2}\right)+\sinh x+C_{2} & \text { if } x<0\end{cases}$
69. $f^{\prime}(t)=2 t-3 \sin t \Rightarrow f(t)=t^{2}+3 \cos t+C$.
$f(0)=3+C$ and $f(0)=5 \Rightarrow C=2$, so $f(t)=t^{2}+3 \cos t+2$.
70. $f^{\prime}(u)=\frac{u^{2}+\sqrt{u}}{u}=u+u^{-1 / 2} \Rightarrow f(u)=\frac{1}{2} u^{2}+2 u^{1 / 2}+C$.
$f(1)=\frac{1}{2}+2+C$ and $f(1)=3 \Rightarrow C=\frac{1}{2}$, so $f(u)=\frac{1}{2} u^{2}+2 \sqrt{u}+\frac{1}{2}$.
71. $f^{\prime \prime}(x)=1-6 x+48 x^{2} \Rightarrow f^{\prime}(x)=x-3 x^{2}+16 x^{3}+C . \quad f^{\prime}(0)=C$ and $f^{\prime}(0)=2 \Rightarrow C=2$, so
$f^{\prime}(x)=x-3 x^{2}+16 x^{3}+2$ and hence, $f(x)=\frac{1}{2} x^{2}-x^{3}+4 x^{4}+2 x+D$.
$f(0)=D$ and $f(0)=1 \Rightarrow D=1$, so $f(x)=\frac{1}{2} x^{2}-x^{3}+4 x^{4}+2 x+1$.
72. $f^{\prime \prime}(x)=5 x^{3}+6 x^{2}+2 \Rightarrow f^{\prime}(x)=\frac{5}{4} x^{4}+2 x^{3}+2 x+C \quad \Rightarrow \quad f(x)=\frac{1}{4} x^{5}+\frac{1}{2} x^{4}+x^{2}+C x+D$. Now $f(0)=D$ and $f(0)=3$, so $D=3$. Also, $f(1)=\frac{1}{4}+\frac{1}{2}+1+C+3=C+\frac{19}{4}$ and $f(1)=-2$, so $C+\frac{19}{4}=-2 \quad \Rightarrow \quad C=-\frac{27}{4}$. Thus, $f(x)=\frac{1}{4} x^{5}+\frac{1}{2} x^{4}+x^{2}-\frac{27}{4} x+3$.
73. $v(t)=s^{\prime}(t)=2 t-\frac{1}{1+t^{2}} \quad \Rightarrow \quad s(t)=t^{2}-\tan ^{-1} t+C$.
$s(0)=0-0+C=C$ and $s(0)=1 \quad \Rightarrow \quad C=1$, so $s(t)=t^{2}-\tan ^{-1} t+1$.
74. $a(t)=v^{\prime}(t)=\sin t+3 \cos t \Rightarrow v(t)=-\cos t+3 \sin t+C$.
$v(0)=-1+0+C$ and $v(0)=2 \Rightarrow C=3$, so $v(t)=-\cos t+3 \sin t+3$ and $s(t)=-\sin t-3 \cos t+3 t+D$.
$s(0)=-3+D$ and $s(0)=0 \Rightarrow D=3$, and $s(t)=-\sin t-3 \cos t+3 t+3$.
75. (a) Since f is 0 just to the left of the y-axis, we must have a minimum of F at the same place since we are increasing through $(0,0)$ on F. There must be a local maximum to the left of $x=-3$, since f changes from positive to negative there.

(b) $f(x)=0.1 e^{x}+\sin x \quad \Rightarrow$
(c)

76. $f(x)=x^{4}+x^{3}+c x^{2} \quad \Rightarrow \quad f^{\prime}(x)=4 x^{3}+3 x^{2}+2 c x$. This is 0 when $x\left(4 x^{2}+3 x+2 c\right)=0 \quad \Leftrightarrow \quad x=0$ or $4 x^{2}+3 x+2 c=0$. Using the quadratic formula, we find that the roots of this last equation are $x=\frac{-3 \pm \sqrt{9-32 c}}{8}$. Now if $9-32 c<0 \Leftrightarrow c>\frac{9}{32}$, then $(0,0)$ is the only critical point, a minimum. If $c=\frac{9}{32}$, then there are two critical points (a minimum at $x=0$, and a horizontal tangent with no maximum or minimum at $x=-\frac{3}{8}$) and if $c<\frac{9}{32}$, then there are three critical points except when $c=0$, in which case the root with the $+\operatorname{sign}$ coincides with the critical point at $x=0$. For $0<c<\frac{9}{32}$, there is a minimum at $x=-\frac{3}{8}-\frac{\sqrt{9-32 c}}{8}$, a maximum at $x=-\frac{3}{8}+\frac{\sqrt{9-32 c}}{8}$, and a minimum at $x=0$. For $c=0$, there is a minimum at $x=-\frac{3}{4}$ and a horizontal tangent with no extremum at $x=0$, and for $c<0$, there is a maximum at $x=0$, and there are minima at $x=-\frac{3}{8} \pm \frac{\sqrt{9-32 c}}{8}$. Now we calculate $f^{\prime \prime}(x)=12 x^{2}+6 x+2 c$. The roots of this equation are $x=\frac{-6 \pm \sqrt{36-4 \cdot 12 \cdot 2 c}}{24}$. So if $36-96 c \leq 0 \Leftrightarrow c \geq \frac{3}{8}$, then there is no inflection point. If $c<\frac{3}{8}$, then there are two inflection points at $x=-\frac{1}{4} \pm \frac{\sqrt{9-24 c}}{12}$.
[continued]

Value of c	No. of CP	No. of IP
$c<0$	3	2
$c=0$	2	2
$0<c<\frac{9}{32}$	3	2
$c=\frac{9}{32}$	2	2
$\frac{9}{32<c<\frac{3}{8}}$	1	2
$c \geq \frac{3}{8}$	1	0

77. Choosing the positive direction to be upward, we have $a(t)=-9.8 \quad \Rightarrow \quad v(t)=-9.8 t+v_{0}$, but $v(0)=0=v_{0} \quad \Rightarrow$ $v(t)=-9.8 t=s^{\prime}(t) \Rightarrow s(t)=-4.9 t^{2}+s_{0}$, but $s(0)=s_{0}=500 \Rightarrow s(t)=-4.9 t^{2}+500$. When $s=0$, $-4.9 t^{2}+500=0 \Rightarrow t_{1}=\sqrt{\frac{500}{4.9}} \approx 10.1 \Rightarrow v\left(t_{1}\right)=-9.8 \sqrt{\frac{500}{4.9}} \approx-98.995 \mathrm{~m} / \mathrm{s}$. Since the canister has been designed to withstand an impact velocity of $100 \mathrm{~m} / \mathrm{s}$, the canister will not burst.
78. Let $s_{A}(t)$ and $s_{B}(t)$ be the position functions for cars A and B and let $f(t)=s_{A}(t)-s(t)$. Since A passed B twice, there must be three values of t such that $f(t)=0$. Then by three applications of Rolle's Theorem (see Exercise 4.2.22), there is a number c such that $f^{\prime \prime}(c)=0$. So $s_{A}^{\prime \prime}(c)=s_{B}^{\prime \prime}(c)$; that is, A and B had equal accelerations at $t=c$. We assume that f is continuous on $[0, T]$ and twice differentiable on $(0, T)$, where T is the total time of the race.
79. (a)

The cross-sectional area of the rectangular beam is

$$
A=2 x \cdot 2 y=4 x y=4 x \sqrt{100-x^{2}}, 0 \leq x \leq 10 \text {, so }
$$

$$
\begin{aligned}
\frac{d A}{d x} & =4 x\left(\frac{1}{2}\right)\left(100-x^{2}\right)^{-1 / 2}(-2 x)+\left(100-x^{2}\right)^{1 / 2} \cdot 4 \\
& =\frac{-4 x^{2}}{\left(100-x^{2}\right)^{1 / 2}}+4\left(100-x^{2}\right)^{1 / 2}=\frac{4\left[-x^{2}+\left(100-x^{2}\right)\right]}{\left(100-x^{2}\right)^{1 / 2}} .
\end{aligned}
$$

$$
\frac{d A}{d x}=0 \text { when }-x^{2}+\left(100-x^{2}\right)=0 \Rightarrow x^{2}=50 \Rightarrow x=\sqrt{50} \approx 7.07 \Rightarrow y=\sqrt{100-(\sqrt{50})^{2}}=\sqrt{50}
$$

Since $A(0)=A(10)=0$, the rectangle of maximum area is a square.
(b)

The cross-sectional area of each rectangular plank (shaded in the figure) is

$$
\begin{aligned}
& A=2 x(y-\sqrt{50})=2 x\left[\sqrt{100-x^{2}}-\sqrt{50}\right], 0 \leq x \leq \sqrt{50}, \text { so } \\
& \begin{aligned}
\frac{d A}{d x} & =2\left(\sqrt{100-x^{2}}-\sqrt{50}\right)+2 x\left(\frac{1}{2}\right)\left(100-x^{2}\right)^{-1 / 2}(-2 x) \\
& =2\left(100-x^{2}\right)^{1 / 2}-2 \sqrt{50}-\frac{2 x^{2}}{\left(100-x^{2}\right)^{1 / 2}}
\end{aligned}
\end{aligned}
$$

Set $\frac{d A}{d x}=0: \quad\left(100-x^{2}\right)-\sqrt{50}\left(100-x^{2}\right)^{1 / 2}-x^{2}=0 \quad \Rightarrow \quad 100-2 x^{2}=\sqrt{50}\left(100-x^{2}\right)^{1 / 2} \Rightarrow$
$10,000-400 x^{2}+4 x^{4}=50\left(100-x^{2}\right) \Rightarrow 4 x^{4}-350 x^{2}+5000=0 \Rightarrow 2 x^{4}-175 x^{2}+2500=0 \Rightarrow$ $x^{2}=\frac{175 \pm \sqrt{10,625}}{4} \approx 69.52$ or $17.98 \quad \Rightarrow \quad x \approx 8.34$ or 4.24 . But $8.34>\sqrt{50}$, so $x_{1} \approx 4.24 \Rightarrow$ $y-\sqrt{50}=\sqrt{100-x_{1}^{2}}-\sqrt{50} \approx 1.99$. Each plank should have dimensions about $8 \frac{1}{2}$ inches by 2 inches.
(c) From the figure in part (a), the width is $2 x$ and the depth is $2 y$, so the strength is

$$
S=k(2 x)(2 y)^{2}=8 k x y^{2}=8 k x\left(100-x^{2}\right)=800 k x-8 k x^{3}, 0 \leq x \leq 10 . d S / d x=800 k-24 k x^{2}=0 \text { when }
$$

$$
24 k x^{2}=800 k \Rightarrow x^{2}=\frac{100}{3} \Rightarrow x=\frac{10}{\sqrt{3}} \Rightarrow y=\sqrt{\frac{200}{3}}=\frac{10 \sqrt{2}}{\sqrt{3}}=\sqrt{2} x \text {. Since } S(0)=S(10)=0 \text {, the }
$$ maximum strength occurs when $x=\frac{10}{\sqrt{3}}$. The dimensions should be $\frac{20}{\sqrt{3}} \approx 11.55$ inches by $\frac{20 \sqrt{2}}{\sqrt{3}} \approx 16.33$ inches.

80. (a)

$$
\begin{aligned}
& y=(\tan \theta) x-\frac{g}{2 v^{2} \cos ^{2} \theta} x^{2} \text {. The parabola intersects the line when } \\
& (\tan \alpha) x=(\tan \theta) x-\frac{g}{2 v^{2} \cos ^{2} \theta} x^{2} \Rightarrow \\
& x=\frac{(\tan \theta-\tan \alpha) 2 v^{2} \cos ^{2} \theta}{g} \Rightarrow
\end{aligned}
$$

$$
\begin{aligned}
R(\theta) & =\frac{x}{\cos \alpha}=\left(\frac{\sin \theta}{\cos \theta}-\frac{\sin \alpha}{\cos \alpha}\right) \frac{2 v^{2} \cos ^{2} \theta}{g \cos \alpha}=\left(\frac{\sin \theta}{\cos \theta}-\frac{\sin \alpha}{\cos \alpha}\right)(\cos \theta \cos \alpha) \frac{2 v^{2} \cos \theta}{g \cos ^{2} \alpha} \\
& =(\sin \theta \cos \alpha-\sin \alpha \cos \theta) \frac{2 v^{2} \cos \theta}{g \cos ^{2} \alpha}=\sin (\theta-\alpha) \frac{2 v^{2} \cos \theta}{g \cos ^{2} \alpha}
\end{aligned}
$$

(b) $R^{\prime}(\theta)=\frac{2 v^{2}}{g \cos ^{2} \alpha}[\cos \theta \cdot \cos (\theta-\alpha)+\sin (\theta-\alpha)(-\sin \theta)]=\frac{2 v^{2}}{g \cos ^{2} \alpha} \cos [\theta+(\theta-\alpha)]$

$$
=\frac{2 v^{2}}{g \cos ^{2} \alpha} \cos (2 \theta-\alpha)=0
$$

when $\cos (2 \theta-\alpha)=0 \Rightarrow 2 \theta-\alpha=\frac{\pi}{2} \Rightarrow \theta=\frac{\pi / 2+\alpha}{2}=\frac{\pi}{4}+\frac{\alpha}{2}$. The First Derivative Test shows that this gives a maximum value for $R(\theta)$. [This could be done without calculus by applying the formula for $\sin x \cos y$ to $R(\theta)$.]
(c)

Replacing α by $-\alpha$ in part (a), we get $R(\theta)=\frac{2 v^{2} \cos \theta \sin (\theta+\alpha)}{g \cos ^{2} \alpha}$.
Proceeding as in part (b), or simply by replacing α by $-\alpha$ in the result of part (b), we see that $R(\theta)$ is maximized when $\theta=\frac{\pi}{4}-\frac{\alpha}{2}$.
81. $\lim _{E \rightarrow 0^{+}} P(E)=\lim _{E \rightarrow 0^{+}}\left(\frac{e^{E}+e^{-E}}{e^{E}-e^{-E}}-\frac{1}{E}\right)$

$$
\begin{aligned}
& =\lim _{E \rightarrow 0^{+}} \frac{E\left(e^{E}+e^{-E}\right)-1\left(e^{E}-e^{-E}\right)}{\left(e^{E}-e^{-E}\right) E}=\lim _{E \rightarrow 0^{+}} \frac{E e^{E}+E e^{-E}-e^{E}+e^{-E}}{E e^{E}-E e^{-E}} \quad \text { [form is } \frac{0}{0} \text {] } \\
& \stackrel{H}{=} \lim _{E \rightarrow 0^{+}} \frac{E e^{E}+e^{E} \cdot 1+E\left(-e^{-E}\right)+e^{-E} \cdot 1-e^{E}+\left(-e^{-E}\right)}{E e^{E}+e^{E} \cdot 1-\left[E\left(-e^{-E}\right)+e^{-E} \cdot 1\right]}
\end{aligned}
$$

$$
\left.=\lim _{E \rightarrow 0^{+}} \frac{E e^{E}-E e^{-E}}{E e^{E}+e^{E}+E e^{-E}-e^{-E}}=\lim _{E \rightarrow 0^{+}} \frac{e^{E}-e^{-E}}{e^{E}+\frac{e^{E}}{E}+e^{-E}-\frac{e^{-E}}{E}} \quad \quad \text { [divide by } E\right]
$$

$$
=\frac{0}{2+L}, \quad \text { where } L=\lim _{E \rightarrow 0^{+}} \frac{e^{E}-e^{-E}}{E} \quad\left[\text { form is } \frac{0}{0}\right] \quad \stackrel{H}{=} \lim _{E \rightarrow 0^{+}} \frac{e^{E}+e^{-E}}{1}=\frac{1+1}{1}=2
$$

Thus, $\lim _{E \rightarrow 0^{+}} P(E)=\frac{0}{2+2}=0$.
82. $\lim _{c \rightarrow 0^{+}} s(t)=\lim _{c \rightarrow 0^{+}}\left(\frac{m}{c} \ln \cosh \sqrt{\frac{g c}{m t}}\right)=m \lim _{c \rightarrow 0^{+}} \frac{\ln \cosh \sqrt{a c}}{c} \quad[\operatorname{let} a=g /(m t)]$

$$
\begin{aligned}
& \stackrel{\mathrm{H}}{=} m \lim _{c \rightarrow 0^{+}} \frac{\frac{1}{\cosh \sqrt{a c}}(\sinh \sqrt{a c})\left(\frac{\sqrt{a}}{2 \sqrt{c}}\right)}{1}=\frac{m \sqrt{a}}{2} \lim _{c \rightarrow 0^{+}} \frac{\tanh \sqrt{a c}}{\sqrt{c}} \\
& \stackrel{\mathrm{H}}{=} \frac{m \sqrt{a}}{2} \lim _{c \rightarrow 0^{+}} \frac{\operatorname{sech}^{2} \sqrt{a c}[\sqrt{a} /(2 \sqrt{c})]}{1 /(2 \sqrt{c})}=\frac{m a}{2} \lim _{c \rightarrow 0^{+}} \operatorname{sech}^{2} \sqrt{a c}=\frac{m a}{2}(1)^{2}=\frac{m g}{2 m t}=\frac{g}{2 t}
\end{aligned}
$$

83. We first show that $\frac{x}{1+x^{2}}<\tan ^{-1} x$ for $x>0$. Let $f(x)=\tan ^{-1} x-\frac{x}{1+x^{2}}$. Then
$f^{\prime}(x)=\frac{1}{1+x^{2}}-\frac{1\left(1+x^{2}\right)-x(2 x)}{\left(1+x^{2}\right)^{2}}=\frac{\left(1+x^{2}\right)-\left(1-x^{2}\right)}{\left(1+x^{2}\right)^{2}}=\frac{2 x^{2}}{\left(1+x^{2}\right)^{2}}>0$ for $x>0$. So $f(x)$ is increasing on $(0, \infty)$. Hence, $0<x \Rightarrow 0=f(0)<f(x)=\tan ^{-1} x-\frac{x}{1+x^{2}}$. So $\frac{x}{1+x^{2}}<\tan ^{-1} x$ for $0<x$. We next show that $\tan ^{-1} x<x$ for $x>0$. Let $h(x)=x-\tan ^{-1} x$. Then $h^{\prime}(x)=1-\frac{1}{1+x^{2}}=\frac{x^{2}}{1+x^{2}}>0$. Hence, $h(x)$ is increasing on $(0, \infty)$. So for $0<x, 0=h(0)<h(x)=x-\tan ^{-1} x$. Hence, $\tan ^{-1} x<x$ for $x>0$, and we conclude that $\frac{x}{1+x^{2}}<\tan ^{-1} x<x$ for $x>0$.
84. If $f^{\prime}(x)<0$ for all $x, f^{\prime \prime}(x)>0$ for $|x|>1, f^{\prime \prime}(x)<0$ for $|x|<1$, and $\lim _{x \rightarrow \pm \infty}[f(x)+x]=0$, then f is decreasing everywhere, concave up on $(-\infty,-1)$ and $(1, \infty)$, concave down on $(-1,1)$, and approaches the line $y=-x$ as $x \rightarrow \pm \infty$. An example of such a graph is sketched.

85. (a) $I=\frac{k \cos \theta}{d^{2}}=\frac{k(h / d)}{d^{2}}=k \frac{h}{d^{3}}=k \frac{h}{\left(\sqrt{40^{2}+h^{2}}\right)^{3}}=k \frac{h}{\left(1600+h^{2}\right)^{3 / 2}} \Rightarrow$

$$
\begin{aligned}
\frac{d I}{d h} & =k \frac{\left(1600+h^{2}\right)^{3 / 2}-h \frac{3}{2}\left(1600+h^{2}\right)^{1 / 2} \cdot 2 h}{\left[\left(1600+h^{2}\right)^{3 / 2}\right]^{2}}=\frac{k\left(1600+h^{2}\right)^{1 / 2}\left(1600+h^{2}-3 h^{2}\right)}{\left(1600+h^{2}\right)^{3}} \\
& =\frac{k\left(1600-2 h^{2}\right)}{\left(1600+h^{2}\right)^{5 / 2}} \quad[k \text { is the constant of proportionality }]
\end{aligned}
$$

Set $d I / d h=0: 1600-2 h^{2}=0 \Rightarrow h^{2}=800 \Rightarrow h=\sqrt{800}=20 \sqrt{2}$. By the First Derivative Test, I has a local maximum at $h=20 \sqrt{2} \approx 28 \mathrm{ft}$.
(b)

$$
\begin{aligned}
I & =\frac{k \cos \theta}{d^{2}}=\frac{k[(h-4) / d]}{d^{2}}=\frac{k(h-4)}{d^{3}} \\
\frac{d x}{d t}=4 \mathrm{ft} / \mathrm{s} & =\frac{k(h-4)}{\left[(h-4)^{2}+x^{2}\right]^{3 / 2}}=k(h-4)\left[(h-4)^{2}+x^{2}\right]^{-3 / 2}
\end{aligned}
$$

[continued]

$$
\begin{aligned}
& \begin{aligned}
& \frac{d I}{d t}=\frac{d I}{d x} \cdot \frac{d x}{d t}=k(h-4)\left(-\frac{3}{2}\right)\left[(h-4)^{2}+x^{2}\right]^{-5 / 2} \cdot 2 x \cdot \frac{d x}{d t} \\
&=k(h-4)(-3 x)\left[(h-4)^{2}+x^{2}\right]^{-5 / 2} \cdot 4=\frac{-12 x k(h-4)}{\left[(h-4)^{2}+x^{2}\right]^{5 / 2}} \\
&\left.\frac{d I}{d t}\right|_{x=40}=-\frac{480 k(h-4)}{\left[(h-4)^{2}+1600\right]^{5 / 2}}
\end{aligned}
\end{aligned}
$$

86. (a) $V^{\prime}(t)$ is the rate of change of the volume of the water with respect to time. $H^{\prime}(t)$ is the rate of change of the height of the water with respect to time. Since the volume and the height are increasing, $V^{\prime}(t)$ and $H^{\prime}(t)$ are positive.
(b) $V^{\prime}(t)$ is constant, so $V^{\prime \prime}(t)$ is zero (the slope of a constant function is 0).
(c) At first, the height H of the water increases quickly because the tank is narrow. But as the sphere widens, the rate of increase of the height slows down, reaching a minimum at $t=t_{2}$. Thus, the height is increasing at a decreasing rate on $\left(0, t_{2}\right)$, so its graph is concave downward and $H^{\prime \prime}\left(t_{1}\right)<0$. As the sphere narrows for $t>t_{2}$, the rate of increase of the height begins to increase, and the graph of H is concave upward. Therefore, $H^{\prime \prime}\left(t_{2}\right)=0$ and $H^{\prime \prime}\left(t_{3}\right)>0$.

PROBLEMS PLUS

1. Let $y=f(x)=e^{-x^{2}}$. The area of the rectangle under the curve from $-x$ to x is $A(x)=2 x e^{-x^{2}}$ where $x \geq 0$. We maximize $A(x): A^{\prime}(x)=2 e^{-x^{2}}-4 x^{2} e^{-x^{2}}=2 e^{-x^{2}}\left(1-2 x^{2}\right)=0 \Rightarrow x=\frac{1}{\sqrt{2}}$. This gives a maximum since $A^{\prime}(x)>0$ for $0 \leq x<\frac{1}{\sqrt{2}}$ and $A^{\prime}(x)<0$ for $x>\frac{1}{\sqrt{2}}$. We next determine the points of inflection of $f(x)$. Notice that $f^{\prime}(x)=-2 x e^{-x^{2}}=-A(x)$. So $f^{\prime \prime}(x)=-A^{\prime}(x)$ and hence, $f^{\prime \prime}(x)<0$ for $-\frac{1}{\sqrt{2}}<x<\frac{1}{\sqrt{2}}$ and $f^{\prime \prime}(x)>0$ for $x<-\frac{1}{\sqrt{2}}$ and $x>\frac{1}{\sqrt{2}}$. So $f(x)$ changes concavity at $x= \pm \frac{1}{\sqrt{2}}$, and the two vertices of the rectangle of largest area are at the inflection points.
2. Let $f(x)=\sin x-\cos x$ on $[0,2 \pi]$ since f has period $2 \pi . f^{\prime}(x)=\cos x+\sin x=0 \quad \Leftrightarrow \quad \cos x=-\sin x \quad \Leftrightarrow$ $\tan x=-1 \quad \Leftrightarrow \quad x=\frac{3 \pi}{4}$ or $\frac{7 \pi}{4}$. Evaluating f at its critical numbers and endpoints, we get $f(0)=-1, f\left(\frac{3 \pi}{4}\right)=\sqrt{2}$, $f\left(\frac{7 \pi}{4}\right)=-\sqrt{2}$, and $f(2 \pi)=-1$. So f has absolute maximum value $\sqrt{2}$ and absolute minimum value $-\sqrt{2}$. Thus, $-\sqrt{2} \leq \sin x-\cos x \leq \sqrt{2} \Rightarrow|\sin x-\cos x| \leq \sqrt{2}$.
3. $f(x)$ has the form $e^{g(x)}$, so it will have an absolute maximum (minimum) where g has an absolute maximum (minimum).
$g(x)=10|x-2|-x^{2}=\left\{\begin{array}{ll}10(x-2)-x^{2} & \text { if } x-2>0 \\ 10[-(x-2)]-x^{2} & \text { if } x-2<0\end{array}=\left\{\begin{array}{l}-x^{2}+10 x-20 \text { if } x>2 \\ -x^{2}-10 x+20 \text { if } x<2\end{array} \Rightarrow\right.\right.$
$g^{\prime}(x)=\left\{\begin{array}{l}-2 x+10 \text { if } x>2 \\ -2 x-10 \text { if } x<2\end{array}\right.$
$g^{\prime}(x)=0$ if $x=-5$ or $x=5$, and $g^{\prime}(2)$ does not exist, so the critical numbers of g are $-5,2$, and 5 . Since $g^{\prime \prime}(x)=-2$ for all $x \neq 2, g$ is concave downward on $(-\infty, 2)$ and $(2, \infty)$, and g will attain its absolute maximum at one of the critical numbers. Since $g(-5)=45, g(2)=-4$, and $g(5)=5$, we see that $f(-5)=e^{45}$ is the absolute maximum value of f. Also, $\lim _{x \rightarrow \infty} g(x)=-\infty$, so $\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} e^{g(x)}=0$. But $f(x)>0$ for all x, so there is no absolute minimum value of f.
4. $x^{2} y^{2}\left(4-x^{2}\right)\left(4-y^{2}\right)=x^{2}\left(4-x^{2}\right) y^{2}\left(4-y^{2}\right)=f(x) f(y)$, where $f(t)=t^{2}\left(4-t^{2}\right)$. We will show that $0 \leq f(t) \leq 4$ for $|t| \leq 2$, which gives $0 \leq f(x) f(y) \leq 16$ for $|x| \leq 2$ and $|y| \leq 2$.
$f(t)=4 t^{2}-t^{4} \quad \Rightarrow \quad f^{\prime}(t)=8 t-4 t^{3}=4 t\left(2-t^{2}\right)=0 \quad \Rightarrow \quad t=0$ or $\pm \sqrt{2}$.
$f(0)=0, f(\pm \sqrt{2})=2(4-2)=4$, and $f(2)=0$. So 0 is the absolute minimum value of $f(t)$ on $[-2,2]$ and 4 is the absolute maximum value of $f(t)$ on $[-2,2]$. We conclude that $0 \leq f(t) \leq 4$ for $|t| \leq 2$ and hence, $0 \leq f(x) f(y) \leq 4^{2}$ or $0 \leq x^{2}\left(4-x^{2}\right) y^{2}\left(4-y^{2}\right) \leq 16$.
5. $y=\frac{\sin x}{x} \Rightarrow y^{\prime}=\frac{x \cos x-\sin x}{x^{2}} \Rightarrow y^{\prime \prime}=\frac{-x^{2} \sin x-2 x \cos x+2 \sin x}{x^{3}}$. If (x, y) is an inflection point, then $y^{\prime \prime}=0 \Rightarrow\left(2-x^{2}\right) \sin x=2 x \cos x \quad \Rightarrow \quad\left(2-x^{2}\right)^{2} \sin ^{2} x=4 x^{2} \cos ^{2} x \quad \Rightarrow$ $\left(2-x^{2}\right)^{2} \sin ^{2} x=4 x^{2}\left(1-\sin ^{2} x\right) \quad \Rightarrow \quad\left(4-4 x^{2}+x^{4}\right) \sin ^{2} x=4 x^{2}-4 x^{2} \sin ^{2} x \quad \Rightarrow$ $\left(4+x^{4}\right) \sin ^{2} x=4 x^{2} \Rightarrow\left(x^{4}+4\right) \frac{\sin ^{2} x}{x^{2}}=4 \Rightarrow y^{2}\left(x^{4}+4\right)=4$ since $y=\frac{\sin x}{x}$.
6. Let $P\left(a, 1-a^{2}\right)$ be the point of contact. The equation of the tangent line at P is $y-\left(1-a^{2}\right)=(-2 a)(x-a) \Rightarrow$ $y-1+a^{2}=-2 a x+2 a^{2} \Rightarrow y=-2 a x+a^{2}+1$. To find the x-intercept, put $y=0: 2 a x=a^{2}+1 \Rightarrow$ $x=\frac{a^{2}+1}{2 a}$. To find the y-intercept, put $x=0: y=a^{2}+1$. Therefore, the area of the triangle is $\frac{1}{2}\left(\frac{a^{2}+1}{2 a}\right)\left(a^{2}+1\right)=\frac{\left(a^{2}+1\right)^{2}}{4 a}$. Therefore, we minimize the function $A(a)=\frac{\left(a^{2}+1\right)^{2}}{4 a}, a>0$. $A^{\prime}(a)=\frac{(4 a) 2\left(a^{2}+1\right)(2 a)-\left(a^{2}+1\right)^{2}(4)}{16 a^{2}}=\frac{\left(a^{2}+1\right)\left[4 a^{2}-\left(a^{2}+1\right)\right]}{4 a^{2}}=\frac{\left(a^{2}+1\right)\left(3 a^{2}-1\right)}{4 a^{2}}$. $A^{\prime}(a)=0$ when $3 a^{2}-1=0 \Rightarrow a=\frac{1}{\sqrt{3}} . \quad A^{\prime}(a)<0$ for $a<\frac{1}{\sqrt{3}}, A^{\prime}(a)>0$ for $a>\frac{1}{\sqrt{3}}$. So by the First Derivative Test, there is an absolute minimum when $a=\frac{1}{\sqrt{3}}$. The required point is $\left(\frac{1}{\sqrt{3}}, \frac{2}{3}\right)$ and the corresponding minimum area is $A\left(\frac{1}{\sqrt{3}}\right)=\frac{4 \sqrt{3}}{9}$.
7. Let $L=\lim _{x \rightarrow 0} \frac{a x^{2}+\sin b x+\sin c x+\sin d x}{3 x^{2}+5 x^{4}+7 x^{6}}$. Now L has the indeterminate form of type $\frac{0}{0}$, so we can apply l'Hospital's Rule. $L=\lim _{x \rightarrow 0} \frac{2 a x+b \cos b x+c \cos c x+d \cos d x}{6 x+20 x^{3}+42 x^{5}}$. The denominator approaches 0 as $x \rightarrow 0$, so the numerator must also approach 0 (because the limit exists). But the numerator approaches $0+b+c+d$, so $b+c+d=0$. Apply l'Hospital's Rule again. $L=\lim _{x \rightarrow 0} \frac{2 a-b^{2} \sin b x-c^{2} \sin c x-d^{2} \sin d x}{6+60 x^{2}+210 x^{4}}=\frac{2 a-0}{6+0}=\frac{2 a}{6}$, which must equal 8 . $\frac{2 a}{6}=8 \Rightarrow a=24$. Thus, $a+b+c+d=a+(b+c+d)=24+0=24$.
8. We first present some preliminary results that we will invoke when calculating the limit.
(1) If $y=(1+a x)^{x}$, then $\ln y=x \ln (1+a x)$, and $\lim _{x \rightarrow 0^{+}} \ln y=\lim _{x \rightarrow 0^{+}} x \ln (1+a x)=0$. Thus, $\lim _{x \rightarrow 0^{+}}(1+a x)^{x}=e^{0}=1$.
(2) If $y=(1+a x)^{x}$, then $\ln y=x \ln (1+a x)$, and implicitly differentiating gives us $\frac{y^{\prime}}{y}=x \cdot \frac{a}{1+a x}+\ln (1+a x) \Rightarrow$ $y^{\prime}=y\left[\frac{a x}{1+a x}+\ln (1+a x)\right]$. Thus, $y=(1+a x)^{x} \quad \Rightarrow \quad y^{\prime}=(1+a x)^{x}\left[\frac{a x}{1+a x}+\ln (1+a x)\right]$.
(3) If $y=\frac{a x}{1+a x}$, then $y^{\prime}=\frac{(1+a x) a-a x(a)}{(1+a x)^{2}}=\frac{a+a^{2} x-a^{2} x}{(1+a x)^{2}}=\frac{a}{(1+a x)^{2}}$.

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{(x+2)^{1 / x}-x^{1 / x}}{(x+3)^{1 / x}-x^{1 / x}}=\lim _{x \rightarrow \infty} \frac{x^{1 / x}\left[(1+2 / x)^{1 / x}-1\right]}{x^{1 / x}\left[(1+3 / x)^{1 / x}-1\right]} \\
& =\lim _{x \rightarrow \infty} \frac{(1+2 / x)^{1 / x}-1}{(1+3 / x)^{1 / x}-1} \\
& =\lim _{t \rightarrow 0^{+}} \frac{(1+2 t)^{t}-1}{(1+3 t)^{t}-1} \\
& \stackrel{\mathrm{H}}{=} \lim _{t \rightarrow 0^{+}} \frac{(1+2 t)^{t}\left[\frac{2 t}{1+2 t}+\ln (1+2 t)\right]}{(1+3 t)^{t}\left[\frac{3 t}{1+3 t}+\ln (1+3 t)\right]} \\
& =\lim _{t \rightarrow 0^{+}} \frac{(1+2 t)^{t}}{(1+3 t)^{t}} \cdot \lim _{t \rightarrow 0^{+}} \frac{\frac{2 t}{1+2 t}+\ln (1+2 t)}{\frac{3 t}{1+3 t}+\ln (1+3 t)} \\
& =\frac{1}{1} \cdot \lim _{t \rightarrow 0^{+}} \frac{\frac{2 t}{1+2 t}+\ln (1+2 t)}{\frac{3 t}{1+3 t}+\ln (1+3 t)} \\
& \stackrel{\mathrm{H}}{=} \lim _{t \rightarrow 0^{+}} \frac{\frac{2}{(1+2 t)^{2}}+\frac{2}{1+2 t}}{\frac{3}{(1+3 t)^{2}}+\frac{3}{1+3 t}} \\
& =\frac{2+2}{3+3}=\frac{4}{6}=\frac{2}{3} \\
& \text { [factor out } x^{1 / x} \text {] } \\
& \text { [let } t=1 / x \text {, form } 0 / 0 \text { by (1)] } \\
& \text { [by (2)] } \\
& \text { [by (1), now form 0/0] } \\
& \text { [by (3)] }
\end{aligned}
$$

9. Differentiating $x^{2}+x y+y^{2}=12$ implicitly with respect to x gives $2 x+y+x \frac{d y}{d x}+2 y \frac{d y}{d x}=0$, so $\frac{d y}{d x}=-\frac{2 x+y}{x+2 y}$.

At a highest or lowest point, $\frac{d y}{d x}=0 \Leftrightarrow y=-2 x$. Substituting $-2 x$ for y in the original equation gives $x^{2}+x(-2 x)+(-2 x)^{2}=12$, so $3 x^{2}=12$ and $x= \pm 2$. If $x=2$, then $y=-2 x=-4$, and if $x=-2$ then $y=4$. Thus, the highest and lowest points are $(-2,4)$ and $(2,-4)$.
10. Case (i) (first graph): For $x+y \geq 0$, that is, $y \geq-x,|x+y|=x+y \leq e^{x} \Rightarrow y \leq e^{x}-x$.

Note that $y=e^{x}-x$ is always above the line $y=-x$ and that $y=-x$ is a slant asymptote.
Case (ii) (second graph): For $x+y<0$, that is, $y<-x,|x+y|=-x-y \leq e^{x} \Rightarrow y \geq-x-e^{x}$.
Note that $-x-e^{x}$ is always below the line $y=-x$ and $y=-x$ is a slant asymptote.
Putting the two pieces together gives the third graph.

INSTRUCTIOR USE ONLY

11. (a) $y=x^{2} \Rightarrow y^{\prime}=2 x$, so the slope of the tangent line at $P\left(a, a^{2}\right)$ is $2 a$ and the slope of the normal line is $-\frac{1}{2 a}$ for $a \neq 0$. An equation of the normal line is $y-a^{2}=-\frac{1}{2 a}(x-a)$. Substitute x^{2} for y to find the x-coordinates of the two points of intersection of the parabola and the normal line. $\quad x^{2}-a^{2}=-\frac{x}{2 a}+\frac{1}{2} \quad \Leftrightarrow \quad x^{2}+\left(\frac{1}{2 a}\right) x-\frac{1}{2}-a^{2}=0$. We know that a is a root of this quadratic equation, so $x-a$ is a factor, and we have $(x-a)\left(x+\frac{1}{2 a}+a\right)=0$, and hence, $x=-a-\frac{1}{2 a}$ is the x-coordinate of the point Q. We want to minimize the y-coordinate of Q, which is $\left(-a-\frac{1}{2 a}\right)^{2}=a^{2}+1+\frac{1}{4 a^{2}}=y(a)$. Now $y^{\prime}(a)=2 a-\frac{1}{2 a^{3}}=\frac{4 a^{4}-1}{2 a^{3}}=\frac{\left(2 a^{2}+1\right)\left(2 a^{2}-1\right)}{2 a^{3}}=0 \Rightarrow$ $a=\frac{1}{\sqrt{2}}$ for $a>0$. Since $y^{\prime \prime}(a)=2+\frac{3}{2 a^{4}}>0$, we see that $a=\frac{1}{\sqrt{2}}$ gives us the minimum value of the y-coordinate of Q.
(b) The square S of the distance from $P\left(a, a^{2}\right)$ to $Q\left(-a-\frac{1}{2 a},\left(-a-\frac{1}{2 a}\right)^{2}\right)$ is given by

$$
\begin{aligned}
S & =\left(-a-\frac{1}{2 a}-a\right)^{2}+\left[\left(-a-\frac{1}{2 a}\right)^{2}-a^{2}\right]^{2}=\left(-2 a-\frac{1}{2 a}\right)^{2}+\left[\left(a^{2}+1+\frac{1}{4 a^{2}}\right)-a^{2}\right]^{2} \\
& =\left(4 a^{2}+2+\frac{1}{4 a^{2}}\right)+\left(1+\frac{1}{4 a^{2}}\right)^{2}=\left(4 a^{2}+2+\frac{1}{4 a^{2}}\right)+1+\frac{2}{4 a^{2}}+\frac{1}{16 a^{4}} \\
& =4 a^{2}+3+\frac{3}{4 a^{2}}+\frac{1}{16 a^{4}}
\end{aligned}
$$

$S^{\prime}=8 a-\frac{6}{4 a^{3}}-\frac{4}{16 a^{5}}=8 a-\frac{3}{2 a^{3}}-\frac{1}{4 a^{5}}=\frac{32 a^{6}-6 a^{2}-1}{4 a^{5}}=\frac{\left(2 a^{2}-1\right)\left(4 a^{2}+1\right)^{2}}{4 a^{5}}$. The only real positive zero of the equation $S^{\prime}=0$ is $a=\frac{1}{\sqrt{2}}$. Since $S^{\prime \prime}=8+\frac{9}{2 a^{4}}+\frac{5}{4 a^{6}}>0, a=\frac{1}{\sqrt{2}}$ corresponds to the shortest possible length of the line segment $P Q$.

$y=c x^{3}+e^{x} \quad \Rightarrow \quad y^{\prime}=3 c x^{2}+e^{x} \quad \Rightarrow \quad y^{\prime \prime}=6 c x+e^{x}$. The curve will have inflection points when $y^{\prime \prime}$ changes sign. $y^{\prime \prime}=0 \quad \Rightarrow \quad-6 c x=e^{x}$, so $y^{\prime \prime}$ will change sign when the line $y=-6 c x$ intersects the curve $y=e^{x}$ (but is not tangent to it).

Note that if $c=0$, the curve is just $y=e^{x}$, which has no inflection point.
The first figure shows that for $c>0, y=-6 c x$ will intersect $y=e^{x}$ once, so $y=c x^{3}+e^{x}$ will have one inflection point.
[continued]

The second figure shows that for $c<0$, the line $y=-6 c x$ can intersect the curve $y=e^{x}$ in two points (two inflection points), be tangent to it (no inflection point), or not intersect it (no inflection point). The tangent line at (a, e^{a}) has slope e^{a}, but from the diagram we see that the slope is $\frac{e^{a}}{a}$. So $\frac{e^{a}}{a}=e^{a} \Rightarrow a=1$. Thus, the slope is e. The line $y=-6 c x$ must have slope greater than e, so $-6 c>e \Rightarrow c<-e / 6$.

Therefore, the curve $y=c x^{3}+e^{x}$ will have one inflection point if $c>0$ and two inflection points if $c<-e / 6$.
13.

$\overline{A C}$ is tangent to the unit circle at D. To find the slope of $\overline{A C}$ at D, use implicit differentiation. $x^{2}+y^{2}=1 \Rightarrow 2 x+2 y y^{\prime}=0 \Rightarrow y y^{\prime}=-x \Rightarrow y^{\prime}=-\frac{x}{y}$.

Thus, the tangent line at $D(b, c)$ has equation $y=-\frac{b}{c} x+a$. At $D, x=b$ and $y=c$,

$$
\text { so } c=-\frac{b}{c}(b)+a \Rightarrow a=c+\frac{b^{2}}{c}=\frac{c^{2}+b^{2}}{c}=\frac{1}{c} \text {, and hence } c=\frac{1}{a} \text {. }
$$

Since $b^{2}+c^{2}=1, b=\sqrt{1-c^{2}}=\sqrt{1-1 / a^{2}}=\sqrt{\frac{a^{2}-1}{a^{2}}}=\frac{\sqrt{a^{2}-1}}{a}$, and now we have
both b and c in terms of a. At $C, y=-1$, so $-1=-\frac{b}{c} x+a \Rightarrow \frac{b}{c} x=a+1 \Rightarrow$ $x=\frac{c}{b}(a+1)=\frac{1 / a}{\sqrt{a^{2}-1} / a}(a+1)=\frac{a+1}{\sqrt{(a+1)(a-1)}}=\sqrt{\frac{a+1}{a-1}}$, and C has coordinates $\left(\sqrt{\frac{a+1}{a-1}},-1\right)$. Let S be the square of the distance from A to C. Then $S(a)=\left(0-\sqrt{\frac{a+1}{a-1}}\right)^{2}+(a+1)^{2}=\frac{a+1}{a-1}+(a+1)^{2} \Rightarrow$

$$
\begin{aligned}
S^{\prime}(a) & =\frac{(a-1)(1)-(a+1)(1)}{(a-1)^{2}}+2(a+1)=\frac{-2+2(a+1)(a-1)^{2}}{(a-1)^{2}} \\
& =\frac{-2+2\left(a^{3}-a^{2}-a+1\right)}{(a-1)^{2}}=\frac{2 a^{3}-2 a^{2}-2 a}{(a-1)^{2}}=\frac{2 a\left(a^{2}-a-1\right)}{(a-1)^{2}}
\end{aligned}
$$

Using the quadratic formula, we find that the solutions of $a^{2}-a-1=0$ are $a=\frac{1 \pm \sqrt{5}}{2}$, so $a_{1}=\frac{1+\sqrt{5}}{2}$ (the "golden mean") since $a>0$. For $1<a<a_{1}, S^{\prime}(a)<0$, and for $a>a_{1}, S^{\prime}(a)>0$, so a_{1} minimizes S.

Note: The minimum length of the equal sides is $\sqrt{S\left(a_{1}\right)}=\cdots=\sqrt{\frac{11+5 \sqrt{5}}{2}} \approx 3.33$ and the corresponding ength of the third side is $2 \sqrt{\frac{a_{1}+1}{a_{1}-1}}=\cdots=2 \sqrt{2+\sqrt{5}} \approx 4.12$, so the triangle is not equilateral. Another method: In $\triangle A B C, \cos \theta=\frac{a+1}{\overline{A C}}$, so $\overline{A C}=\frac{a+1}{\cos \theta}$. In $\triangle A D O, \sin \theta=\frac{1}{a}$, so 4.PP.13: changed "minimmum" to "corresponding" as circled here. $\cos \theta=\sqrt{1-\sin ^{2} \theta}=\sqrt{1-1 / a^{2}}=\frac{1}{a} \sqrt{a^{2}-1}$. Thus $\overline{A C}=\frac{a+1}{(1 / a) \sqrt{a^{2}-1}}=\frac{a(a+1)}{\sqrt{a^{2}-1}}=f(a)$. Now find the minimum of f.
14. To sketch the region $\left\{(x, y)\left|2 x y \leq|x-y| \leq x^{2}+y^{2}\right\}\right.$, we consider two cases.

Case 1: $x \geq y \quad$ This is the case in which (x, y) lies on or below the line $y=x$. The double inequality becomes $2 x y \leq x-y \leq x^{2}+y^{2}$. The right-hand inequality holds if and only if $x^{2}-x+y^{2}+y \geq 0 \Leftrightarrow$ $\left(x-\frac{1}{2}\right)^{2}+\left(y+\frac{1}{2}\right)^{2} \geq \frac{1}{2} \quad \Leftrightarrow \quad(x, y)$ lies on or outside the circle with radius $\frac{1}{\sqrt{2}}$ centered at $\left(\frac{1}{2},-\frac{1}{2}\right)$.

The left-hand inequality holds if and only if $2 x y-x+y \leq 0 \quad \Leftrightarrow \quad x y-\frac{1}{2} x+\frac{1}{2} y \leq 0 \quad \Leftrightarrow$
$\left(x+\frac{1}{2}\right)\left(y-\frac{1}{2}\right) \leq-\frac{1}{4} \quad \Leftrightarrow \quad(x, y)$ lies on or below the hyperbola $\left(x+\frac{1}{2}\right)\left(y-\frac{1}{2}\right)=-\frac{1}{4}$, which passes through the origin and approaches the lines $y=\frac{1}{2}$ and $x=-\frac{1}{2}$ asymptotically.

Case 2: $y \geq x \quad$ This is the case in which (x, y) lies on or above the line $y=x$. The double inequality becomes $2 x y \leq y-x \leq x^{2}+y^{2}$. The right-hand inequality holds if and only if $x^{2}+x+y^{2}-y \geq 0 \Leftrightarrow$ $\left(x+\frac{1}{2}\right)^{2}+\left(y-\frac{1}{2}\right)^{2} \geq \frac{1}{2} \Leftrightarrow(x, y)$ lies on or outside the circle of radius $\frac{1}{\sqrt{2}}$ centered at $\left(-\frac{1}{2}, \frac{1}{2}\right)$. The left-hand inequality holds if and only if $2 x y+x-y \leq 0 \Leftrightarrow x y+\frac{1}{2} x-\frac{1}{2} y \leq 0 \quad \Leftrightarrow \quad\left(x-\frac{1}{2}\right)\left(y+\frac{1}{2}\right) \leq-\frac{1}{4} \quad \Leftrightarrow \quad(x, y)$ lies on or above the left-hand branch of the hyperbola $\left(x-\frac{1}{2}\right)\left(y+\frac{1}{2}\right)=-\frac{1}{4}$, which passes through the origin and approaches the lines $y=-\frac{1}{2}$ and $x=\frac{1}{2}$ asymptotically. Therefore, the region of interest consists of the points on or above the left branch of the hyperbola $\left(x-\frac{1}{2}\right)\left(y+\frac{1}{2}\right)=-\frac{1}{4}$ that are on or outside the circle $\left(x+\frac{1}{2}\right)^{2}+\left(y-\frac{1}{2}\right)^{2}=\frac{1}{2}$, together with the points on or below the right branch of the hyperbola $\left(x+\frac{1}{2}\right)\left(y-\frac{1}{2}\right)=-\frac{1}{4}$ that are on or outside the circle $\left(x-\frac{1}{2}\right)^{2}+\left(y+\frac{1}{2}\right)^{2}=\frac{1}{2}$. Note that the inequalities are unchanged when x and y are interchanged, so the region is symmetric about the line $y=x$. So we
 need only have analyzed case 1 and then reflected that region about the line $y=x$, instead of considering case 2.
15. $A=\left(x_{1}, x_{1}^{2}\right)$ and $B=\left(x_{2}, x_{2}^{2}\right)$, where x_{1} and x_{2} are the solutions of the quadratic equation $x^{2}=m x+b$. Let $P=\left(x, x^{2}\right)$ and set $A_{1}=\left(x_{1}, 0\right), B_{1}=\left(x_{2}, 0\right)$, and $P_{1}=(x, 0)$. Let $f(x)$ denote the area of triangle $P A B$. Then $f(x)$ can be expressed in terms of the areas of three trapezoids as follows:

$$
\begin{aligned}
f(x) & =\operatorname{area}\left(A_{1} A B B_{1}\right)-\operatorname{area}\left(A_{1} A P P_{1}\right)-\operatorname{area}\left(B_{1} B P P_{1}\right) \\
& =\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)\left(x_{2}-x_{1}\right)-\frac{1}{2}\left(x_{1}^{2}+x^{2}\right)\left(x-x_{1}\right)-\frac{1}{2}\left(x^{2}+x_{2}^{2}\right)\left(x_{2}-x\right)
\end{aligned}
$$

After expanding and canceling terms, we get
$f(x)=\frac{1}{2}\left(x_{2} x_{1}^{2}-x_{1} x_{2}^{2}-x x_{1}^{2}+x_{1} x^{2}-x_{2} x^{2}+x x_{2}^{2}\right)=\frac{1}{2}\left[x_{1}^{2}\left(x_{2}-x\right)+x_{2}^{2}\left(x-x_{1}\right)+x^{2}\left(x_{1}-x_{2}\right)\right]$
$f^{\prime}(x)=\frac{1}{2}\left[-x_{1}^{2}+x_{2}^{2}+2 x\left(x_{1}-x_{2}\right)\right] . \quad f^{\prime \prime}(x)=\frac{1}{2}\left[2\left(x_{1}-x_{2}\right)\right]=x_{1}-x_{2}<0$ since $x_{2}>x_{1}$.
$f^{\prime}(x)=0 \quad \Rightarrow \quad 2 x\left(x_{1}-x_{2}\right)=x_{1}^{2}-x_{2}^{2} \quad \Rightarrow \quad x_{P}=\frac{1}{2}\left(x_{1}+x_{2}\right)$.

INSTRUCTORUSE ONLY

$$
\begin{aligned}
f\left(x_{P}\right) & =\frac{1}{2}\left(x_{1}^{2}\left[\frac{1}{2}\left(x_{2}-x_{1}\right)\right]+x_{2}^{2}\left[\frac{1}{2}\left(x_{2}-x_{1}\right)\right]+\frac{1}{4}\left(x_{1}+x_{2}\right)^{2}\left(x_{1}-x_{2}\right)\right) \\
& =\frac{1}{2}\left[\frac{1}{2}\left(x_{2}-x_{1}\right)\left(x_{1}^{2}+x_{2}^{2}\right)-\frac{1}{4}\left(x_{2}-x_{1}\right)\left(x_{1}+x_{2}\right)^{2}\right]=\frac{1}{8}\left(x_{2}-x_{1}\right)\left[2\left(x_{1}^{2}+x_{2}^{2}\right)-\left(x_{1}^{2}+2 x_{1} x_{2}+x_{2}^{2}\right)\right] \\
& =\frac{1}{8}\left(x_{2}-x_{1}\right)\left(x_{1}^{2}-2 x_{1} x_{2}+x_{2}^{2}\right)=\frac{1}{8}\left(x_{2}-x_{1}\right)\left(x_{1}-x_{2}\right)^{2}=\frac{1}{8}\left(x_{2}-x_{1}\right)\left(x_{2}-x_{1}\right)^{2}=\frac{1}{8}\left(x_{2}-x_{1}\right)^{3}
\end{aligned}
$$

To put this in terms of m and b, we solve the system $y=x_{1}^{2}$ and $y=m x_{1}+b$, giving us $x_{1}^{2}-m x_{1}-b=0 \Rightarrow$ $x_{1}=\frac{1}{2}\left(m-\sqrt{m^{2}+4 b}\right)$. Similarly, $x_{2}=\frac{1}{2}\left(m+\sqrt{m^{2}+4 b}\right)$. The area is then $\frac{1}{8}\left(x_{2}-x_{1}\right)^{3}=\frac{1}{8}\left(\sqrt{m^{2}+4 b}\right)^{3}$, and is attained at the point $P\left(x_{P}, x_{P}^{2}\right)=P\left(\frac{1}{2} m, \frac{1}{4} m^{2}\right)$.

Note: Another way to get an expression for $f(x)$ is to use the formula for an area of a triangle in terms of the coordinates of the vertices: $f(x)=\frac{1}{2}\left[\left(x_{2} x_{1}^{2}-x_{1} x_{2}^{2}\right)+\left(x_{1} x^{2}-x x_{1}^{2}\right)+\left(x x_{2}^{2}-x_{2} x^{2}\right)\right]$.
16. Let $x=|A E|, y=|A F|$ as shown. The area \mathcal{A} of the $\triangle A E F$ is $\mathcal{A}=\frac{1}{2} x y$. We need to find a relationship between x and y, so that we can take the derivative $d \mathcal{A} / d x$ and then find the maximum and minimum areas. Now let A^{\prime} be the point on which A ends up after the fold has been performed, and let P be the intersection of $A A^{\prime}$ and $E F$. Note that $A A^{\prime}$ is perpendicular to $E F$ since we are reflecting A
 through the line $E F$ to get to A^{\prime}, and that $|A P|=\left|P A^{\prime}\right|$ for the same reason.

But $\left|A A^{\prime}\right|=1$, since $A A^{\prime}$ is a radius of the circle. Since $|A P|+\left|P A^{\prime}\right|=\left|A A^{\prime}\right|$, we have $|A P|=\frac{1}{2}$. Another way to express the area of the triangle is $\mathcal{A}=\frac{1}{2}|E F||A P|=\frac{1}{2} \sqrt{x^{2}+y^{2}}\left(\frac{1}{2}\right)=\frac{1}{4} \sqrt{x^{2}+y^{2}}$. Equating the two expressions for \mathcal{A}, we get $\frac{1}{2} x y=\frac{1}{4} \sqrt{x^{2}+y^{2}} \Rightarrow 4 x^{2} y^{2}=x^{2}+y^{2} \Rightarrow y^{2}\left(4 x^{2}-1\right)=x^{2} \Rightarrow y=x / \sqrt{4 x^{2}-1}$.
(Note that we could also have derived this result from the similarity of $\triangle A^{\prime} P E$ and $\triangle A^{\prime} F E$; that is,
$\frac{\left|A^{\prime} P\right|}{|P E|}=\frac{\left|A^{\prime} F\right|}{\left|A^{\prime} E\right|} \Rightarrow \frac{\frac{1}{2}}{\sqrt{x^{2}-\left(\frac{1}{2}\right)^{2}}}=\frac{y}{x} \Rightarrow y=\frac{\frac{1}{2} x}{\sqrt{4 x^{2}-1} / 2}=\frac{x}{\sqrt{4 x^{2}-1}}$.) Now we can substitute for y and
calculate $\frac{d \mathcal{A}}{d x}: \mathcal{A}=\frac{1}{2} \frac{x^{2}}{\sqrt{4 x^{2}-1}} \Rightarrow \frac{d \mathcal{A}}{d x}=\frac{1}{2}\left[\frac{\sqrt{4 x^{2}-1}(2 x)-x^{2}\left(\frac{1}{2}\right)\left(4 x^{2}-1\right)^{-1 / 2}(8 x)}{4 x^{2}-1}\right]$. This is 0 when $2 x \sqrt{4 x^{2}-1}-4 x^{3}\left(4 x^{2}-1\right)^{-1 / 2}=0 \Leftrightarrow 2 x\left(4 x^{2}-1\right)^{-1 / 2}\left[\left(4 x^{2}-1\right)-2 x^{2}\right]=0 \quad \Rightarrow \quad\left(4 x^{2}-1\right)-2 x^{2}=0$ $(x>0) \Leftrightarrow 2 x^{2}=1 \Rightarrow x=\frac{1}{\sqrt{2}}$. So this is one possible value for an extremum. We must also test the endpoints of the interval over which x ranges. The largest value that x can attain is 1 , and the smallest value of x occurs when $y=1 \Leftrightarrow$ $1=x / \sqrt{4 x^{2}-1} \Leftrightarrow x^{2}=4 x^{2}-1 \quad \Leftrightarrow \quad 3 x^{2}=1 \quad \Leftrightarrow \quad x=\frac{1}{\sqrt{3}}$. This will give the same value of \mathcal{A} as will $x=1$, since the geometric situation is the same (reflected through the line $y=x$). We calculate
$\mathcal{A}\left(\frac{1}{\sqrt{2}}\right)=\frac{1}{2} \frac{(1 / \sqrt{2})^{2}}{\sqrt{4(1 / \sqrt{2})^{2}-1}}=\frac{1}{4}=0.25$, and $\mathcal{A}(1)=\frac{1}{2} \frac{1^{2}}{\sqrt{4(1)^{2}-1}}=\frac{1}{2 \sqrt{3}} \approx 0.29$. So the maximum area is $\mathcal{A}(1)=\mathcal{A}\left(\frac{1}{\sqrt{3}}\right)=\frac{1}{2 \sqrt{3}}$ and the minimum area is $\mathcal{A}\left(\frac{1}{\sqrt{2}}\right)=\frac{1}{4}$.
[continued]

Another method: Use the angle θ (see diagram above) as a variable:
$\mathcal{A}=\frac{1}{2} x y=\frac{1}{2}\left(\frac{1}{2} \sec \theta\right)\left(\frac{1}{2} \csc \theta\right)=\frac{1}{8 \sin \theta \cos \theta}=\frac{1}{4 \sin 2 \theta} . \mathcal{A}$ is minimized when $\sin 2 \theta$ is maximal, that is, when
$\sin 2 \theta=1 \Rightarrow 2 \theta=\frac{\pi}{2} \Rightarrow \theta=\frac{\pi}{4}$. Also note that $A^{\prime} E=x=\frac{1}{2} \sec \theta \leq 1 \quad \Rightarrow \sec \theta \leq 2 \Rightarrow$
$\cos \theta \geq \frac{1}{2} \Rightarrow \theta \leq \frac{\pi}{3}$, and similarly, $A^{\prime} F=y=\frac{1}{2} \csc \theta \leq 1 \quad \Rightarrow \quad \csc \theta \leq 2 \quad \Rightarrow \quad \sin \theta \leq \frac{1}{2} \Rightarrow \theta \geq \frac{\pi}{6}$.
As above, we find that \mathcal{A} is maximized at these endpoints: $\mathcal{A}\left(\frac{\pi}{6}\right)=\frac{1}{4 \sin \frac{\pi}{3}}=\frac{1}{2 \sqrt{3}}=\frac{1}{4 \sin \frac{2 \pi}{3}}=\mathcal{A}\left(\frac{\pi}{3}\right)$;
and minimized at $\theta=\frac{\pi}{4}: \mathcal{A}\left(\frac{\pi}{4}\right)=\frac{1}{4 \sin \frac{\pi}{2}}=\frac{1}{4}$.
17. Suppose that the curve $y=a^{x}$ intersects the line $y=x$. Then $a^{x_{0}}=x_{0}$ for some $x_{0}>0$, and hence $a=x_{0}^{1 / x_{0}}$. We find the maximum value of $g(x)=x^{1 / x}, x>0$, because if a is larger than the maximum value of this function, then the curve $y=a^{x}$ does not intersect the line $y=x . g^{\prime}(x)=e^{(1 / x) \ln x}\left(-\frac{1}{x^{2}} \ln x+\frac{1}{x} \cdot \frac{1}{x}\right)=x^{1 / x}\left(\frac{1}{x^{2}}\right)(1-\ln x)$. This is 0 only where $x=e$, and for $0<x<e, f^{\prime}(x)>0$, while for $x>e, f^{\prime}(x)<0$, so g has an absolute maximum of $g(e)=e^{1 / e}$. So if $y=a^{x}$ intersects $y=x$, we must have $0<a \leq e^{1 / e}$. Conversely, suppose that $0<a \leq e^{1 / e}$. Then $a^{e} \leq e$, so the graph of $y=a^{x}$ lies below or touches the graph of $y=x$ at $x=e$. Also $a^{0}=1>0$, so the graph of $y=a^{x}$ lies above that of $y=x$ at $x=0$. Therefore, by the Intermediate Value Theorem, the graphs of $y=a^{x}$ and $y=x$ must intersect somewhere between $x=0$ and $x=e$.
18. If $L=\lim _{x \rightarrow \infty}\left(\frac{x+a}{x-a}\right)^{x}$, then L has the indeterminate form 1^{∞}, so

$$
\begin{aligned}
\ln L & =\lim _{x \rightarrow \infty} \ln \left(\frac{x+a}{x-a}\right)^{x}=\lim _{x \rightarrow \infty} x \ln \left(\frac{x+a}{x-a}\right)=\lim _{x \rightarrow \infty} \frac{\ln (x+a)-\ln (x-a)}{1 / x} \stackrel{\mathrm{H}}{=} \lim _{x \rightarrow \infty} \frac{\frac{1}{x+a}-\frac{1}{x-a}}{-1 / x^{2}} \\
& =\lim _{x \rightarrow \infty}\left[\frac{(x-a)-(x+a)}{(x+a)(x-a)} \cdot \frac{-x^{2}}{1}\right]=\lim _{x \rightarrow \infty} \frac{2 a x^{2}}{x^{2}-a^{2}}=\lim _{x \rightarrow \infty} \frac{2 a}{1-a^{2} / x^{2}}=2 a
\end{aligned}
$$

Hence, $\ln L=2 a$, so $L=e^{2 a}$. From the original equation, we want $L=e^{1} \Rightarrow 2 a=1 \quad \Rightarrow \quad a=\frac{1}{2}$.
19. Note that $f(0)=0$, so for $x \neq 0,\left|\frac{f(x)-f(0)}{x-0}\right|=\left|\frac{f(x)}{x}\right|=\frac{|f(x)|}{|x|} \leq \frac{|\sin x|}{|x|}=\frac{\sin x}{x}$.

Therefore, $\left|f^{\prime}(0)\right|=\left|\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}\right|=\lim _{x \rightarrow 0}\left|\frac{f(x)-f(0)}{x-0}\right| \leq \lim _{x \rightarrow 0} \frac{\sin x}{x}=1$.
But $f(x)=a_{1} \sin x+a_{2} \sin 2 x+\cdots+a_{n} \sin n x \quad \Rightarrow \quad f^{\prime}(x)=a_{1} \cos x+2 a_{2} \cos 2 x+\cdots+n a_{n} \cos n x$, so $\left|f^{\prime}(0)\right|=\left|a_{1}+2 a_{2}+\cdots+n a_{n}\right| \leq 1$.

Another solution: We are given that $\left|\sum_{k=1}^{n} a_{k} \sin k x\right| \leq|\sin x|$. So for x close to 0 , and $x \neq 0$, we have
$\left|\sum_{k=1}^{n} a_{k} \frac{\sin k x}{\sin x}\right| \leq 1 \Rightarrow \lim _{x \rightarrow 0}\left|\sum_{k=1}^{n} a_{k} \frac{\sin k x}{\sin x}\right| \leq 1 \Rightarrow\left|\sum_{k=1}^{n} a_{k} \lim _{x \rightarrow 0} \frac{\sin k x}{\sin x}\right| \leq 1$. But by l'Hospital's Rule,
$\lim _{x \rightarrow 0} \frac{\sin k x}{\sin x}=\lim _{x \rightarrow 0} \frac{k \cos k x}{\cos x}=k$, so $\left|\sum_{k=1}^{n} k a_{k}\right| \leq 1$.
20. Let the circle have radius r, so $|O P|=|O Q|=r$, where O is the center of the circle. Now $\angle P O R$ has measure $\frac{1}{2} \theta$, and $\angle O P R$ is a right angle, so $\tan \frac{1}{2} \theta=\frac{|P R|}{r}$ and the area of $\triangle O P R$ is $\frac{1}{2}|O P||P R|=\frac{1}{2} r^{2} \tan \frac{1}{2} \theta$. The area of the sector cut by $O P$ and $O R$ is $\frac{1}{2} r^{2}\left(\frac{1}{2} \theta\right)=\frac{1}{4} r^{2} \theta$. Let S be the intersection of $P Q$ and $O R$. Then $\sin \frac{1}{2} \theta=\frac{|P S|}{r}$ and $\cos \frac{1}{2} \theta=\frac{|O S|}{r}$, and the area of $\triangle O S P$ is $\frac{1}{2}|O S||P S|=\frac{1}{2}\left(r \cos \frac{1}{2} \theta\right)\left(r \sin \frac{1}{2} \theta\right)=\frac{1}{2} r^{2} \sin \frac{1}{2} \theta \cos \frac{1}{2} \theta=\frac{1}{4} r^{2} \sin \theta$.

So $B(\theta)=2\left(\frac{1}{2} r^{2} \tan \frac{1}{2} \theta-\frac{1}{4} r^{2} \theta\right)=r^{2}\left(\tan \frac{1}{2} \theta-\frac{1}{2} \theta\right)$ and $A(\theta)=2\left(\frac{1}{4} r^{2} \theta-\frac{1}{4} r^{2} \sin \theta\right)=\frac{1}{2} r^{2}(\theta-\sin \theta)$. Thus,

$$
\begin{aligned}
\lim _{\theta \rightarrow 0^{+}} \frac{A(\theta)}{B(\theta)} & =\lim _{\theta \rightarrow 0^{+}} \frac{\frac{1}{2} r^{2}(\theta-\sin \theta)}{r^{2}\left(\tan \frac{1}{2} \theta-\frac{1}{2} \theta\right)}=\lim _{\theta \rightarrow 0^{+}} \frac{\theta-\sin \theta}{2\left(\tan \frac{1}{2} \theta-\frac{1}{2} \theta\right)} \stackrel{\mathrm{H}}{=} \lim _{\theta \rightarrow 0^{+}} \frac{1-\cos \theta}{2\left(\frac{1}{2} \sec ^{2} \frac{1}{2} \theta-\frac{1}{2}\right)} \\
& =\lim _{\theta \rightarrow 0^{+}} \frac{1-\cos \theta}{\sec ^{2} \frac{1}{2} \theta-1}=\lim _{\theta \rightarrow 0^{+}} \frac{1-\cos \theta}{\tan ^{2} \frac{1}{2} \theta} \stackrel{\mathrm{H}}{=} \lim _{\theta \rightarrow 0^{+}} \frac{\sin \theta}{2\left(\tan \frac{1}{2} \theta\right)\left(\sec ^{2} \frac{1}{2} \theta\right) \frac{1}{2}} \\
& =\lim _{\theta \rightarrow 0^{+}} \frac{\sin \theta \cos ^{3} \frac{1}{2} \theta}{\sin \frac{1}{2} \theta}=\lim _{\theta \rightarrow 0^{+}} \frac{\left(2 \sin \frac{1}{2} \theta \cos \frac{1}{2} \theta\right) \cos ^{3} \frac{1}{2} \theta}{\sin \frac{1}{2} \theta}=2 \lim _{\theta \rightarrow 0^{+}} \cos ^{4}\left(\frac{1}{2} \theta\right)=2(1)^{4}=2
\end{aligned}
$$

21. (a) Distance $=$ rate \times time, so time $=$ distance $/$ rate. $T_{1}=\frac{D}{c_{1}}, T_{2}=\frac{2|P R|}{c_{1}}+\frac{|R S|}{c_{2}}=\frac{2 h \sec \theta}{c_{1}}+\frac{D-2 h \tan \theta}{c_{2}}$,

$$
T_{3}=\frac{2 \sqrt{h^{2}+D^{2} / 4}}{c_{1}}=\frac{\sqrt{4 h^{2}+D^{2}}}{c_{1}} .
$$

(b) $\frac{d T_{2}}{d \theta}=\frac{2 h}{c_{1}} \cdot \sec \theta \tan \theta-\frac{2 h}{c_{2}} \sec ^{2} \theta=0$ when $2 h \sec \theta\left(\frac{1}{c_{1}} \tan \theta-\frac{1}{c_{2}} \sec \theta\right)=0 \Rightarrow$ $\frac{1}{c_{1}} \frac{\sin \theta}{\cos \theta}-\frac{1}{c_{2}} \frac{1}{\cos \theta}=0 \Rightarrow \frac{\sin \theta}{c_{1} \cos \theta}=\frac{1}{c_{2} \cos \theta} \Rightarrow \sin \theta=\frac{c_{1}}{c_{2}}$. The First Derivative Test shows that this gives a minimum.
(c) Using part (a) with $D=1$ and $T_{1}=0.26$, we have $T_{1}=\frac{D}{c_{1}} \Rightarrow c_{1}=\frac{1}{0.26} \approx 3.85 \mathrm{~km} / \mathrm{s} . T_{3}=\frac{\sqrt{4 h^{2}+D^{2}}}{c_{1}} \Rightarrow$ $4 h^{2}+D^{2}=T_{3}^{2} c_{1}^{2} \Rightarrow h=\frac{1}{2} \sqrt{T_{3}^{2} c_{1}^{2}-D^{2}}=\frac{1}{2} \sqrt{(0.34)^{2}(1 / 0.26)^{2}-1^{2}} \approx 0.42 \mathrm{~km}$. To find c_{2}, we use $\sin \theta=\frac{c_{1}}{c_{2}}$ from part (b) and $T_{2}=\frac{2 h \sec \theta}{c_{1}}+\frac{D-2 h \tan \theta}{c_{2}}$ from part (a). From the figure, $\sin \theta=\frac{c_{1}}{c_{2}} \Rightarrow \sec \theta=\frac{c_{2}}{\sqrt{c_{2}^{2}-c_{1}^{2}}}$ and $\tan \theta=\frac{c_{1}}{\sqrt{c_{2}^{2}-c_{1}^{2}}}$, so $T_{2}=\frac{2 h c_{2}}{c_{1} \sqrt{c_{2}^{2}-c_{1}^{2}}}+\frac{D \sqrt{c_{2}^{2}-c_{1}^{2}}-2 h c_{1}}{c_{2} \sqrt{c_{2}^{2}-c_{1}^{2}}}$. Using the values for T_{2} [given as 0.32],
 h, c_{1}, and D, we can graph $\mathrm{Y}_{1}=T_{2}$ and $\mathrm{Y}_{2}=\frac{2 h c_{2}}{c_{1} \sqrt{c_{2}^{2}-c_{1}^{2}}}+\frac{D \sqrt{c_{2}^{2}-c_{1}^{2}}-2 h c_{1}}{c_{2} \sqrt{c_{2}^{2}-c_{1}^{2}}}$ and find their intersection points. Doing so gives us $c_{2} \approx 4.10$ and 7.66, but if $c_{2}=4.10$, then $\theta=\arcsin \left(c_{1} / c_{2}\right) \approx 69.6^{\circ}$, which implies that point S is to the left of point R in the diagram. So $c_{2}=7.66 \mathrm{~km} / \mathrm{s}$.
22. A straight line intersects the curve $y=f(x)=x^{4}+c x^{3}+12 x^{2}-5 x+2$ in four distinct points if and only if the graph of f has two inflection points. $f^{\prime}(x)=4 x^{3}+3 c x^{2}+24 x-5$ and $f^{\prime \prime}(x)=12 x^{2}+6 c x+24$.
$f^{\prime \prime}(x)=0 \quad \Leftrightarrow \quad x=\frac{-6 c \pm \sqrt{(6 c)^{2}-4(12)(24)}}{2(12)}$. There are two distinct roots for $f^{\prime \prime}(x)=0$ (and hence two inflection points) if and only if the discriminant is positive; that is, $36 c^{2}-1152>0 \Leftrightarrow c^{2}>32 \Leftrightarrow|c|>\sqrt{32}$. Thus, the desired values of c are $c<-4 \sqrt{2}$ or $c>4 \sqrt{2}$.
23.

Let $a=|E F|$ and $b=|B F|$ as shown in the figure.
Since $\ell=|B F|+|F D|,|F D|=\ell-b$. Now

$$
\begin{aligned}
|E D| & =|E F|+|F D|=a+\ell-b \\
& \sqrt{r^{2}-x^{2}}+\ell-\sqrt{(d-x)^{2}+a^{2}} \\
& =\sqrt{r^{2}-x^{2}}+\ell-\sqrt{(d-x)^{2}+\left(\sqrt{r^{2}-x^{2}}\right)^{2}} \\
& =\sqrt{r^{2}-x^{2}}+\ell-\sqrt{d^{2}-2 d x+x^{2}+r^{2}-x^{2}}
\end{aligned}
$$

Let $f(x)=\sqrt{r^{2}-x^{2}}+\ell-\sqrt{d^{2}+r^{2}-2 d x}$.
$f^{\prime}(x)=\frac{1}{2}\left(r^{2}-x^{2}\right)^{-1 / 2}(-2 x)-\frac{1}{2}\left(d^{2}+r^{2}-2 d x\right)^{-1 / 2}(-2 d)=\frac{-x}{\sqrt{r^{2}-x^{2}}}+\frac{d}{\sqrt{d^{2}+r^{2}-2 d x}}$.
$f^{\prime}(x)=0 \Rightarrow \frac{x}{\sqrt{r^{2}-x^{2}}}=\frac{d}{\sqrt{d^{2}+r^{2}-2 d x}} \Rightarrow \frac{x^{2}}{r^{2}-x^{2}}=\frac{d^{2}}{d^{2}+r^{2}-2 d x} \Rightarrow$
$d^{2} x^{2}+r^{2} x^{2}-2 d x^{3}=d^{2} r^{2}-d^{2} x^{2} \quad \Rightarrow \quad 0=2 d x^{3}-2 d^{2} x^{2}-r^{2} x^{2}+d^{2} r^{2} \quad \Rightarrow$
$0=2 d x^{2}(x-d)-r^{2}\left(x^{2}-d^{2}\right) \quad \Rightarrow \quad 0=2 d x^{2}(x-d)-r^{2}(x+d)(x-d) \quad \Rightarrow \quad 0=(x-d)\left[2 d x^{2}-r^{2}(x+d)\right]$
But $d>r>x$, so $x \neq d$. Thus, we solve $2 d x^{2}-r^{2} x-d r^{2}=0$ for x :
$x=\frac{-\left(-r^{2}\right) \pm \sqrt{\left(-r^{2}\right)^{2}-4(2 d)\left(-d r^{2}\right)}}{2(2 d)}=\frac{r^{2} \pm \sqrt{r^{4}+8 d^{2} r^{2}}}{4 d}$. Because $\sqrt{r^{4}+8 d^{2} r^{2}}>r^{2}$, the "negative" can be discarded. Thus, $x=\frac{r^{2}+\sqrt{r^{2}} \sqrt{r^{2}+8 d^{2}}}{4 d}=\frac{r^{2}+r \sqrt{r^{2}+8 d^{2}}}{4 d} \quad[r>0] \quad=\frac{r}{4 d}\left(r+\sqrt{r^{2}+8 d^{2}}\right)$. The maximum value of $|E D|$ occurs at this value of x.
24.

Let $a=\overline{C D}$ denote the distance from the center C of the base to the midpoint D of a side of the base.

Since $\triangle P Q R$ is similar to $\triangle D C R, \frac{a}{h}=\frac{r}{\sqrt{h(h-2 r)}} \Rightarrow a=\frac{r h}{\sqrt{h(h-2 r)}}=r \frac{\sqrt{h}}{\sqrt{h-2 r}}$.
Let b denote one-half the length of a side of the base. The area A of the base is
$A=8($ area of $\triangle C D E)=8\left(\frac{1}{2} a b\right)=4 a\left(a \tan \frac{\pi}{4}\right)=4 a^{2}$.
The volume of the pyramid is $V=\frac{1}{3} A h=\frac{1}{3}\left(4 a^{2}\right) h=\frac{4}{3}\left(r \frac{\sqrt{h}}{\sqrt{h-2 r}}\right)^{2} h=\frac{4}{3} r^{2} \frac{h^{2}}{h-2 r}$, with domain $h>2 r$.
Now $\frac{d V}{d h}=\frac{4}{3} r^{2} \cdot \frac{(h-2 r)(2 h)-h^{2}(1)}{(h-2 r)^{2}}=\frac{4}{3} r^{2} \frac{h^{2}-4 h r}{(h-2 r)^{2}}=\frac{4}{3} r^{2} \frac{h(h-4 r)}{(h-2 r)^{2}}$
and

$$
\begin{aligned}
\frac{d^{2} V}{d h^{2}} & =\frac{4}{3} r^{2} \cdot \frac{(h-2 r)^{2}(2 h-4 r)-\left(h^{2}-4 h r\right)(2)(h-2 r)(1)}{\left[(h-2 r)^{2}\right]^{2}} \\
& =\frac{4}{3} r^{2} \cdot \frac{2(h-2 r)\left[\left(h^{2}-4 h r+4 r^{2}\right)-\left(h^{2}-4 h r\right)\right]}{(h-2 r)^{2}} \\
& =\frac{8}{3} r^{2} \cdot \frac{4 r^{2}}{(h-2 r)^{3}}=\frac{32}{3} r^{4} \cdot \frac{1}{(h-2 r)^{3}} .
\end{aligned}
$$

The first derivative is equal to zero for $h=4 r$ and the second derivative is positive for $h>2 r$, so the volume of the pyramid is minimized when $h=4 r$.

To extend our solution to a regular n-gon, we make the following changes:
(1) the number of sides of the base is n
(2) the number of triangles in the base is $2 n$
(3) $\angle D C E=\frac{\pi}{n}$
(4) $b=a \tan \frac{\pi}{n}$

We then obtain the following results: $A=n a^{2} \tan \frac{\pi}{n}, V=\frac{n r^{2}}{3} \cdot \tan \left(\frac{\pi}{n}\right) \cdot \frac{h^{2}}{h-2 r}, \frac{d V}{d h}=\frac{n r^{2}}{3} \cdot \tan \left(\frac{\pi}{n}\right) \cdot \frac{h(h-4 r)}{(h-2 r)^{2}}$, and $\frac{d^{2} V}{d h^{2}}=\frac{8 n r^{4}}{3} \cdot \tan \left(\frac{\pi}{n}\right) \cdot \frac{1}{(h-2 r)^{3}}$. Notice that the answer, $h=4 r$, is independent of the number of sides of the base of the polygon!
25. $V=\frac{4}{3} \pi r^{3} \Rightarrow \frac{d V}{d t}=4 \pi r^{2} \frac{d r}{d t}$. But $\frac{d V}{d t}$ is proportional to the surface area, so $\frac{d V}{d t}=k \cdot 4 \pi r^{2}$ for some constant k. Therefore, $4 \pi r^{2} \frac{d r}{d t}=k \cdot 4 \pi r^{2} \quad \Leftrightarrow \quad \frac{d r}{d t}=k=$ constant. An antiderivative of k with respect to t is $k t$, so $r=k t+C$. When $t=0$, the radius r must equal the original radius r_{0}, so $C=r_{0}$, and $r=k t+r_{0}$. To find k we use the fact that when $t=3, r=3 k+r_{0}$ and $V=\frac{1}{2} V_{0} \quad \Rightarrow \quad \frac{4}{3} \pi\left(3 k+r_{0}\right)^{3}=\frac{1}{2} \cdot \frac{4}{3} \pi r_{0}^{3} \Rightarrow\left(3 k+r_{0}\right)^{3}=\frac{1}{2} r_{0}^{3} \Rightarrow$ $3 k+r_{0}=\frac{1}{\sqrt[3]{2}} r_{0} \Rightarrow k=\frac{1}{3} r_{0}\left(\frac{1}{\sqrt[3]{2}}-1\right)$. Since $r=k t+r_{0}, r=\frac{1}{3} r_{0}\left(\frac{1}{\sqrt[3]{2}}-1\right) t+r_{0}$. When the snowball has melted completely we have $r=0 \Rightarrow \frac{1}{3} r_{0}\left(\frac{1}{\sqrt[3]{2}}-1\right) t+r_{0}=0$ which gives $t=\frac{3 \sqrt[3]{2}}{\sqrt[3]{2}-1}$. Hence, it takes $\frac{3 \sqrt[3]{2}}{\sqrt[3]{2}-1}-3=\frac{3}{\sqrt[3]{2}-1} \approx 11 \mathrm{~h} 33$ min longer.
26. By ignoring the bottom hemisphere of the initial spherical bubble, we can rephrase the problem as follows: Prove that the maximum height of a stack of n hemispherical bubbles is \sqrt{n} if the radius of the bottom hemisphere is 1 . We proceed by induction. The case $n=1$ is obvious since $\sqrt{1}$ is the height of the first hemisphere. Suppose the assertion is true for $n=k$ and let's suppose we have $k+1$ hemispherical bubbles forming a stack of maximum height. Suppose the second hemisphere (counting from the bottom) has radius r. Then by our induction hypothesis (scaled to the setting of a bottom hemisphere of radius r), the height of the stack formed by the top k bubbles is $\sqrt{k} r$. (If it were shorter, then the total stack of $k+1$ bubbles wouldn't have maximum height.)

The height of the whole stack is $H(r)=\sqrt{k} r+\sqrt{1-r^{2}}$. (See the figure.)
We want to choose r so as to maximize $H(r)$. Note that $0<r<1$.
We calculate $H^{\prime}(r)=\sqrt{k}-\frac{r}{\sqrt{1-r^{2}}}$ and $H^{\prime \prime}(r)=\frac{-1}{\left(1-r^{2}\right)^{3 / 2}}$.
$H^{\prime}(r)=0 \quad \Leftrightarrow \quad r^{2}=k\left(1-r^{2}\right) \quad \Leftrightarrow \quad(k+1) r^{2}=k \quad \Leftrightarrow \quad r=\sqrt{\frac{k}{k+1}}$.
This is the only critical number in $(0,1)$ and it represents a local maximum

(hence an absolute maximum) since $H^{\prime \prime}(r)<0$ on $(0,1)$. When $r=\sqrt{\frac{k}{k+1}}$,
$H(r)=\sqrt{k} \frac{\sqrt{k}}{\sqrt{k+1}}+\sqrt{1-\frac{k}{k+1}}=\frac{k}{\sqrt{k+1}}+\frac{1}{\sqrt{k+1}}=\sqrt{k+1}$. Thus, the assertion is true for $n=k+1$ when
it is true for $n=k$. By induction, it is true for all positive integers n.
Note: In general, a maximally tall stack of n hemispherical bubbles consists of bubbles with radii
$1, \sqrt{\frac{n-1}{n}}, \sqrt{\frac{n-2}{n}}, \ldots, \sqrt{\frac{2}{n}}, \sqrt{\frac{1}{n}}$.

INSTRUCTORUSE ONLY

