1. **(3 points each)** For each of the following power series, find the radius of convergence and the interval of convergence:

1) \[\sum \sqrt{n}x^n, \]
2) \[\sum \frac{1}{n^{\sqrt{n}}}x^n, \]
3) \[\sum \frac{3^n}{\sqrt{n}}x^{2n+1}. \]

2. For \(n = 0, 1, 2, \ldots \), let \(a_n = \left(\frac{4+2(-1)^n}{3}\right)^n \).

(a) **(4 points)** Find \(\lim \sup |a_n|^{1/n}, \lim \inf |a_n|^{1/n} \), \(\lim \sup |a_{n+1}/a_n| \) and \(\lim \inf |a_{n+1}/a_n| \).

(b) **(3 points)** Do the series \(\sum a_n \) and \(\sum (-1)^na_n \) converge?

(c) **(3 points)** Find the radius of convergence and the interval of convergence of the series \(\sum a_nx^n \).

3. For each \(n \in \mathbb{N} \), let \(f_n(x) = \frac{1}{n} \sin(n^2) \). Each \(f_n \) is differentiable for any \(x \in \mathbb{R} \). Show that:

(a) **(4 points)** \(\lim f_n(x) = 0 \) for any \(x \in \mathbb{R} \).

(b) **(3 points)** \(\lim f'_n(x) \) exists only if \(x \) is a multiple of \(2\pi \).

4. Show that \(f_n(x) = \frac{n}{nx+1} \), for \(x \in [0, \infty) \) converges pointwise to \(f(x) = \frac{1}{x} \), for \(x \in (0, \infty) \).

Extra credit:

1. **(5 points)** Let \(f_n(x) = nx^n \) for \(x \in [0, 1] \) and \(n \in \mathbb{N} \). Show that

(a) \(\lim f_n(x) = 0 \) for \(x \in [0, 1] \).

(b) \(\lim \int_0^1 f_n(x)dx = 1 \).

2. **(5 points)** Let \(f_n(x) = \int_0^x ne^{-ny}dy \), for \(x > 0 \) and \(n \in \mathbb{N} \).

(a) What is the limit \(f(x) = \lim f_n(x) \)?

(b) Do we have \(f(x) = \int_0^x (\lim ne^{-ny})dy \)?