1. (5 points) Find the Taylor series for \(f(x) = \cos(x) \) about \(x = 0 \) and show that \(\cos(x) \) equals its Taylor series for any \(x \in \mathbb{R} \).

2. (5 points each) Find the Taylor series for \(f(x) = \cosh(x) = \frac{1}{2}(e^x + e^{-x}) \) and \(g(x) = \frac{1}{2}(e^x - e^{-x}) \) about \(x = 0 \).

3. (5 points) Find the Taylor series for \(f(x) = \frac{x^2}{1+x} \) about \(x = 0 \). On what interval does \(f(x) \) equal its Taylor series?
 Hint: Compute \(f'(x) \), \(f''(x) \) and \(f^{(3)}(x) \) and then find \(f^{(n)}(x) \) for \(n > 3 \) by induction.

4. In the following exercise, we will define a compactly supported function \(f(x) \) as being a function that is non zero (that is \(|f(x)| > 0 \)) on some interval \(x \in (a, b) \) and zero outside this interval. Let \(C^\infty_0 \) be the set of infinitely differentiable on \(\mathbb{R} \), compactly supported functions.
 The set \(C^\infty_0 \) is of great importance in mathematics. We want to prove that there are infinitely many functions that belong to \(C^\infty_0 \). We will consider first the function:
 \[
 f(x) = \begin{cases}
 0, & \text{if } x \leq 0 \\
 e^{-\frac{1}{x}}, & \text{if } x > 0
 \end{cases}
 \]
 (a) (1 points) Sketch a graph of \(f(x) \).
 (b) (4 points) Show that \(f(x) \) is infinitely differentiable on \(\mathbb{R} \).
 Hint: you can use \(\lim_{x \to 0} x^{-k}e^{-\frac{1}{x}} = 0 \) for any \(k \in \mathbb{Z} \).
 (c) (1 points) Let \(g(x) \) be an infinitely differentiable function on \(\mathbb{R} \). Show that \(f(x)g(x) \) is also infinitely differentiable \(\mathbb{R} \).
 (d) (4 points) Using the above results, construct a function that belongs to \(C^\infty_0 \) and show that there exists infinitely many of them.
 Hint: use functions of the form \(f(x - a) \) and \(f(-x + b) \).