Homework 1
Three-dimensional coordinate systems.

September 28, 2004

1 Exercises

1. Sketch a graph of the plane defined by the equation \(y = 2 \).

2. Sketch a graph of the plane defined by the equation \(2x + y = 2 \).

3. Find the equation of the sphere that has the center \(C(3, 8, 1) \) and passes through the point \(P(4, 3, -1) \).

4. What region in the three-dimensional sphere is defined by the equation \(1 \leq x^2 + y^2 + z^2 \leq 4 \).

5. Find the equation of the sphere that has the center \(C(1, -4, 3) \) and the radius 5. Describe the intersection of the sphere with the z-axis, with the y-axis and with the xy-plane.

2 Solutions

1. The plane defined by the equation \(y = 2 \) corresponds to all the points \(P(x, y, z) \) such that \(y = 2 \). The 2 other coordinates \(x \) and \(z \) can take every possible value. This corresponds to a plane that is parallel to the \(xz \)-plane and passes through the point \(y = 2 \) on the y-axis.
2. Let us look first at the equation $2x + y = 2$ in the xy-plane. It corresponds to the line $y = -2x + 2$:

The equation does not impose a value for z, so, in the 3-dimensional space, we can translate every point of the line $y = -2x + 2$ along the z-axis. We then get the plane:

3. The equation of sphere is of the form:

$$(x - x_c)^2 + (y - y_c)^2 + (z - z_c)^2 = r^2,$$

with (x_c, y_c, z_c) the coordinates of the center and r the radius. The coordinates of the center C are given: $(3, 8, 1)$. We can rewrite then the above equation:

$$(x - 3)^2 + (y - 8)^2 + (z - 1)^2 = r^2.$$

We need now to find the radius. We know the coordinates of a point $P(4, 3, 1)$ belonging to the sphere. The coordinates of this point are, by definition, a solution of the equation of the sphere. We can then replace x, y and z by $(4, 3, -1)$ in the equation of the sphere and we get

$$(4 - 3)^2 + (3 - 8)^2 + (-1 - 1)^2 = r^2.$$
This relation gives us the radius \(r^2 = 1 + 25 + 4 = 30 \), that is \(r = \sqrt{30} \). We now have the equation for the sphere that has the center \(C(3, 8, 1) \) and passes through \(P(4, 3, -1) \):

\[
(x - 3)^2 + (y - 8)^2 + (z - 1)^2 = 30.
\]

4. The equation \(x^2 + y^2 + z^2 = r^2 \) corresponds to a sphere centered at the origin \(O(0, 0, 0) \), with a radius \(r \). The double inequality \(1 \leq x^2 + y^2 + z^2 \leq 4 \) means that we are considering all the points belonging to the spheres centered at the origin and whose radius can take any value between 1 and 2. In other words, the double inequality corresponds to all the points between the sphere of radius 1 centered at the origin and the sphere of radius 2 centered at the origin:

![Diagram](image.png)

5. The equation of a sphere with center \(C(1, -4, 3) \) and radius 5 is by definition

\[
(x - 1)^2 + (y + 4)^2 + (z - 3)^2 = 25.
\]

The sphere intersects the z-axis when \(x = 0 \) and \(y = 0 \) (the z-axis corresponds to all the points such that \(x \) and \(y \) are zero). If we replace then \(x \) and \(y \) by zero in the equation of the sphere, we get

\[
1 + 16 + (z - 3)^2 = 25 \Rightarrow (z - 3)^2 = 8.
\]

The solutions of the equation \((z - 3)^2 = 8\) are \(z = 3 + \sqrt{8} \) and \(z = 3 - \sqrt{8} \) (it means the sphere intersects the z-axis at this 2 points).

The sphere intersects the y-axis when \(x = 0 \) and \(z = 0 \) (the y-axis corresponds to all the points such that \(x \) and \(z \) are zero). If we replace then \(x \) and \(z \) by zero in the equation of the sphere, we get

\[
1 + (y + 4)^2 + 9 = 25 \Rightarrow (y + 4)^2 = 15.
\]

The solutions of the equation \((y + 4)^2 = 15\) are \(y = -4 + \sqrt{15} \) and \(y = -4 - \sqrt{15} \) (it means the sphere intersects the y-axis at this 2 points).
The xy-plane corresponds to all the points in the 3-dimensional space such that \(z = 0 \). If we replace \(z \) by zero in the equation of the sphere, we get

\[
(x - 1)^2 + (y + 4)^2 + 9 = 25 \Rightarrow (x - 1)^2 + (y + 4)^2 = 16.
\]

The intersection of the sphere with the xy-plane corresponds to all the points solution of the equation \((x - 1)^2 + (y + 4)^2 = 16\), that is: a circle of center \((1, -4)\) and of radius 4 (the equation of a circle in a plane is \((x - x_c)^2 + (y - y_c)^2 = r^2\) with \((x_c, y_c)\) the coordinates of the center and \(r\) the radius).