First midterm exam - Math2D
Solutions

04/30/2007

Name:
Student ID:
Discussion Section:

Notes, books and calculators are not allowed.

Explain all your answers.
Any result given without explanation will not receive credit.

1 Exercise 1 (10 points)

Let $\vec{A} = \langle -1, 2, 1 \rangle$, $\vec{B} = \langle 1, 0, -2 \rangle$, $\vec{C} = \langle 4, 0, 4 \rangle$ and $\vec{D} = \langle -1, -1, 1 \rangle$. Compute $\vec{D} \cdot ((\vec{A} - 2\vec{B}) \times \vec{C})$.

Solution: We get $\vec{A} - 2\vec{B} = \langle -3, 2, 5 \rangle$. Then

$$
(\vec{A} - 2\vec{B}) \times \vec{C} = \langle -3, 2, 5 \rangle \times \langle 4, 0, 4 \rangle = \begin{vmatrix}
-3 & 4 \\
2 & 0 \\
5 & 4
\end{vmatrix} = 8 \begin{vmatrix}
2 & 0 \\
5 & 4
\end{vmatrix} = 8 \cdot 16 = 8 \cdot 32 = \langle 8, 32, -8 \rangle
$$

Then $\vec{D} \cdot ((\vec{A} - 2\vec{B}) \times \vec{C}) = \langle -1, -1, 1 \rangle \cdot \langle 8, 32, -8 \rangle = -8 - 32 - 8 = -48.$
Do the following limits exist? (justify your answer):

1) \(\lim_{(x,y) \to (0,0)} \frac{\sin(\sqrt{x^2 + y^2})}{4\sqrt{x^2 + y^2}} \)

2) \(\lim_{(x,y) \to (0,0)} \frac{ye^x}{3xy + 1} \)

3) \(\lim_{(x,y) \to (0,0)} \frac{xy}{3x^2 + y^2} \)

Hint: for the first one, you can use the following result: \(\lim_{z \to 0} \frac{\sin(z)}{z} = 1 \).

Solution:

1) Let us rewrite the limit in polar coordinates:

\[
\lim_{(x,y) \to (0,0)} \frac{\sin(\sqrt{x^2 + y^2})}{4\sqrt{x^2 + y^2}} = \lim_{r \to 0} \frac{\sin(r)}{4r} = \frac{1}{4},
\]

using the result given as a hint. Therefore the limit exists and equals 1/4.

2) The function is well-defined at (0, 0). Therefore the limit is simply the value of the function at (0, 0) which is \(\frac{ye^x}{3xy + 1} = \frac{0e^0}{0+1} = \frac{0}{1} = 0 \).

3) We can check the limits on different paths.

\[
\lim_{y \to 0} \lim_{x \to 0} \frac{xy}{3x^2 + y^2} = \lim_{y \to 0} 0 = 0,
\]

\[
\lim_{x \to 0} \lim_{y \to 0} \frac{xy}{3x^2 + y^2} = \lim_{x \to 0} 0 = 0,
\]

Let \(y = mx \),

\[
\lim_{x \to 0} \lim_{y \to 0} \frac{mx^2}{3x^2 + m^2x^2} = \lim_{x \to 0} \frac{m}{3 + m^2} = \frac{m}{3 + m^2}
\]

We get different limits depending on the value of \(m \). Therefore the limit doesn’t exist.
3 Exercise 3 (20 points)

Compute all the partial derivatives of \(f(x, y) \) and \(g(x, y) \), with

\[
\begin{align*}
 f(x, y) &= \frac{3x}{x + y}, \\
 g(x, y) &= 4 - e^{x^2y}.
\end{align*}
\]

Solution:

\[
\begin{align*}
 f_x(x, y) &= \frac{3}{x + y} - \frac{3x}{(x + y)^2} = \frac{3y}{(x + y)^2}, \\
 f_y(x, y) &= -\frac{3x}{(x + y)^2}, \\
 g_x(x, y) &= -2xye^{x^2y}, \\
 g_y(x, y) &= -x^2e^{x^2y}.
\end{align*}
\]
4 Exercise 4 (20 points)

Let \(A = (2, 0, 1) \) and \(B = (1, 1, 1) \) be two points of \(\mathbb{R}^3 \).

1. Find the symmetric equation of the line passing through \(A \) and \(B \).

2. Find the equation of the plane that passes through \(A \) and is perpendicular to line passing through \(A \) and \(B \).

Solution:
1) The vector \(\vec{AB} \) can be used as direction vector: \(\vec{AB} = \langle -1, 1, 0 \rangle \). Since the last coordinate is 0, it means the z-coordinate doesn’t vary on the line. Therefore one of symmetric equations is \(z = 1 \). The others are:

\[
\frac{x - 2}{-1} = \frac{y - 0}{1} \rightarrow 2 - x = y.
\]

2) Since the plane is perpendicular to the line, the direction vector \(\vec{AB} \) of the line can be used as a normal vector of the plane. Therefore the equation of the plane is \(\vec{AB} \cdot (\vec{r} - \vec{r}_0) = 0 \), with \(\vec{r} = \langle -1, 1, 0 \rangle \) and \(\vec{r}_0 = \vec{OA} = \langle 2, 0, 1 \rangle \) (we could also have used \(\vec{r}_0 = \vec{OB} \)). Then:

\[
\vec{AB} \cdot (\vec{r} - \vec{r}_0) = 0 \rightarrow -(x - 2) + y = 0
\]
5 Exercise 5 (20 points)

Let a curve be described by the following parametric equations:

\[x = 5, \quad y = 3 + 2e^{2t}, \quad z = e^{2t}. \]

a) Find the parametric equation of the line tangent to the curve at \(t = 0 \).

b) What is the length of the curve between \(t = 0 \) and \(t = 1 \) ?

Solution:
a) We have \(\vec{r}(t) = (5, 3 + 2e^{2t}, e^{2t}). \) We can write the parametric equation of the tangent line at \(t = 0 \) as \(\vec{v}(q) = \vec{r}(0) + q\vec{r}'(0) \), with \(q \) the parameter. Since \(\vec{r}(0) = (5, 5, 1) \) and \(\vec{r}'(t) = (0, 4e^{2t}, 2e^{2t}) \), which gives \(\vec{r}'(0) = (0, 4, 2) \), we get

\[\vec{v}(q) = (5, 5 + 4q, 1 + 2q). \]

b) The length is given by \(\int_0^1 |\vec{r}'(t)| \, dt \). We know \(\vec{r}'(t) = (0, 4e^{2t}, 2e^{2t}) \), then \(|\vec{r}'(t)| = \sqrt{0^2 + (4e^{2t})^2 + (2e^{2t})^2} = e^{2t}\sqrt{20} \). Then

\[\int_0^1 |\vec{r}'(t)| \, dt = \int_0^1 e^{2t}\sqrt{20} \, dt = \left. \frac{\sqrt{20}}{2} e^{2t} \right|_0^1 = \frac{\sqrt{20}}{2} (e^2 - 1). \]