1. Section 3.4, exercise 3:

(a) Let us consider the matrix \(A = (x_1, x_2) \) with \(x_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, x_2 = \begin{pmatrix} 4 \\ 3 \end{pmatrix} \). The determinant is:

\[
\text{det}(A) = \begin{vmatrix} 2 & 4 \\ 1 & 3 \end{vmatrix} = 2.
\]

It is non-zero, so the vectors are linearly independent. Moreover, \(R^2 \) is a vector space of dimension 2. Then any basis of \(R^2 \) has 2 vectors. Therefore \(\{x_1, x_2\} \) is a basis for \(R^2 \).

(b) Since \(\{x_1, x_2\} \) is a basis for \(R^2 \) any additional vector would be, by definition, linearly dependent of the vectors of the basis. Then \(\{x_1, x_2, x_3\} \) are linearly dependent. (c) Considering (a), (b), we have \(\text{Span}(x_1, x_2, x_3) = \text{Span}(x_1, x_2) \) (since \(x_3 \) is linearly dependent of \(\{x_1, x_2\} \)). The set of vectors \(\{x_1, x_2\} \) being a basis of \(R^2 \), we have \(\text{Span}(x_1, x_2, x_3) = \text{Span}(x_1, x_2) = R^2 \) and therefore \(\text{Span}(x_1, x_2, x_3) \) is of dimension 2.

2. Section 3.4, exercise 4:

Let us consider the matrix \(A = (x_1, x_2, x_3) \) with \(x_1 = \begin{pmatrix} 3 \\ -2 \\ 4 \end{pmatrix}, x_2 = \begin{pmatrix} -3 \\ 2 \\ -4 \end{pmatrix}, x_3 = \begin{pmatrix} -6 \\ 4 \\ -8 \end{pmatrix} \). The determinant is:

\[
\text{det}(A) = \begin{vmatrix} 3 & -3 & -6 \\ -2 & 1 & 4 \\ 4 & -4 & -8 \end{vmatrix} = 0.
\]

It is zero, so the vectors are linearly dependent: we can actually see that \(x_3 = 2x_2 \). Then \(\text{Span}(x_1, x_2, x_3) = \text{Span}(x_1, x_2) \). But \(x_1 \) and \(x_2 \) are also linearly dependent, since \(x_1 = -x_2 \). Then \(\text{Span}(x_1, x_2) = \text{Span}(x_1) \). The spanned set is then of dimension 1.

3. Section 3.4, exercise 7:

Let \(v \) be a vector of \(S \). We can write it as:

\[
v = (a + b, a - b + 2c, b, c)^T = a(1, 1, 0, 0)^T + b(1, -1, 1, 0)^T + c(0, 2, 0, 1)^T
\]

\[
= av_1 + bv_2 + cv_3,
\]

with \(v_1 = (1, 1, 0, 0)^T, v_2 = (1, -1, 1, 0)^T \) and \(v_3 = (0, 2, 0, 1)^T \). These vectors form a basis for \(S \) since any vector \(v \in S \) can be written as a linear combination of \(v_1, v_2, v_3 \). We can also prove that these vectors are linearly independent (since the solution of \(c_1v_1 + c_2v_2 + c_3v_3 = 0 \) implies \(c_1 = c_2 = c_3 = 0 \)). Then \(\{v_1, v_2, v_3\} \) form a basis of \(S \).
4. Section 3.4, exercise 8:
(a) \(\mathbb{R}^3 \) is a vector space of dimension 3. So two vectors \(x_1 \) and \(x_2 \) cannot span \(\mathbb{R}^3 \). Then \(\{x_1, x_2\} \) cannot be a basis for \(\mathbb{R}^3 \).
(b) The set \(\{x_1, x_2, x_3\} \) would form a basis if and only if the vectors are linearly independent.
(c) We can pick, for example, \(x_3 = (1, 0, 0)^T \). Then \(\{x_1, x_2, x_3\} \) are linearly independent and therefore form a basis.

5. Section 3.4, exercise 11:
Let \(v \) be a vector of \(S \). We can write \(v \) as:
\[
v = ax^2 + bx + 2a + 3b = a(x^2 + 2) + b(x + 3) = av_1 + bv_2,
\]
with \(v_1 = x^2 + 2 \) and \(v_2 = x + 3 \). The vectors \(v_1 \) and \(v_2 \) span by definition \(S \) (since the vectors of \(S \) are written as a combination of \(v_1 \) and \(v_2 \)). They are also linearly independent (for example, the Wronskian would be \(W = 2 \) at \(x = 0 \)). Therefore, they form a basis for \(S \).

6. Section 3.5, exercise 1(b):
We can see that \(u_1 = e_1 + 2e_2 \) and \(u_2 = 2e_1 + 5e_2 \). The transition matrix from \(U = [u_1, u_2] \) to \(E = [e_1, e_2] \) is
\[
P_{U \rightarrow E} = \begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix}.
\]

7. Section 3.5, exercise 5:
(a) The transition matrix from \(U = [u_1, u_2, u_3] \) to \(E = [e_1, e_2, e_3] \) is:
\[
P_{U \rightarrow E} = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 1 & 2 & 4 \end{pmatrix}.
\]
Then the transition matrix from \(E \) to \(U \) is:
\[
P_{E \rightarrow U} = P_{U \rightarrow E}^{-1} = \begin{pmatrix} 2 & 0 & -1 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix}.
\]
(b) The coordinates in basis \(U \) are given by:
(i) \(P_{E \rightarrow U}(3, 2, 5)^T = (1, -4, 3)^T \),
(ii) \(P_{E \rightarrow U}(1, 1, 2)^T = (0, -1, 1)^T \),
(iii) \(P_{E \rightarrow U}(2, 3, 2)^T = (2, 2, -1)^T \).

8. Section 3.5, exercise 9:
(a) We can notice that \(2x - 1 = 2(x) - (1) \) and \(2x + 1 = 2(x) + (1) \). The transition matrix from \(A = [2x - 1, 2x + 1] \) to \(B = [x, 1] \) is:
\[
P_{A \rightarrow B} = \begin{pmatrix} 2 & 2 \\ -1 & 1 \end{pmatrix}.
\]
(b) The transition matrix from \(B \) to \(A \) is then:
\[
P_{B \rightarrow A} = P_{A \rightarrow B}^{-1} = \frac{1}{4} \begin{pmatrix} 1 & -2 \\ 1 & 2 \end{pmatrix}.
\]
9. Section 3.6, exercise 1(a):
 (i) The row space of the matrix is \(\text{Span}(v_1, v_2, v_3) \) with \(v_1 = (1, 3, 2), v_2 = (2, 1, 4) \) and
 \(v_3 = (4, 7, 8) \). But \(v_3 = 2v_1 + v_2 \). Therefore the vectors are not linearly independent and
 \(\text{Span}(v_1, v_2, v_3) = \text{Span}(v_1, v_2) \). Since \(v_1 \) and \(v_2 \) are independent, they form a basis for
 the row space.
 (ii) The column space of the matrix is \(\text{Span}(u_1, u_2, u_3) \) with \(u_1 = (1, 2, 4)^T, u_2 = (3, 1, 7)^T \)
 and \(u_3 = (2, 4, 8)^T \). But \(u_3 = 2u_1 \). Therefore the vectors are not linearly independent and
 \(\text{Span}(u_1, u_2, u_3) = \text{Span}(u_1, u_2) \). Since \(u_1 \) and \(u_2 \) are independent, they form a basis for
 the column space.
 (iii) The row space has a dimension 2, so the rank of the matrix is 2. We should expect
 the dimension of the nullspace to be 3-2=1 (the matrix being 3x3 matrix). We need to
 solve \(Av = 0 \) with \(A = \begin{pmatrix} 1 & 3 & 2 \\ 2 & 1 & 4 \\ 4 & 7 & 8 \end{pmatrix} \). This gives:

\[
\begin{pmatrix}
1 & 3 & 2 \\
2 & 1 & 4 \\
4 & 7 & 8
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 3 & 2 \\
2 & 1 & 4 \\
0 & 0 & 0
\end{pmatrix},
\rightarrow
\begin{pmatrix}
1 & 3 & 2 \\
0 & -5 & 0 \\
0 & -5 & 0
\end{pmatrix}
\]

we can drop the last row since we proved (see question (i)) that the last row vector was
 a linear combination of the others. We then have 2 equations for 3 unknowns
 \(x_1, x_2, x_3 \). We can decide that \(x_3 \) is a free parameter. We then get that \(x_2 = 0 \) and \(x_1 = -2x_3 \). The
 nullspace of \(A \) is then given by

\[
N(A) = \{ v \in \mathbb{R}^3, v = x_3 \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix} , x_3 \in \mathbb{R} \} = \text{Span}\left\{ \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix} \right\}
\]

10. Section 3.6, exercise 1(b):
 (i) The row space of the matrix is \(\text{Span}(v_1, v_2, v_3) \) with \(v_1 = (-3, 1, 3, 4), v_2 = (1, 2, -1, -2) \)
 and \(v_3 = (-3, 8, 4, 2) \). The vectors are linearly independent. We can prove this by solving
 the equation: \(c_1 v_1 + c_2 v_2 + c_3 v_3 = 0 \). This gives

\[
\begin{pmatrix}
-3 & 1 & -3 \\
1 & 2 & 8 \\
3 & -1 & 4 \\
4 & -2 & 2
\end{pmatrix}
\rightarrow
\begin{pmatrix}
-3 & 1 & -3 \\
1 & 2 & 8 \\
3 & -1 & 4 \\
0 & 0 & 0
\end{pmatrix},
\]

The matrix having 4 row vectors in \(\mathbb{R}^3 \), they must be linearly dependent (\(\mathbb{R}^3 \) is a space
 of dimension 3, so any set of more than 3 vectors is linearly dependent). We can pick the
 last row vector as a combination of the 3 others and replace the row by zero in the matrix.
 We just have to solve now:

\[
\begin{pmatrix}
-3 & 1 & -3 \\
1 & 2 & 8 \\
3 & -1 & 4 \\
0 & 0 & 0
\end{pmatrix}
\rightarrow
\begin{pmatrix}
-3 & 1 & 3 \\
1 & 2 & 8 \\
3 & -1 & 4 \\
0 & 0 & 0
\end{pmatrix}.
\]

But the matrix has a determinant non zero. So the solution is \(c_1 = c_2 = c_3 = 0 \) and the
 vectors are linearly independent and form a basis for the row space. The dimension of the
 row space is then 3.
 (ii) The column space of the matrix is \(\text{Span}(v_1, v_2, v_3, v_4) \) with \(v_1 = (-3, 1, -3)^T, v_2 =

\]
(1, 2, 8)^T$, $v_3 = (3, -1, 4)^T$ and $v_4 = (4, -2, 2)^T$. The vectors are linearly dependent, since we have 4 vectors in R^3 (being a space of dimension 3). Then $Span(v_1, v_2, v_3, v_4) = Span(v_1, v_2, v_3)$ (I took v_4 out of the spanning set. Any other vector v_1, v_2 or v_3 would have worked too). We can see that v_1, v_2 and v_3 are independent since the determinant of the matrix:

\[
\begin{vmatrix}
-3 & 1 & 3 \\
1 & 2 & -1 \\
-3 & 8 & 4
\end{vmatrix} = -10
\]

is non zero. The vectors v_1, v_2 and v_3 form then a basis for the column space.

(iii) To find the nullspace, we need to solve the following equation:

\[
\left(\begin{array}{cccc|c}
-3 & 1 & 3 & 4 & 0 \\
1 & 2 & -1 & -2 & 0 \\
-3 & 8 & 4 & 2 & 0 \\
\end{array} \right) \rightarrow \left(\begin{array}{cccc|c}
-3 & 1 & 3 & 4 & 0 \\
1 & 2 & -1 & -2 & 0 \\
0 & 0 & 1 & 0 & 0 \\
\end{array} \right) \\
\rightarrow \left(\begin{array}{cccc|c}
-3 & 15 & 0 & 0 & 0 \\
0 & 7 & 0 & -2 & 0 \\
0 & 0 & 1 & 0 & 0 \\
\end{array} \right),
\]

after using several row operations. This gives that: \(x_3 = 0, x_1 = 5x_2, x_4 = \frac{7}{2}x_2\). We can pick x_2 as a free parameter. The nullspace is then:

\[
N(A) = \{ v \in R^3, v = x_2 \begin{pmatrix}
5 \\
1 \\
\frac{7}{2}
\end{pmatrix}, x_2 \in R \} = Span \left\{ \begin{pmatrix}
5 \\
1 \\
\frac{7}{2}
\end{pmatrix} \right\}
\]

11. Section 3.6, exercise 4(c):

The column space of A is $Span(v_1, v_2)$ with $v_1 = (2, 3)^T$, $v_2 = (1, 4)^T$. We can easily check that they are linearly independent. We can also see that $b = 2v_1$. So the vector is in the column space of A. The system is then consistent (we can even add that, since the vectors are linearly independent, there exists only one solution, being $v = (2, 0)^T$).

12. Section 3.6, exercise 4(c):

The column space of A is $Span(v_1, v_2, v_3)$ with $v_1 = (1, 1, 1)^T$, $v_2 = (1, 1, 1)^T$, and $v_3 = (2, 2, 2)^T$. Since $v_1 = v_2 = \frac{1}{2}v_3$, we have $Span(v_1, v_2, v_3) = Span(v_1)$. The vector b is not in the column space of A. The system is not consistent.