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Abstract--We present a diffuse interface (DI) model for capturing microstructure formed during the coar-
sening of a two dimensional. elastically stressed binary alloy. The DI model is based on a generalized
Cahn-Hilliard free energy: evolution occurs to lower the free energy. Using a matched asymptotic expan-
sion, we show that the DI model converges to a well-studied sharp interface system as the thickness of the
diffuse interface approaches zero. Numerical simulations confirm this cquivalence. We develop pseudo-
spectral numerical methods to solve the DI system and we carefully investigate the dependence of results
on numerical paramelters. The DI model is used to follow microstructural evolution through topological
transitions such as particle merging and vanishing. We show that in isotropic media, elastic inhomogeneity
may lead to interesting topology changes such as a reversal of the roles of the precipitate and matrix

phases. 1998 Acta Metallurgica Inc.

1. INTRODUCTION

In this paper, we present a diffuse interface model
for capturing microstructures {ormed during the
coarsening of a two dimensional, clastically stressed
binary alloy. The interest in such systems stems
from observations (primarily in nickel superalloys)
that microstructures depend nontrivially on both
the elastic and diffusion fields in the system [1- 5]
These observations include transitions from spheri-
cal to cuboidal to plate-shaped precipitates, precipi-
tate alignment. precipitate merging and splitting
and dendritic shapes during growth. Unlike surface
energy. elastic energy does not necessarily favor
large precipitates over smaller ones. Consequently.
it may be possible to use elastic fields to control
and stabilize the coarsening process.

The model we adopt is based on a generalized
free energy functional of Cahn-Hilliard type [6 &].
Interfaces are diffuse, i.e. they consist of smooth.
but rapid transitions of both the concentration and
elastic displacement fields. The microstructural evol-
ution is modelled by a set of partial differential
equations such that the generalized free energy is
nonincreasing in time.

In an alternative approach. the precipitate-matrix
interfaces can be taken to be (# — 1)-dimensional
surfaces (m = 2 or 3). In this case. the microstruc-
tural evolution is described by ficld equations in the
bulk phases with jump conditions at the interfaces.

An advantage of the sharp interface approach is
that the system can be reformulated as boundary
integral equations for which very efficient numerical

methods have been developed. This approach has
been used to study microstructural features such as
particle translation, equilibrium shapes, shape bifur-
cations and particle growth (e.g. [9-18]). A disad-
vantage of sharp interfacc methods is that
mathematical singularities form when particles van-
ish, merge or split; such transitions can be bridged
only with ad hoc methods. In contrast, diffuse inter-
face (DI) methods naturally handle topological
changes. These methods have been previously used
to study the effect of elastic fields on spinodal de-
composition, precipitate shapes and motions, and
shape transitions such as particle splitting and mer-
ging (e.g. [19-24]).

Our goals in this work are: (1) to connect, both
analytically and numerically, the diffuse and shurp
interface approaches, (2) to develop and analvze
robust numerical algorithms to solve the system of
equations associated with the DI method and (3) to
explore the role of elastic inhomogeneities on
microstructural evolution and, in particular, topolo-
gical transitions.

We achieve these goals as [ollows. First, we show
that in the limit as the interfacial thickness vanishes,
the DI system converges to the sharp interfuce
model presented in [12] with diffusion in both the
precipitate and matrix phases. We present numerical
simulations which confirm this agreement. Second,
we develop numerical algorithms to solve the DI
system and we investigatc their accuracy. We show
that certain details of the solution, such as the
chemical potential. are sensitive to the numerical al-
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gorithms. However, macroscopic quantities such us
particle shapes and merging bchavior, are essen-
tially unaffected by the algorithms.

Third, we consider two types of elastic media:
anisotropic, homogeneous and isotropic, inhomo-
geneous. These choices are motivated by the exist-
ence of efficient boundary integral methods for
these two cases. In the DI approach, the elastic in-
homogeneity is modelled by taking a stiffness tensor
that varies smoothly with composition. Consistent
with the results of [12], we find that inhomogeneity
plays an important role in microstructural evol-
ution. For example., in anisotropic. homogeneous
elastic media. there is a stable interparticle spacing.
However. in inhomogeneous, isotropic media, we
find that precipitates with dilatational misfit and a
lower shear modulus than the matrix tend to merge
while those with shear modulus higher than the
matrix tend to repel. We find some interesting top-

ology changes that lead to a reversal of the roles of

the precipitate and matrix phases.

The paper is organized as follows. In Sections 2
and 3. we give the governing equations for the
sharp and DI models. In Section 4. we present
results from an asymptotic analysis to show the
cquivalence of the two approaches in a certuin
limit. In Section 5, we discuss the numerical im-
plementation of the DI model. In Section 6, we
compare the results from the two methods and we
present some new numerical results involving topo-
logical transitions using the DI model. Finally, in
Section 7 we give our conclusions.

2. SHARP INTERFACE MODEL

In this Section, we briefly discuss the multi-phase
diffusion problem under the assumption that the
interfaces between the precipitate and matrix phases
are sharp (zero thickness). A more detailed discus-
sion can be found in [12].

The matrix and precipitate phases occupy the two
dimensional plane R®. The matrix phase QM is
assumed to be infinite in extent, while the precipi-
tate phase QF consists of p separate particles occu-
pying a finite area. We define I” to be the collection
of all the individual interfaces.

We assume that diffusion occurs in the matrix
only (one-sided diffusion) and is quasistatic. Thus
the composition ¢ of the diffusing species obeys
Laplace’s equation in Q™. We take zero flux of
mass into the system and we suppose that the non-
dimensional normal velocity J/ on an interface is
given by V' = Vcn on that interface, where n is the
outward unit normal: this is appropriate for the
one-sided diffusion problem.

The boundary condition for the matrix compo-
sition on [ is given by a generalized Gibbs-
Thomson equation valid for coherent interfaces.

=K+ 272G (h
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Here, x is the dimensionless mean curvature and
1 S|
o _Lopiep o1y L oMeM M oM Py
€) _25,,.(5,., &) 28,/ EF +SHES - &) (D)

is a dimensionless elastic energy density, see [25]. In
G, &Y is the usual infinitesimal strain tensor,
where ¥y = M or P for matrix or precipitate, S*
denotes the stress tensors (defined below) and Z 15 a
nondimensional parameter that characterizes the
relative contribution of the elastic and surface ener-
gies.

The presence of G in the boundary condition
(equation (1)) requires one to solve the two phase
elasticity problem in addition to the diffusion pro-
blem. Following Eshelby [25.26]. we take the refer-
ence state to be the unstressed lattice of the matrix,
so that

M M oM
Si/ = Cq/'k/g/\l (3)
in the matrix, and
P P P T
SP =P e — £, )

in the precipitate. In equation (4), &1 is the misfit
(transformation) strain, which maps the unstressed
precipitate lattice to that of the matrix. Also, Cf,
denotes the stiffness tensor of the y = P, M phase.
which is taken to be constant.

As mentioned in the introduction, we consider
both the elastically isotropic, inhomogeneous cuse
and the elastically anisotropic, homogeneous case.
In the former, we normalize the shear modulus in
the matrix GM =1 so that the stiffness tensor is

N

o 2G%vh
;AI = 26480y + T 00k/. 15)

where G is the (normalized) shear modulus of the
precipitate and v™ and v are appropriate Poisson
ratios. We note that in this case we take,

Z =GN Ly (6)

where GM and 7 are the dimensional values of the
matrix shear modulus and surface energy, respect-
ively, L is a length scale (usually taken to be an
average initial precipitate radius) and &}, is the
value of the 1-1 component of the misfit strain.

In the anisotropic, homogeneous case, we nor-
malize the cubic elastic constant Cyy=1 and we
write the stiffness tensor C=CM =P as

Cijrr = 20405 + C120;64 +(Cyp = Cro = 2y 7)

in terms of the remaining constants 'y, and C}». In
this case,

Z=Cul&]V L)% (8)

where Cus is the dimensional value of the elastic
constant.

To complete the formulation of the elasticity pro-
blem, we require that the divergence of stress tensor
vanishes in both the precipitate and matrix



LEO er af.:

domains. We also specify that the precipitate-matrix
interfaces are coherent, i.e. there is continuity of
displacement and traction across I'. We assume that
the stresses and strains in the matrix vanish in the
far-field (i.e. no applied load). Finally, we note that
the multiphase system can be characterized by a
nonincreasing energy function FE(7), which is the
sum of the surface and strain energies.

The reformulation of the above problem in terms
of boundary integral equations, and their sub-
sequent numerical solution. is discussed extensively
in [12]. We refer the interested reader there for
details.

3. DIFFUSE INTERFACE MODEL

In this Section, we present the diffuse interface
model. The model we consider is motivated by the
approach of Cahn and Hilliard [6] and Cahn [7] on
spinodal decomposition in alloys. A derivation of
the model, using “microforce™ balances, is given by
Gurtin [8].

In the model, the sharp interface is replaced by a
narrow transition layer across which all quantities
are assumed to vary smoothly. For example, the
composition ¢ varies smoothly across the layer from
¢ = cym, the composition of the “pure” matrix
phase, to ¢ = ¢p, the composition of the “pure”
precipitate phase. The stiffness and misfit tensors
are interpolated across the precipitate-matrix
boundaries by

Cle) = CM + g(e)XC® — ™y and E7(¢) = he)ET. (9

Here, C” and C™ are the constant stiffness tensors
in the precipitate and matrix phases, £ is the con-
stant misfit tensor, and g(¢) and A(c) are scalar in-
terpolation functions such that g(epy)= hlcm) = 0
and g(cp)= h(cp) = 1.

In the model, evolution is specified such that a
certain generalized free energy functional decreases.
This free energy functional is analogous to the
energy in the sharp interface model and is the sum
of a generalized elastic energy and a generalized
surface energy. The generalized free energy is given
in terms of a specific free energy ¥ by

E(n)= | Y& ¢, Vo) d4a, (1)
Q
where Q = QFLJOM and we do not explicitly dis-
tinguish between the precipitate and matrix
domains. The specific free energy ¥ is given by

W(E ¢ Vo) = WE O+ + Ve (1)
The first term
W(E =12~ E70): o~ £, (12)

is the strain energy, where the tensor product: is
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defined by &:F =&;F ;. The presence of the coeffi-
cient y in W(&, ¢) is necessary in order for the dif-
fuse interface system to converge to the sharp
interface system, described in Section 2, in the limit
as y — 0. Sce Section 4,

The second and third terms in ¥ together form
the generalized surface energy. The second term f{c)
is the bulk chemical energy and, as in the classic
Cahn—Hilliard work, is taken to be a double-welled
potential so that the system separates into a phase
(precipitate phase) with composition ¢p and a
(matrix) phase with composition ¢y. For simplicity,
i this paper, we will take

fo=2ea -0 (13)
4
where A is a parameter that will be used to tune the
numerical value of the surface tension (see Section
4). We also set ¢p=1 and ¢y =0. The third term in
Y. 93 Vel?2, is a gradient energy that acts to stabil-
ize the interfacial transition region. This gradient
energy, together with f{c). keeps the thickness of the
region proportional to 7.

Now, the evolution of the diffusion and elasticity

fields in this formulation are given by

¢ =V- (:ltv;z). (14)

i

V.S =0, (15)
where 1/; is a mobility,
oY ¥ ¥
is a generalized chemical potential [8] and
v
=-=( ¢ Ve
S E)E(g ¢, Vo) (17

i1s the generalized stress tensor. Taking y small
scales the diffusional kinetics to a long time limit,
and allows us to recapture quasistatic diffusion as
3 — 0 (again see Section 4). A straightforward cul-
culation yields the following explicit form for the
chemical potential

p=f(0) = A= 3ZE(¢) 1 CeNE = EN(e))

+ é (€= EN) : C(eNE = EN(e), (1%)

where C'(c)= g'(eXCP=CM) and £"(¢)= H()ET and
the stress

8= 3ZC(e)E — EN(0)). (19)
The “elasticity” equation (15) may also be written
in terms of the displacement vector u as

V- [Ce)(Va+ Vuh)] = V- [C()ET (),

2| =

(20)

§

using equations (15) and (19) and the definition of
the infinitesimal strain.
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For the system of equations (14) and (15), the
generalized free energy of equation (10) is non-
increasing and satisfies
E = —1/ [Vul*dA. (21)
v
for periodic or natural boundary conditions.

We note that similar approaches for solid-solid
phase transformations have been well-established in
the literature (e.g. sec Fried and Gurtin [27], Fried
and Grach [28]. Wang and Khachaturyan [22] and
Voorhees er ul. [29]). The diffuse interface model of
equations (l4) and (15) naturally fits into general
framework of phase-field models which have been
widely used in the study of frec boundary problems
(see [30] for a collection of recent references).

4. MATHEMATICAL COMPARISON OF THE
MODELS

In this Section, we demonstrate the sense in
which sharp and diffuse interface approaches are
mathematically equivalent. In the diffuse interface
model, the paramcter ¢ is a measure of the thick-
ness of the interfacial regions. Therefore, we con-
sider the sharp interface limit of the diffuse
equations (; — 0) and under the appropriate restric-
tions, we show that the limiting system is equivalent
to the sharp interfuce model described in Section 2.
We follow the approach of Pego [31] and use the
mcthod of matched asymptotic expansions to ana-
lyze the limiting process (sce also [32,33] for further
references). Here, we only present the result of this
procedure. The details of the matched asvmptotic
expansion are sketched very briefly in Appendix A;
see also [34].

Supposc that there is a narrow transition layer
separating the matrix and precipitate phases. If
there are several transition layers, we suppose they
are well-scparated. The transition layer separates
the plane Q into Q" and QM. where the composition
of solute is nearly equal to | in Q" and 0 in QM.
We further suppose that the transition laver con-
tains a smooth, closed interface I, Let ¢, S be the
composition and stress solutions of the diffuse inter-
face equations (14) and (15) in the presence of a
transition layer. In addition, let ¢y =0 and ¢p =1

and define the scaled composition field
= "o Ne — ¢y, in QF (22)

with = M or P. Then, for ; small, ¢ and & satisly
A¢ = —A%E(E. ) FO0E), and V.S =10, (23)
in Q% where
S=CME+0¢) in QM. and
S=C"E-EHY+0)in Q" (24)

are the stress tensors in cach domain. Further, by
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O@"), we denote all the higher order terms that
behave like 3 as y — 0. Finally, the leading order
source term in the concentration equation (23) is
given by
al/i/ ’ T o ~T

y(c‘:. ¢y =ZIH (e )E 1 CleWE = E (¢,))

+ ;g'((’l)((‘: —ENe N (= CMYNE-ET () (25
Consequently, to leading (zeroth) order, the stress
satisfies the usual clasticity equations while the
scaled composition field ¢ satisfies a two-sided
Poisson equation where the source term depends on
the elastic fields. Note that in the sharp interlace
case we considered in Section 2, there was no such
sourcc term as the concentration field satistied
Laplace’s equation in the matrix domain Q™. To
eliminate the source term in the leading order con-
centration equation and hence to have ¢ satisfy
Laplace’s equation (in both domains QF and OM).
we set

glew) =g ep) =M (em) =R ep) =0, (26)

These conditions guarantee that the interpolation is
very smooth in the regions of near homogeneity. In
this paper., we take g(¢)= h(¢) = 3¢°=2¢".

The boundary conditions are as follows. On I,
we find that to leading order, the coherent bound-
ary conditions are satisfied, i.e.

uly =ulp + O). and ty = tjp + O()). (27)

where |, denotes the limit onto I' from the domain
Qf and t=38n is the traction vector. For the sculed
composition field. we find that

Clv = flp = 8 4+ ZG + O(y). (28)
where the surface tension 7 is given by
I
T = f V2f(e)de = /4/(6\/5). (29)
0

where we have used equation (13). Thus, if we set
A= 6\/2 (so that t = 1), then to leading order,
equation (28) reduces to the generalized Gibbs-
Thomson boundary condition of equation (1).
Finally. the normal velocity V' of 1" is given by

V = (Vily — Vélp) - n+ O, (30)

which is the flux balance appropriate for two-sided
diffusion.

In summary, we find that the leading order
cquations and boundary conditions satistied by the
diffuse interface solutions are exact/y those used in
the sharp interface description except that in the
diffuse casc. the quasi-static diffusion is two-sided.
To obtain one-sided diffusion from the smooth
interface approach, the mobility 17 in equation (14)
would have to be replaced by a function (scaled by
1,7} which vanishes in the precipitate region. In
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addition, the far-field boundary conditions for both
the composition and elasticity fields in the diffuse
interface approach can be chosen to match those
from the sharp interface approach.

5. NUMERICAL IMPLEMENTATION OF DIFFUSE
INTERFACE MODEL

In this Section, we present the numerical im-
plementation of equations (14) and (15) for the dif-
fuse interface model. Unlike the boundary integral
approach, we imposc periodic boundary conditions
in both x and y and we use a pseudo-spectral
method in space (derivatives are obtained using the
fast Fourier transform (FFT) and products are per-
formed in physical space) together with a non-stiff
updating scheme in time for the evolution of the
composition field.

The sequence of the scheme is: (1) solve the elas-
ticity equations in displacement form and evaluate
the generalized chemical potential u, (2) update the
composition field and (3) repeat. We now discuss
cach step scparately.

5.1. Solution of clasticity equations

We consider two cases: (1) cubic anisotropic,
homogeneous elasticity and (ii) isotropic, inhomo-
geneous elasticity. In each cuse. we solve the clas-
ticity equations in displacement form. From the
displacements, we then obtain the stresses and
strains. We begin with a discussion of case ().

For cubic anisotropic, homogeneous elasticity. the
displacement cquation (equation (20)), in com-
ponent form. reduces to

Crupy +(Crz + Cagua o+ wp =h() e,y (31)
Criuan +(Cra+ Caghur iz + un g =H() ey (32)
where
Ti=Cnél + Ciaénn. To=Cpéls + Caél.

and Ty, = 28], (33)

Recall that we have normalized the elastic coetti-
cients so that Cy=1. Because the coefficients of
the displacements in equations (31) and (32) are
constant, the Fourier transform can be used to
solve this system. Using a hat to denote the
Fourier transform, we find that the Fourier trans-
forms of the displacement vector can be found
explicitly as

lAl] | ) */; II’:] (/\'|. /\3))
P — . 34
(l7z> ad - (—/f x )(f‘: (kv Ay )

where &, and k> are the Fourier wavenumbers in

the x and » directions, respectively. and
q7 = — (l(l‘(] 1 + k;(‘44), /j’ = — /\']k](c‘lz + C44)~
0= — (I\'SCV” +/\'TC44), i —'/1‘((‘)7‘1/( J and

I
I

-‘/I,((’)Tg,(',/'.
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Given c¢. then the displacements u; and wu, ure
solved in this way using the fast Fourier transform.

For the case of inhomogeneous. isotropic elasticity,
the displacement equation (20) take the form

Gy + (Ge) + AN i + G (eXug + 1wy )y

+ 2y je, = 2E GO, +ELGLOMO). . (35)

where

G(e) = GM4+g(NGP=GM). i) = M+g(e)oP- M)
(36)

and A7 =2G"v"/(1 — 2v/) is the Lame constant in the
region in the “‘pure” precipitate or matrix region.
Unlike the homogeneous case, this system cannot
be solved explicitly using the Fourier transform,
because the coeflicients of the displacements are
variable. However. given ¢, the operator on the dis-
placement u is linear. positive definite and sym-
metric. Therefore, the solution to cquation (35) can
be found iteratively using the preconditioned conju-
gate gradient method. The idea behind the precon-
ditioning is as follows. Let £ be the operator on u
in equation (35). Let the preconditioning operator
L be given by L[u),=Gu, ;+ (G - 2)u,; where G and
7 are the spatial averages of G and /. respectively.
Then equation (35) can be rewritten as

Llu] = (L +R)u] =r.

where R =L—L and r denotes the right hand side of
equation (35). Because the operator L has constant
coeflicients. it can be inverted using the FFT by 4
formula analogous to that in ecquation (34).
Inverting L in this way yields the preconditioned
system

I+ L '"R)ul= LT

which is easily solved using the conjugate gradient
method. We find this method to be very efficient,
usually requiring fewer than three iterations per
time step to obtain a residual crror of 107,

Once the composition ¢ and displacement u are
obtained. the gencralized chemical potential u is
computed using equation (18).

5.2. Non-stiff time stepping for composition update

We explicitly separate the highest derivative term
(4th derivatives) from the remaining terms in the
composition equation (14) as

LY - .
¢==yA%c+ —AN(c. ). where N(c, 1) = j+37A¢
(27)

denotes the remaining nonlinear terms. Since the
4th derivative term is linear in ¢ and has a constant
coefficient, it is diagonalized by the Fourier (rans-
form. We can therefore take the Fourier transform
of equation (37) and use an integrating factor to
integrate the 4th derivative term exactly. If we use
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the Adams-Bashforth 2nd order method [35] to
integrate the nonlinear term A/(c. 1), the resulting

scheme is given by

A’ ”‘ | Y ,v’-\/\vﬁA, /,{/ru— | )

~ pAL] A
(,JH»I —e 2ik1 ArI:(,n

(38)

where |k|2 :=k%+k%. This scheme, referred to as al-
gorithm A. is designed to be globally stable with
respect to the spatial grid spacing. However, we
find that in practice. small time steps (O(107°)
3 = 0.15) are still required for stability. For com-
parison, we also implemented an implicit time step-
ping Crank--Nicholson
method as well as an explicit time stepping scheme
using Euler’s method. We found that both these
the Craunk-Nicholson
method required time steps on the order of O(1077)

using
based on the

scheme

methods were mpractical;
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Although algorithm A is robust, it can lead to
equilibria that depend sensitively on the small scales
present in the solutions. In algorithm A, the
Fourier modes of the solution are damped by the
factor e """ 4t every time step. Thus, roughly
speaking. there is a wavenumber A«=k«(Ar) such
that the modes |k|> k. are cut-off. This can lead to
a time-step dependent smoothing of the high gradi-
ents associated with interfacial layers.

This phenomena can be quantified by examining
the equilibria associated with differential equation
(equation (37)) and the discrete algorithm A in
Fourier space. Setting ¢=0 in equation (37), we
find that

—-2k12¢ = N + constant. (39)

We note for future reference that this constant
depends linearly upon the parameter 7. The corre-
sponding equilibrium of the discrete system of

to be stable while the Euler method required equation (38) can be found by setting
A0y - s . o ] P
0(107'") time steps for stability. T == and N =N" "= A*_ this yields
25 . — - - r 1.319 T . T v i
ll o
dashed and dots: true chem pol 1l :::‘v- :mnu i
j: il i
solld: mod chem pot ' (b b dashed: AB inn i
2r (a) i ) n solid: MAB Hnn
" — 131850 ] ' o -
E f: :: g ’ e :nuu
! 1t} HitHe
a 15 Gamma=0.15 , ::;: "l 5 ::.::: [
L reeert - () ity
a [IFTing 8_ i L]
Wiy J _ ] W |
= A W o 1318 () LT -
g g = :::::.. |
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Fig. 1. ChemlCdl Potentials and Curvature. (a) True and modified chemical potentials for algorithm A

(A1 =3x10"for y = 0.15, Ar = 7.5x 107
A (AB) and algorithm B (MAB) (;
for algorithms A and B (algorithm A: Ar =

for v

= 0. 075), (b) true chemical potentials for algorithm
= 0.15, Ar = 1 X 10 ) (¢) curvature of 0.5 composmon contour
50x% 107

, algorithm B: Az = 1 x 1077). In (a) -(¢), the

spatial grid spacing is k) =h,=2m/256. The elasticity is cubic, anisotropic with ), =1.98, C»=1.18

and 7 =

8. The mixfit is dilatational.
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IA{"J 0= e T AN :%m*‘“‘“ — o HHTAAP
(P AL
+ constant. (40)

A Taylor cxpansion shows that equations (39) and
(40) agree to second order in Az in the limit
[k|*Ar — 0. In practice, however, we find that |k.[*As
may not be small which leads to a discrepancy
between the formulae at high wavenumbers.

This discrepancy can be made apparent by com-
paring the true chemical potential u given in
equation (37) with a modified chemical potential

y

kP e
A -

ﬂ*:l(‘;ef ARIAL_ o= 2k A A
53 ’
(41)

which is motivated by equation (40). In Fig. I(a),
the true and modified chemical potentials are
shown at a time near the numerical equilibrium of

(a) Initial data
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a single precipitate computed with anisotropic,
homogeneous elasticity. The chemical potentials are
plotted along a horizontal slice through the center
ol the particle (v = n). This simulation will be
described in greater detail in Section 6 (see Fig. 3).
Here, we note that algorithm A is used in this simu-
lation. In Fig. 1(a), the upper curve corresponds to
+ = 0.15 and Ar = 3 x 107 and in the lower curve.
+=0.075 and Ar = 75x10"7. The grid size is
Iy =hy=2m/256. The dashed and dotted curves cor-
respond to the true chemical potential while the
solid curves correspond to the modified chemical
potential. The oscillations observed in the true
chemical potential occur at the interface layers and
are a result of the time-step dependent smoothing
ol the small scales present in these layers. In con-
trast, the modified chemical potentials are constant
to four digits. This constant depends on 7. for

»=015 ¥ =1319 while for 7 = 0.075,

(b) time = 0.014

38
asr (c) Close—up, )
time = 0.014
34f

3.2

28

26

24

22

dot-dash: AB, DT=1.e-5
dash: AB, DT=1.e-6
solid: MAB, DT=1.e-6

3 35 4
X

Fig. 2. Merging of two soft precipitates. (4) Initial: (b) final 0.5 composition contours using algorithm

B (A1 = 1x107%); (c) comparision of 0.5 composition contours for algorithm A and B, dot-dashed

curve: algorithm A with Ar = [ x 107", dashed curve: algorithm A with A7 = 1 x 107°. solid curve: al-

gorithm B with A7 = 1 x 107%. The elasticity is isotropic, inhomogeneous with Z = 2.7, G¥=0.5 and
dilatational mistit. The spatial grid spacing is h, = h, = 21/256.
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(b)

Fig. 3. Comparison of DI and BI precipitate shapes for cubic anisotropic, homogeneous media. DI

shapes are the same in (a) and (b). In (a), an infinite far-field boundary is used for the BI calculation.

In (b). periodic boundary conditions are simulated for the BI calculation. The elastic parameters and
the spatial grid size arc the same as in Fig. 1 and Az = 3x 107

w¥ = 0.677. This indicates a linear dependence on 7
consistent with the sharp interface asymptotics.

One can improve the agreement between the true
and modified chemical potentials by taking very
small time steps. However. this quickly becomes 1m-
practical. Indeed, an important question at this
point is whether these differences result in observa-
ble changes at the macroscopic level such as equili-
brium particle shapes and curvatures or the
dynamics of topological transitions. To answer
question, one can develop time stepping algorithms
that yield the correct equilibrium p = constant and
then compare the results to those of algorithm A.
While standard Crank—Nicholson mecthods yield
this correct equilibrium, the time steps required for
stability are impractically small, as noted above.
Instead. we have developed a modified Adams-
Bashforth method as follows:

N Py i A
ol :[1 ~le kALY e Ar):l[,n

SN, . 7i kA L =1
CRTAN AT — e TIKPAT Ay

AR @2)

This method, referred to as algorithm B, is second
order accurate in time. leads to the correct equili-
brium and has good stability properties, although it
does require time steps an order of magnitude smal-
ler than those needed for algorithm A.

In Fig. 1(b). comparisons are presented for the
true chemical potentials using algorithms A and B.
The situation is the same as in Fig. 1(a) with
» =015 and Ar = 1 x1077. As was observed in
Fig. 1(a), the chemical potential from algorithm A
exhibits oscillations at the interface layers. These os-
cillations are removed by using algorithm B (the

solid line in Fig. 1(b)). Interestingly, the true chemi-
cal potential from algorithm B differs from the
modified chemical potential from algorithm A only
in the sixth digit.

We close this Section by considering the depen-
dence of macroscopic quantities on the two algor-
ithms A and B. In other words, do the oscillations
observed in the true chemical potential affect the
particle shapes or dynamics? As will be shown in
the next two figures, the answer appears to be no.
In Fig. 1{c). we consider the curvature of the
¢ = 0.5 contour line for a single precipitate. Two
curvatures are shown corresponding to the results
from algorithms A and B. The conditions for the
precipitate are the same as in Fig. [(a) and (b)
except that the result from algorithm A uses the
time step Ar = 5x 107° The curvatures are plotied
as functions of a scaled arclength parameter.
Clearly, the curvatures are very similar. Even at the
high curvature corners the curvatures differ by only
5%. This is significant because the ¢ = 0.5 contour
lies inside the interface layer where oscillations ure
observed for the true chemical potential from algor-
ithm A.

Similar conclusions can be reached in the context
of topological transitions. In Fig. 2, we show the
merging of two precipitates in the setting of isotro-
pic, inhomogeneous elasticity. The physical situ-
ation is the same as in Fig. 6. described in detail in
Section 6. except that the particles are placed closer
to each other initially (Fig. 2(a) shows the initial
¢ = (.5 contour line). In Fig. 2(b). the ¢ = 0.5 con-
tour line is shown after the precipitates have
merged. This figure was generated using algorithm
B using A = 1 x 107% Figure 2(c) shows a close-up
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of the neck region at the same time. Results are
shown wusing algorithms A and B with
At = 1 x 107° and algorithm A with Ar = 1 x 107>
We note that the only differences in the results are
in the neck region and are primarily due to the time
step chosen. Moreover, the time of merging appears
to be independent of the algorithm.

Overall, we conclude that the time stepping algor-
ithm A is robust and accurately captures macro-
scopic features such as equilibrium particle shapes
and curvatures and the dynamics of topological
transitions. However, to accurately capture fine
details such as the chemical potential through the
interface layer, one should use algorithm B. Since
larger time steps can be used with algorithm A and
we are interested primarily in macroscopic quan-
tities, we will use algorithm A for the simulations in
the remainder of this paper.

6. RESULTS

6.1. Numerical comparison of the models

We now compare results from the sharp and dif-
fuse interface models. We identify the primary
differences in the results as being due to: (1) an infi-
nite far-field boundary (sharp) vs periodic boundary
conditions (diffuse). (2) the value of y used in the
diffuse interface model and (3) one-sided diffusion
(sharp) vs two-sided diffusion (diffuse). We illustrate
the first two through a series of comparisons below.
Later, we present a calculation in which the two-
sided diffusion becomes important.

We consider first the evolution of a single precipi-
tate in an anisotropic, cubic, homogeneous elastic
medium with elastic constants  ('y;=1.98 and
C»=1.18 which are appropriate for Ni-Al alloys

0.35 T T

0.34

' (a)

0.33F 4

0.3 boundary integral J

031} 1
CH, gamma=.075

Particle Area
o
@

0.29F 4
CH, gamma=.15
0.28f hi
0.27f 4
0.26} 5
0.25 N " N o "
0 0.08 0.1 0.15 0.2 0.25
Time

Fig. 4. Evolution of precipitate area and diagonal-horizontal ratio. (a) Precipitate area,
0.15. (b) Diagonal-horizontal ratio, solid curve: BI calculation with infinite

v = 0.075, o denotes ; =
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(see [14]). The misfit strain £ is dilatational. It is
well known [14] that in this situation, the equili-
brium shape is squarish, and is characterized by the
dimensionless parameter Z. Figure 3(a) and (b)
show the Z = 8 equilibrium shape from both the
boundary integral calculation (solid line) and the
grey scale composition contours from the diffuse
interface simulation with 5 = 0.15. The DI results
are the same in both glaphs. The BI calculation
shown in Fig. 3(a) is for an isolated particle in an
infinite matrix. In contrast, the BI the calculation in
Fig. 3(b) is for a particle that has been surrounded
by nine identical particles, in order to simulate the
periodic boundary conditions used in the DI calcu-
lation. The initial precipitate shape for both simu-
lations is a circle with radius equal to 2 and for the
diffuse model, ¢ =1 inside the precipitate and
¢ = 0 outside so that initially, the boundary is
sharp.

In both cases. there is qualitative agreement
between the BI and DI shapes. though the diffuse
shape is slightly smaller than the BI shapes. This
related to the choice of
Figure 4(a) shows a p]ol of area vs time for the DI
simulations with y = 0.15 and y = 0.075, as well as
for the BI simulallon. The area is constant in the
Bl approach [12]. For the diffusc shapes. area is
defined as the area inside the ¢ = 0.5 contour line.
Since the initial precipitate for the diffuse model has
a sharp boundary, there 1s a rapid initial drop-off
of the area, as the transition region equilibrates and
becomes diffuse. As 5 decreases and the transition
region becomes thinner, less area is lost compared
to the BI result and we find approximately lincar
convergence to the Bl area with decreasing 7. This is
consistant with our asymptotic results in Section 4.

reduction in area 1s

12 T
1.18
116}
1.441
112+
2
& iar ’ solid: bi isolated 4
b/, dashed: bi periadic
1.08f ’ o: gamma=,15
x: gamma=.075
1.06
1.041 b
1.02 4
f L " —_ L ) L . A
0 005 0t 015 02 025 03 035 04 045 05
Time
x denotes

far field boundary, dashed curve: Bl calculation with simulated periodic boundary conditions. o denotes
= 0.15, x denotes 7 = 0.075. Parameters are the same as Flg 3. For the Bl simulation, ' = 64 grid

points and As =

= Ix 107
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A close examination of Fig. 3(a) also reveals that
the diffuse shape is “rounder™ than the BI shape.
This can be quantified by calculating the ratio of di-
agonal length to horizontal length for the particles,
as shown in Fig. 4(b). Note that the BI calculation
for the isolated particle produces a significantly
“squarer” (larger diagonal/horizontal ratio) than
the BI calculation with the simulated periodic
boundary conditions. Also, we observed that for
the diffuse shapes, the diagonal/horizontal ratio
increases as y decreases, and appears to be conver-
ging to the BI result with periodic boundary con-
ditions.

A second example of the influence of boundary
conditions is shown in Fig. 5. In this calculation,
we again assume cubic anisotropic. homogeneous
elasticity with the same elastic constants and Z as
in Fig. 3. Here, we consider two initially circular
particles whose centers are initially aligned along
the (11) direction (inset Fig. 5). As in Fig. 3, the in-
itial particle boundaries in the DI simulation are
sharp. W¢ show these particles at dimensionless
time 1.0 for both the BI and DI simulations. The
DI shape is the same in both Fig. 5(a) and (b). The
BI result in Fig. 5(a) corresponds to two isolated
particles, while in Fig. 5(b). we simulate periodic
boundary conditions as described above. In both
cases. we observe that the particles align in the soft
(10) direction with an apparently stable interparticle
distance. This has been seen in  previous
simulations [16]. We find again much better agree-
ment between the DI results and the BI results with
simulated periodic boundary conditions.

We have also found good agreement between DI
and BI results for the case of isotropic. inhomo-

INTERFACE MODEL FOR MICROSTRUCTURAL EVALUATION

geneous elasticity. Figure 6 shows a DI and BI
simulation of two “soft” particles with G"=0.5
(recall GM=1), Z = 2.7 and with dilatational mis-
fits. By soft, we mean that the shear modulus of the
precipitate is less than that of the surrounding
matrix. The Poisson ratios are vM=v"=02. The
precipitates are initially circular with radius 1 and
have sharp boundaries (see inset). The Bl calcu-
lation was performed for two isolated particles. The
particle shapes resulting from the two models are
qualitatively similar, though the interacting tips are
much sharper in the BI simulations. However, the
Bl simulation breaks down as the precipitates
merge. The DI model, on the other hand, naturally
handles the expected merging of the two particles
(see Fig. 7). The sharpness of the interacting tips in
the DI simulation can be increased by decreasing 7.
The specific choice of ; has a strong effect on the
time at which the particles merge. such that decreas-
ing 7 delays merging: however. it has very little
effect on the evolution either prior to or after mer-
ging. Finally, we remark that since the main elastic
interactions are between the two particles, there is
essentially no difference between Bl calculations
with isolated particles and with simulated periodic
boundary conditions as above.

The Bl calculations presented above are much
cheaper to perform than the DI simulations. Both
sets of results were obtained using the Cray C90;
the BI simulations required approximately 0.05-
0.25h to complete while the DIl calculations
required [-2h. The precise numerical parameters
can be found in the figure captions. Notably. the
DI simulations used the spatial grid
size Iy =hy=2m/256 which yiclds approximately 16

Fig. 5. BI/DI comparisons for two translating precipitates. The DI results are the same in each figure.
(a) The BI calculation with infinite far-field boundary. (b) The BI calculation uses simulated periodic
boundary conditions. The inset shows the initial condition. The elastic parameters are as in Fig. 3 with

Z = 4. For the DI model, iy =/,=256 and Ar -
and Ar

5x107°. For the BI model. ' = 64 on each interface
1 <10 -,
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2]
1
w

Fig. 6. BI/DI comparisons for two merging precipitates. The initial condition is shown in the inset. The
elastic parameters are the same as in Fig. 2. The parameters for the DI model are the same as for the
dot-dashed curve in Fig. 2. For the BI model, N = 512 on each interfacc and Ar = 5 x 1077,

grid points across the interface layer when y = 0.15.
The time step for the DI simulations ranged from
O(107®) for the results in the homogeneous, cubic
anisotropic elastic medium to O(107%) for the in-
homogeneous, isotropic medium.

6.2. Inhomogeneity effects and topological transitions

We now consider the role that elastic inhomogen-
eity plays in microstructural evolution. One of the
interesting consequences of elastic inhomogeneity is
its effect on particle-particle attraction or repulsion.
In an isotropic, inhomogeneous medium where
there is a dilatational misfit, precipitates with shear
modulus G">1 (referred to as “hard” precipitates)
tend to repel one another while those with G¥< |
(“‘soft” precipitates) tend to attract [12,24]. This is

in striking contrast with the case of homogeneous,
cubic anisotropic medium in which a stable inter-
particle distance is observed [l16]. Compare the
results in Fig. 5(a) or (b) with those in Fig. 6.

In this section. we focus only on the DI model
while examining the effect of inhomogeneity and
the dynamics of topological transitions. Unless
otherwise stated, the misfit is taken to be dilatu-
tional. The precise numerical parameters can be
found in the figure captions.

In Fig. 7, we present a continuation of the simu-
lation involving the two soft precipitates shown in
Fig. 6. The merging is captured smoothly and the
resulting single precipitate evolves toward a circular
shape. This circular equilibrium shape is a reflection
of the analysis of Johnson and Cahn [36] which pre-



2124 LEO et al.:

time = 0.48

time = 1.0
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time = 0.5

time = 2.0

Fig. 7. Merging of two precipitates. This is a continuation of the DI calculation shown in Fig. 6. The
final time 1 = 2.0 shows the equilibrium microstructure.

dicts that the equilibrium shape of a single soft par-
ticle is circular for the values of the material con-
stants we used here. In [36]. Johnson and Cahn
derive a bifurcation parameter between circular and
elliptical precipitate shapes, which depends on the
area of the precipitates, the elastic constants. the
misfit and the surface energy. Using vM=1=0.2
and G"=0.5. this parameter can be reduced to our
parameter Z. Johnson and Cahn showed that there
is a critical value Z.=4.76 such that for
Z < Z.q. circular equilibrium shapes are observed
while for 7> 7. clliptical equilibrium shapes are
seen. Recall that in Fig. 7. Z = 2.7,

If Z is increased above Z. we still expect par-
ticle attraction and merging. but the single merged
particle should become ellipsoidal. This is seen in
Fig. 8 where we show two equilibrium shapes afier
merging. The initial precipitate shapes and the mis-
fit are as in Fig. 6. In Fig. 8(a). Z = 5.4 while in
Fig. 8(b), Z = 10.8. The primary differences in the
evolution among the simulations with Z = 2.7, 5.4
and 10.8 occur after merging. We remark that we

find excellent agreement with the Johnson-Cahn
result even though arbitrary shapes are allowed in
our approach.

It is interesting to follow the evolution of the sys-
tem energy £(7), from equation (10), throughout the
merging process. In Fig. 9, E(¢) is plotted for the
simulations in Figs 7 and 8. In each of these ener-
gies, the rapid drop marks the precipitate merging.
The sharp corners in the curves are due to the fact
that the energy is plotted every 0.02 time-units
while the transitions occur more rapidly. In fact,
E(1) varies smoothly with r. Note that the merging
occurs at carlier times as Z is increased. This beha-
vior is the characteristic signature of topological
transitions in the DI model. In the BI model, [12]
showed that dE/dr — — o0 at a topological tran-
sition. Here, we note that dE/d¢ is a negative finite
number because the interfaces are diffuse.

We consider next the evolution of four precipi-
tates. We begin by taking hard particles (G"=2.0,
y'=yM=02, Z = 2.7). In this case the interparticle
forces are repulsive, such that in the absence of a
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Fig. 8. Equilibria of two merged precipitates. The elastic parameters are the same as in Fig. 2. The

spatial grid spacing is /i, =/in=256. (2) Z = Sdand Ar = 1 x 107", (b) Z = 10.8 and Ar

far-field boundary, the precipitates would move infi-
nitely far from each other [12]. Here, a finite outer
boundary is effectively imposed by the periodic
boundary conditions and so an equilibrium particle
configuration is reached in each periodic cell. The
initial and final configurations are shown in Fig. 10.
The initial particles are symmetrically placed and
have sharp boundaries. Note that at the final time,
the boundaries of neighboring precipitates are relu-
tively flat due to the repulsive forces.

- 5x107°,

We now turn to the evolution of four soft pre-
cipitates (G"=0.5. " =yM=0.2. 7 = 9.6); this dis-
plays much more interesting dynamics than the
hard precipitate case considered above. The initial
condition is the same as in Fig. 10. The evolution
of the precipitates is shown in Fig. 11. We observe
that the precipitates merge both horizontally and
vertically. so that the soft material completely sur-
rounds a hard matrix center. Similar coating of

30 T T T T T T T T T
2=2.7 (a)
28F 7
26 1
0 0.2 0.4 0.6 0.8 1 12 1.4 1.6 1.8 2
44 T T T T T T T T T
Z=5.4 (b)
42 b
40 -1
I 1 | | 1 1 1 1 |
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
68 T T T T L T T T T
Z=10.8 (c)
66 A
64r 1
i 1 | 1 1 1 1 1 L
0 0.2 0.4 0.6 0.8 1 12 1.4 1.6 1.8 2
Time

Fig. 9. Total cnergy of merging precipitate system. (a) Z = 2.7 from Fig. 7. (b) Z = 5.4 from Fig. 8(a).
(¢} Z = 10.8 from Fig. 8(b).



2126 LEO er al: INTERFACE MODEL FOR MICROSTRUCTURAL EVALUATION

time =0

time = 0.6

Fig. 10. Four symmetrically-placed hard precipitates. Initial and final times are shown. The elasticity is
isotropic. inhomogencous with 7 == 2.7. G"=2 and the misfit is dilatational. The spatial grid size is
hy=ha= 27256 and At = 2.5 x 107",

elastically hard material with elastically softer ma-
terial has been observed by Lee [37].

However, in our simulations, the hard center that
is formed at early times cventually diffuses out
through the soft annulus, leaving a single soft par-

time = 0.04

time = 0.6

ticle. This soft particle continues to evolve until it
forms a cross that connects with its periodic images.
This gives a final configuration where the phases
have reversed roles—hard particles surrounded by a
soft matrix. This microstructure is stable, and is

time = 0.2 time = 0.4

time = 0.8

Fig. 11. Evolution of lour symmetrically-placed soft precipitates. The elastic parameters are the same as

in Fig. 2 with Z = 9.6. The initial condition is the same as in Fig. 10. The spatial grid size is

Iy = hy=2m256 and Ar = 5 x 107" This figure shows the transition from soft precipitates/hard matrix
to a microstructure with hard precipitates/soft matrix.
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time = 0.5

— =,‘1.
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time = 1.0

time = 1.5

Fig. 12. Evolution of four asymmetrically-placed soft precipitates. The elastic parameters are the same

as in Fig. 2 with Z = 54, The initial condition is shown in the inset. The spatial grid size is

= h>=27/256 and Ar = 1% 10", This figure shows the microstructure evolving from precipitates to
plates.

consistent with both elastic energy
calculations [38, 39] and calculations of the eflective
moduli of composite materials [40]. Moreover, it is
the two-sided diffusion in the DI model that pro-
vides the mechanism by which the coated micro-
structure (times 0.2-0.6) continues to evolve toward
a lower energy state. In this case, relaxing the con-
straint of one-sided diffusion seems to have import-
ant consequences on the equilibrium microstructure.

We find that both the dynamics and the final
structures computed from the DI method are
strongly dependent on the initial condition and the
periodic boundary conditions. For example, Fig. 12
shows the evolution of four soft precipitates: the
parameters are the same in Fig. 11 except that
Z = 5.4 and initially, the upper particles are closer
to the top boundary of the periodic box than to the
lower particles (see inset). This breaks the symmetry
of the calculation such that the lower particles coar-
sen atl the expense of the upper ones. Concurrent

with this coarsening. the bottom particles merge,
lengthen and eventually merge with their periodic
images. After + = 1.5, the sides of the structure flat-
ten and the equilibrium configuration is a horizon-
tal plate (not shown).

We conclude by showing two calculations of the
evolution of 12 particles. In Fig. 13, the particles
are harder than the matrix (GF¥=2.0) while in
Fig. 14 they are softer (G'=0.5). In both cases. the
same initial data is used (see insert). vM=1"=0.2,
Z = 1.2 and there is a tetragonal misfit £, =1,
EL =2, €l,=0, recall that the scaling of the misfit is
contained in Z). In both the hard and soft particle
simulations, we observe that the final microstruc-
ture consists of a single particle. In fact, we were
unable to find any evidence of elastic stabilization
of a multidisperse microstructure in any simulation.
Because of the tetragonal misfit, the coarsened par-
ticle is an ellipse in the hard case (Fig. 13(f)), and
plate-like in the soft case (Fig. 14()). While we do
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time = 0.1 time = 0.2 ; time =0.3

time = 0.5 time = 0.6

time = 0.4

Fig. 13. Coarsening of 12 hard precipitates. The initial configuration is shown in the inset. The elastic

parameters are the same as in Fig. 10 except that Z = 1.2 and the misfit is tetragonal =1, eh=2

and £, =0. The spatial grid size is &, =h,=2r/256 and At = 5x 107®. The resulting equilibrium con-
sists of an elliptical particle.

time = 0.6 time = 0.8 time = 1.0

Fig. 14. Coarsening of 12 soft precipitates. The initial configuration is shown in the insct and is the
same as in Fig. 13. The clastic parameters are the same as in Fig. 13 except that G*=0.5. The space
and time grid sizes are the same as in Fig. 13. The resulting equilibrium consists of a plate-like particle.
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not have enough particles to form statistically sig-
nificant conclusions about the overall kinetics of the
process, we find that the overall coarsening kinetics
in the two cases are qualitatively similar. However,
the detailed kinetics are different in the two cases.
In the hard case (Fig. 13), the kinetics are domi-
nated by “‘classical” coarsening and there is little
merging of particles. In contrast, in the soft case
(Fig. 14), at early times. there is rapid particle mer-
ging between closely-spaced particles. At later
times, the resulting well-separated particles coarsen.

7. SUMMARY

In this paper. we study the diffusional evolution
of microstructure in elastic media in two dimensions
using both a sharp interface and a diffuse interface
model. In the former, the matrix-precipitate inter-
faces are assumed to be sharp and diffusion only
takes place in the matrix phase. In the latter, the
interfaces are given a finite but small thickness and
a set of partial differential equations is used to
model the evolution in the entire multi-phase
domain.

We present theoretical and numerical results com-
paring the two approaches in isotropic. inhomo-
geneous and in anisotropic, homogeneous elastic
media. These choices are motivated by the fact that
there are well-developed methods for solving the
sharp interface system in these situations [12, 15].
From the theoretical point of view, we use the
method of matched asymptotic expansions to show
that as the width of the interface layer in the diffuse
model is taken to zero, the diffuse equations con-
verge to a sharp interface system in the limit. This
limiting system has diffusion in both the matrix and
precipitate (two-sided diffusion) but otherwise
matches the original sharp interface system.

To solve the diffuse interface system numerically,
we develop a pseudo-spectral method using periodic
boundary conditions. We use a nonstiff updating
scheme in time (algorithm A) and carefully investi-
gate its effect on both equilibrium and evolving pre-
cipitate shapes. We show that while algorithm A is
robust, it can lead to equilibria in which details.
such as the chemical potential, depend sensitively
on the small scales present in the solution.
However, we show that macroscopic features (e.g.
precipitate shape, curvature) are captured by algor-
ithm A.

Finally, we use the diffuse interface approach to
study the effect of clastic inhomogeneity and topo-
logical transitions on microstructural evolution. We
find, as in [12, 24], that precipitates with dilatational
misfits and a higher shear modulus than the matrix
tend to repel one another through their elastic inter-
action. In contrast, precipitates with a lower shear
modulus than the matrix tend to attract. This leads
to particle merging which is captured smoothly
using the diffuse interface model. We find that the

INTERFACE MODEL FOR MICROSTRUCTURAL EVALUATION
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evolution process and resulting equilibrium micro-
structure depends strongly on the initial data and
the periodic boundary conditions. We also give un
example where the two-sided diffusion in the diffuse
interface model has important consequences on the
equilibrium microstructure. In a forthcoming work
we will consider the effects of both elastic aniso-
tropy and inhomogeneity on microstructural evol-
ution using sharp and diffuse interface models.
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APPENDIX A

Method of Matched Asvmptotic Expansions

We now present a very brief sketch of the matched asymp-
totic expansion procedure used to obtain the ficld
equations  (22)+(24) and boundary conditions of
equations (27)-(30). A more detailed derivation may be
found in [34].

The idea of the method is to expand the composition ¢
and displacement u in powers of 3 both away from the
transition region (the outer expansion) and inside the tran-
sition region (the inner expansion). For the outer expan-
sion, i.c. the expansion in the regions Q%, we take

cx, v, 0 =d"x D4 v

B RN NN IREpp (43)
ulx, ¥, 0 =, v+t e n
+ ;‘jum( Xove 4 (44)

INTERFACE MODEL FOR MICROSTRUCTURAL EVALUATION

All the other quantities (e.g. strain, misfit. chemical
potential) may be similarly expanded using these fun-
damental expansions. Plugging the resulting expansions
into the DI equations (14) and (15) and equating
powers of 7 yields (outer) equations valid in oMF

For the inner expansion, we usc a stretched local
normal-tangential coordinate system (with respect to
). Let I'=(X(s, 1, Y(s. 1) where s is arclength
and 7 is time. Then. introduce a stretched local coor-
dinate transformation from (v, ») to (z. s) where
- =riy and r is the signed distance along the normal
from a point (x, y) to I'. The orientation of I is
chosen so that the normal » = (Y,,, —X.,;) points
into the region QM. Note that as » — 0. the inner
region extends from —oo < - < +oc. In this coordi-

nate system, the gradient and time derivative oper-
ators are
1.4 1 . a A Vo a
Ve=—h—+ —A-—).\-—. = —— 4 0GY, (35
voooz (|+”,':K' os it v oz 7 69
where x is the mean curvature of I" and V = —r, is

the normal velocity of I We now change variables
and take components of the displacement vector in
the normal and tangential directions.

o(x, v, 1) =008, 0, (46)

u(x, v, 1) =iz, s, HA+ (2, 5. 08 47)
As in the outer expansion. we expand ¢, ¥ and ¥
in non-negative powers of 7. The inner expansions
of all the other fields can be derived from these
expansions and the change of variable formulae
(equation (45)). Inner equations (valid in the inter-
face layer) are obtained by plugging these expan-
sions into the DI equations (14) and (15) and

equating powers of 3.

The solutions of the inmer and outer equations are
linked across the interfacc [ by requiring that as
o -— 400, the inner solutions match the outer sol-
utions as (x. »)— 1 from QY and Q. See [31,34)
for details on this matching procedure. The field
equations and boundary conditions claimed in Section
4 follow directly.



