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Abstract

We develop a conservative, second-order accurate fully implicit discretization of the Navier–Stokes (NS) and Cahn–

Hilliard (CH) system that has an associated discrete energy functional. This system provides a diffuse-interface de-

scription of binary fluid flows with compressible or incompressible flow components [R. Soc. Lond. Proc. Ser. A Math.

Phys. Eng. Sci. 454 (1998) 2617]. In this work, we focus on the case of flows containing two immiscible, incompressible

and density-matched components. The scheme, however, has a straightforward extension to multi-component systems.

To efficiently solve the discrete system at the implicit time-level, we develop a nonlinear multigrid method to solve the

CH equation which is then coupled to a projection method that is used to solve the NS equation. We demonstrate

convergence of our scheme numerically in both the presence and absence of flow and perform simulations of phase

separation via spinodal decomposition. We examine the separate effects of surface tension and external flow on the

decomposition. We find surface tension driven flow alone increases coalescence rates through the retraction of inter-

faces. When there is an applied external shear, the evolution of the flow is nontrivial and the flow morphology repeats

itself in time as multiple pinchoff and reconnection events occur. Eventually, the periodic motion ceases and the system

relaxes to a global equilibrium. The equilibria we observe appears has a similar structure in all cases although the

dynamics of the evolution is quite different. We view the work presented in this paper as preparatory for a detailed

investigation of liquid–liquid interfaces with surface tension where the interfaces separate two immiscible fluids [On the

pinchoff of liquid–liquid jets with surface tension, in preparation]. To this end, we also include a simulation of the

pinchoff of a liquid thread under the Rayleigh instability at finite Reynolds number.
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1. Introduction

The Cahn–Hilliard (CH) equation is the prototypical continuum model of phase separation. It was
originally proposed by Cahn and Hilliard [35] to model binary alloys and has subsequently been adopted to

model many other physical situations such as phase transitions and interface dynamics in multiphase fluids.

The CH equation, even without flow, is challenging to solve numerically for two reasons. First, the

equation is fourth order in space which makes straightforward difference stencils very large and introduces

a severe time step restriction for stability (stiffness), i.e., Dt � Dx4 for explicit methods. Second, there is

nonlinearity at the lower order spatial derivatives which can also contribute to numerical stiffness.

In the absence of flow, there has been much algorithm development and many simulations of the CH

equation using finite element methods (e.g. [29–34,38,40–42,44]), finite difference algorithms (e.g.
[43,45,46,50]) and spectral methods (e.g. [37,48]). Most of these finite difference and finite element references

use conservative algorithms with discrete energy functionals. The discretization that is closest to the one we

use in this paper is given in [38] in the context of finite element methods. In [38], the CH is treated as a system

where the fourth-order equation is split into two coupled second-order equations. A Crank–Nicholson type

time discretization is used such that the scheme has a discrete energy functional for any value of the time step

(the scheme is nonlinear at the implicit time-level). It is highly desirable to have a discrete energy functional

because this can be used to prove that the numerical solution is uniformly bounded with respect to the time

and space step sizes from which it follows that the scheme is stable (e.g., see [3,38]).
In the presence of flow, there has been much recent work on simulating multicomponent fluid flows using

Cahn–Hilliard (diffuse interface) models. We again refer the reader the review [1] and to the discussion

below for references. Recent applications of Cahn–Hilliard fluid modeling include simulations of the two-

and three-dimensional Rayleigh–Taylor instability (e.g. [5,7,8]), the pinchoff of liquid–liquid jets (e.g. [6,9]),

thermocapillary flow (e.g. [10,11]), mixing (e.g. [12]), contact angles and wetting phenomena (e.g. [13,14]),

gravity and capillary waves (e.g. [15–17]), coalescence (e.g. [18]), reactive flows (e.g. [19]), nucleation and

spinodal decomposition (e.g. [6,10,18,20–22,36]). In particular, in [10,22], the spinodal decomposition oc-

curs in the presence of imposed temperature gradients.
In spite of these recent algorithmic developments, the numerical solution to the CH equation has re-

mained problematic mainly due to the difficulty in solving the nonlinear CH equation at the implicit time-

level and to the resolution of the extra reactive fluid stresses generated by concentration gradients that

mimic surface tension. In this paper, we develop a new conservative, second-order accurate fully implicit

finite difference discretization of the Navier–Stokes (NS) and CH system that has an associated discrete

energy functional for any value of the time and space steps. As in [38,39], we treat the CH equation as a

system of second-order equations however we use a different discrete approximation that yields enhanced

stability over the method presented in [38]. This alternative approximation also allows us to extend sys-
tematically the discrete system to the case of ternary mixtures [3]; the scheme presented in [38,39] does not

have such a straightforward ternary extension. A convergence proof of our algorithm is also given in [3].

To efficiently solve the discrete system at the implicit time-level, we develop a nonlinear multigrid

method to solve the CH equation which is then coupled to a projection method that is used to solve the NS

equation. To our knowledge this is the first work in which a nonlinear multigrid method is used to solve the

CH equation and is one of the main achievements in this paper. We find that convergence of the multigrid

method can be achieved with time steps that depend very weakly on the spatial grid size. In particular,

convergence is obtained if Dt � Dx although it may be proven [3] that Dt6Dt0 where Dt0 depends only on
physical parameters and is independent of Dx.

By using the nonlinear multigrid method to obtain the numerical solution at the implicit time-level, we

gain improved numerical stability and efficiency over standard solution techniques based on Newton�s
method and over algorithms for which the nonlinear terms are treated as forcing functions. Our discreti-

zation also has the advantageous side-effect of improving the accuracy of the extra reactive fluid stresses.
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We demonstrate convergence of our scheme numerically in both the presence and absence of flow and

perform simulations of phase separation via spinodal decomposition focusing on the effects of surface

tension and external flow. We find surface tension driven flow alone increases coalescence rates through the
retraction of interfaces. When there is an applied external shear, the evolution of the flow is nontrivial and

the flow morphology repeats itself in time as multiple pinchoff and reconnection events occur. Eventually,

the periodic motion ceases and the system relaxes to a global equilibrium. The equilibria we observe ap-

pears has a similar structure in all cases although the dynamics of the evolution is quite different.

We view the work presented in this paper as preparatory for a detailed investigation of liquid–liquid

interfaces with surface tension where the interfaces separate two immiscible fluids [23]. To this end, we also

include a simulation of the pinchoff of a liquid thread under the Rayleigh instability at finite Reynolds

number.
The contents of this paper are as follows. In Section 2, we present the coupled NS and CH equations. In

Section 3, we derive the discrete scheme, demonstrate the existence of a discrete energy functional. In

Section 4, we present the nonlinear multigrid method for the fully discrete system in the absence of flow.

In Section 5, we present the approximate projection method used to solve the discrete generalized NS

equations. In Section 6, we perform a local mode analysis for the nonlinear multigrid scheme to analyze the

smoothing factor. In Section 7, we present numerical results. In Section 8, we discuss future directions and

present a simulation of the break-up of a liquid thread under the Rayleigh instability. In Appendix A, the

derivation of the smoothing operator for the nonlinear multigrid scheme is presented. In Appendix B, the
classical Crank–Nicolson discretization of the CH equation is presented and discussed.
2. Governing equations

Assuming that the fluid components are incompressible with equal densities (set to one for simplicity)

and that the evolution is isothermal, the non-dimensional CH model is as follows. Let c be the phase

variable (i.e., concentration), then

ctðx; tÞ þ r � ðucÞ ¼ 1

Pe
r � ðMðcÞrlðx; tÞÞ for ðx; tÞ 2 X� ½0; T � � Rn � R ð1Þ

and

lðx; tÞ ¼ /ðcðx; tÞÞ � �2Dcðx; tÞ; ð2Þ

where u is the mass-averaged fluid velocity (i.e., u ¼ u1 þ u2, where u1 and u2 are the velocities of the two

components), Pe is the diffusional Peclet number and measures the relative strengths of advection and

diffusion,M is the non-dimensional mobility, l is the generalized chemical potential, /ðcÞ ¼ F 0ðcÞ, and F ðcÞ
is the Helmholtz free energy which is non-convex if T < Tc, to reflect the coexistence of separate phases and

� > 0 is a non-dimensional measure of non-locality due to the gradient energy (Cahn number) and intro-

duces an internal length scale (interface thickness). See also [1,2,24] for further details and references. The

non-dimensionalization can be found in [2,47]. Here, for simplicity, we consider a constant mobility 1

ðM � 1Þ and we take Pe ¼ 1 and we use the quartic free energy F ðcÞ, which is defined by

F ðcÞ ¼ 1

4
c2ðc� 1Þ2: ð3Þ
1 The extension to more generalM ¼ MðcÞ is straightforward and will be considered in a future work [23]. See also Fig. 11 in Section 8.
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Thus, the coexisting phases correspond to c ¼ 0 and 1. The natural boundary and initial conditions for the

CH equation are

oc
on

¼ ol
on

¼ 0 and u ¼ 0 on oX; cðx; 0Þ ¼ c0ðxÞ; uðx; 0Þ ¼ 0; ð4Þ

where n is the normal unit vector pointing out of X.
Two important features of the CH problem in the case of zero Neumann boundary conditions are the

conservation of mass 1
jXj
R
X cðx; tÞdx; and the existence of a Lyapunov(Energy) functional JðcÞ

JðcÞ ¼
Z
X

F ðcÞ
�

þ �2

2
jrcj2

�
dx ð5Þ

such that

d

dt
JðcÞ ¼ �

Z
X
jrlj2 dx;

in the absence of flow. The second feature plays a crucial role in the analysis of the CH equation, including

the proof of the existence of a solution to the initial boundary value problem [38], and asymptotic long time

behavior [51,54]. The energy functional also readily yields a pointwise estimate of c in the one-dimensional

case.

In the presence of flow, the functional JðcÞ now may either increase or decrease in time and satisfies

d

dt
JðcÞ þ

Z
X
lr � ðcuÞdx ¼ �

Z
X
jrlj2 dx:

If the interfaces are passive, by which we mean that the concentration field c does not affect the flow field,

then u satisfies the classical Navier–Stokes equations and may be imposed independently of the concen-

tration field c. If the interfaces are active, on the other hand, the velocity field u depends on c through the

introduction of extra stresses that mimic the surface tension between the two fluid components. In this case,

the system energy is given by

Etot ¼
Z
X
juj2=2dxþ We�1

s

�
JðcÞ; ð6Þ

where the first term is the kinetic energy of the fluid system, the second when scaled this way (note the

dependence of the second term upon �) is a measure of the surface energy and Wes is proportional to the

Weber number 2 which measures the relative strengths of the kinetic and surface energies [2]. The velocity

satisfies a generalized Navier–Stokes (NS) system:

ut þ u � ru ¼ �rp � We�1
s

�
crlþ 1

Re
r � gðcÞ ru

��
þruT

��
; r � u ¼ 0; ð7Þ

where the extra stress due to the concentration gradients (i.e., interfaces) is � We�1
s

�
crl, Re is the Reynolds

number and g is the non-dimensional viscosity which is assumed to depend on the mass concentration c. In
[2], it is shown using the method of matched asymptotic expansions that this term converges to the classical

surface tension force as � ! 0. This result has been recently made rigorous by C. Liu and S. Shkoller

(preprint) where it is shown that solutions to the NS and CH equations converge to weak solutions of

classical sharp interface models of interfacial flows with surface tension. This NSCH system is known as
2 The exact relation is We ¼ Wes=
R 1

0

ffiffiffiffiffiffiffiffiffiffiffiffi
2F ðcÞ

p
dc, where We is the physical Weber number [2].
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Model H in the notation of Hohenberg and Halperin [24]. We refer the reader to the recent review paper by

Anderson et al. [1] and Lowengrub and Truskinovsky [2], for example, for further details on the model. The

extension of this system to the more realistic case of multiphase fluids whose components have different
densities is extensively discussed in [2]. The system energy, assuming no-slip (u ¼ 0) boundary conditions,

satisfies

d

dt
Etot ¼ �We�1

s

�

Z
X
jrlj2 dx� Re�1

2

Z
X
gðcÞD : Ddx; ð8Þ

where D ¼ ruþruT is the scaled deformation tensor.
3. Numerical methods

In this section, we present semi-discrete and fully discrete schemes for the NSCH system. In addition, we

prove discrete versions of mass conservation and energy dissipation, which immediately imply the stability

of the numerical scheme (assuming that the implicit nonlinear equations can be solved).

3.1. Discretization

We shall first discretize the CH equation (1) and (2) in space. Let ½a; b� and ½c; d� be partitioned by

a ¼ x1
2
< x1þ1

2
< � � � < xNx�1þ1

2
< xNxþ1

2
¼ b;

c ¼ y1
2
< y1þ1

2
< � � � < yNx�1þ1

2
< yNyþ1

2
¼ d

so that the cells Iij ¼ ½xi�1
2
; xiþ1

2
� � ½yj�1

2
; yjþ1

2
�; 16 i6Nx; 16 j6Ny cover X ¼ ½a; b� � ½c; d�. Let

Dxi ¼ xiþ1
2
� xi�1

2
; Dyj ¼ yjþ1

2
� yj�1

2
:

For simplicity, we assume that the above partitions are uniform in both directions so that

Dxi ¼ Dyj ¼ h for 16 i6Nx; 16 j6Ny ;

where h ¼ ðb� aÞ=Nx ¼ ðd � cÞ=Ny : Therefore

xiþ1
2
¼ aþ ih; yjþ1

2
¼ cþ jh

and let Xh ¼ fðxi; yjÞ : 16 i6Nx; 16 j6Nyg; be the set of cell-centers where

xi ¼ 1
2
ðxi�1

2
þ xiþ1

2
Þ; yj ¼ 1

2
ðyj�1

2
þ yjþ1

2
Þ:

The set of cell-corners is Xh;1
2
¼ fðxiþ1

2
; yjþ1

2
Þ : 06 i6Nx; 06 j6Nyg:

Since the concentration c and the chemical potential l satisfy Neumann boundary conditions, it is

natural to define them at cell centers. Let cij and lij be approximations of cðxi; yjÞ and lðxi; yjÞ. We first

implement the zero Neumann boundary condition (4) by requiring that

Dxc�1
2
;j ¼ DxcNxþ1

2
;j ¼ Dyci;�1

2
¼ Dyci;Nyþ1

2
¼ 0; ð9Þ

where the discrete differentiation operators are

Dxciþ1
2
;j ¼

1

h
ðciþ1;j � ci;jÞ; Dyci;jþ1

2
¼ 1

h
ðci;jþ1 � ci;jÞ:
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We then define the discrete Laplacian by

Ddcij ¼
1

h
ðDxciþ1

2
;j � Dxci�1

2
;jÞ þ

1

h
ðDyci;jþ1

2
� Dyci;j�1

2
Þ

and the discrete L2 inner product by

ðc1; c2Þh ¼ h2
XNx

i¼1

XNy

j¼1

c1ij c2ij : ð10Þ

For a grid function c defined at cell centers, Dxc and Dyc are defined at cell-edges, and we use the following

notation:

re
dcij ¼ ðDxciþ1

2
;j;Dyci;jþ1

2
Þ;

to represent the discrete gradient of c at cell-edges. Correspondingly, the (MAC) divergence at cell-centers,

using values from cell-edges, is

~rre
d � gij ¼

1

h
g1iþ1

2
;j

�
� g1i�1

2
;j

�
þ 1

h
g2i;jþ1

2

�
� g2i;j�1

2

�
for a grid function g ¼ ðg1; g2Þ defined on cell-edges. We can define an inner product for re

dc on the

staggered grid by

ðre
dc1;re

dc2Þe ¼ h2
XNx

i¼0

XNy

j¼1

Dxc1
iþ1

2
;j
Dxc2

iþ1
2
;j

 
þ
XNx

i¼1

XNy

j¼0

Dyc1
i;jþ1

2

Dyc2
i;jþ1

2

!
: ð11Þ

We also define discrete norms associated with (10) and (11) as

kck2 ¼ ðc; cÞh; jcj2e;1 ¼ ðre
dc;re

dcÞe:

The time-continuous, space-discrete system that corresponds to (1)–(4) in the absence of flow is

d

dt
cij ¼ Ddlij; lij ¼ /ðcijÞ � �2Ddcij; ð12Þ

where / is defined in (3) and boundary conditions are implemented using (9). It is easy to see that this

discretization is second-order accurate in space and that mass is conserved identically. The scheme also has

an energy functional given by the discretization of (5). We discretize (12) in time by the Crank–Nicholson

type algorithm:

cnþ1
ij � cnij
Dt

¼ Ddl
nþ1

2
ij ; ð13Þ

l
nþ1

2
ij ¼ /̂/ðcnij; cnþ1

ij Þ � �2

2
Ddðcnij þ cnþ1

ij Þ; ð14Þ

where

/̂/ðc1; c2Þ ¼ /ðc2Þ �
1

2
/00ðc2Þðc2 � c1Þ þ

1

3!
/00ðc2Þðc2 � c1Þ2: ð15Þ

This is obtained by using the Taylor expansion of ðF ðc1Þ � F ðc2ÞÞ=ðc1 � c2Þ and retaining terms up to the

second-order derivative. This is a modification of the scheme presented in [38], where /̂/ðc1; c2Þ is was taken
to be:
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/̂/ðc1; c2Þ ¼
F ðc1Þ�F ðc2Þ

c1�c2
if c1 6¼ c2;

/ðc1Þ if c1 ¼ c2:

�

And unlike the scheme in [38], our modified scheme can be easily extended to multi-component systems.

In the presence of flow u ¼ ðu; vÞ 6¼ 0, we use the center difference operator to define the discrete gradient
and divergence operators at cell-centers, respectively, by

rdcij ¼
1

2
Dxciþ1

2
;j

�
þ Dxci�1

2
;j;Dyci;jþ1

2
þ Dyci;j�1

2

�
;

rd � uij ¼
1

2
Dxuiþ1

2
;j

�
þ Dxui�1

2
;j

�
þ 1

2
Dyvi;jþ1

2

�
þ Dyvi;j�1

2

�
:

The non-slip boundary conditions are implemented by introducing a ring of ghost-cells surrounding the

physical domain such that sum of the velocities (at cell-centers) are equal to zero on the physical boundary,

i.e.,

u0;j ¼ �u1;j; uNxþ1;j ¼ �uNx ;j; ui;0 ¼ �ui;1 and ui;Nyþ1 ¼ �ui;Ny : ð16Þ
Accordingly, Eq. (13) becomes by

cnþ1
ij � cnij
Dt

þrd � u
nþ1

2
ij c

nþ1
2

ij

� �
¼ Ddl

nþ1
2

ij ; ð17Þ

where unþ
1
2 ¼ ðunþ1 þ unÞ=2, and cnþ

1
2 is defined analogously. The chemical potential l

nþ1
2

ij is still obtained

from (14).

For active interfaces, the velocity u satisfies the generalized Navier–Stokes equations (7). Here, we will

use the rotation form (i.e., u � ru ¼ x� uþ 1
2
rjuj2) of the equations, together with the Bernoulli pressure

P ¼ p þ 1
2
juj2. To solve this system, we will use a projection method. Following [27], the velocity compo-

nents are defined at cell-centers, where uij � uðxi; yjÞ and the pressure is defined at cell-corners (Xh;1
2
), where

Piþ1
2
;jþ1

2
� Pðxiþ1

2
; yjþ1

2
Þ. In the corresponding discrete system, we additionally define gradient and divergence

operators taking values from cell-centers to cell-corners and vice versa. These operators are:

rc
d � uiþ1

2
;jþ1

2
¼ 1

2
Dxuiþ1

2
;j

�
þ Dxuiþ1

2
;j�1

�
þ 1

2
Dyvi;jþ1

2

�
þ Dyvi�1;jþ1

2

�
;

~rc

dPi;j ¼
1

2h
Piþ1

2
;jþ1

2

�
þ Piþ1

2
;j�1

2
� Pi�1

2
;jþ1

2
� Pi�1

2
;j�1

2
; Piþ1

2
;jþ1

2
� Piþ1

2
;j�1

2
þ Pi�1

2
;jþ1

2
� Pi�1

2
;j�1

2

�
:

We also introduce two Laplace operators that operate on cell-corners:

Dc
dwiþ1

2
;jþ1

2
¼

wi�1
2
;jþ1

2
þ wiþ1

2
;jþ3

2
� 4wiþ1

2
;jþ1

2
þ wiþ1

2
;j�1

2
þ wiþ3

2
;jþ1

2

h2
;

and

rc
d � ~r

c

dwiþ1
2
;jþ1

2
¼

wi�1
2
;j�1

2
þ wiþ3

2
;jþ1

2
� 4wiþ1

2
;jþ1

2
þ wi�1

2
;j�3

2
þ wiþ3

2
;jþ3

2

2h2
:

To discretize the flow equations, we then use an approximate projection method (e.g., see [27,28]). In this

scheme, the incompressibility condition can be posed as

rc
d �

unþ1 � un

Dt

	 

¼ Dt Dc

d

�
�rc

d � ~r
c

d

�
L�1 pnþ

1
2 � pn�

1
2

Dt

 !
; ð18Þ
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where L ¼ I � Dtg
2ReD

c
d and I is the identity operator. See Section 5 for a derivation. Note that the difference

Dc
d �rc

d � ~r
c

d applied to a smooth function converges to zero with second-order accuracy. If Dc
d was taken to

be rc
d � ~r

c

d, then the velocity is divergence-free on the discrete level. However, the corresponding exact
projection method is ill-conditioned since the stencil for the pressure solve is algebraically decoupled (e.g.,

see [49]).

Finally, the discretized momentum equation is

unþ1
ij � unij

Dt
¼ �x

nþ1
2

ij � u
nþ1

2
ij � ~rc

dP
nþ1

2
ij þ du

nþ1
2

ij � We�1
s

�
c
nþ1

2
ij rdl

nþ1
2

ij þ 1

Re
rd � gðcnþ

1
2

ij ÞDnþ1
2

ij

� �

þ Dt2

2Re
rd � gðcnþ1

2Þ rd
~rc

d

� 
þrT

d
~rc

d � Dc
dI
�
L�1 Pnþ1

2 � Pn�1
2

Dt

 !!
; ð19Þ

where the vorticity is x
nþ1

2
ij ¼ rd � u

nþ1
2

ij , and the (scaled) rate of deformation tensor is D
nþ1

2
ij ¼

rdu
nþ1

2
ij þ ðrdu

nþ1
2

ij ÞT. The last term in Eq. (19) arises in the projection method by replacing an intermediate

velocity that consists of the projected velocity at the nþ 1 step and a pressure update. A step and a pressure

update. As far as we know, this term has not been presented in other papers utilizing the projection method.

Again, see Section 5 for a derivation. If the viscosity g is constant, the latter two viscous terms in Eq. (19)

are replaced by the single term Re�1Ddu
nþ1

2. We include the more general case here for completeness al-

though in this paper we focus on the case in which g constant. The case with non-constant g will be
considered in another paper [23].

If g is constant and one uses the replacement described above, then d in Eq. (19) is given by

d ¼ ðunþ1
2; ~rc

dP
nþ1

2Þh=kunþ
1
2k2; ð20Þ

in order to remove the components of ~rc

dP
nþ1

2
ij that are not orthogonal to u

nþ1
2

ij in the discrete L2 space. Note
that on the continuous level, d ¼ 0. Indeed, as we demonstrate in Section 7, d converges to zero with

second-order accuracy. On the discrete level this term ensures, as we will demonstrate in the next section,

that the discrete system (17)–(19) in fact has an energy functional given by the discretization of (6). For

non-constant g, the projection factor should be taken to be [23]:

d ¼ unþ
1
2; ~rc

dP
nþ1

2

� �
h

.
kunþ1

2k2 �
unþ

1
2;rd � gðcnþ

1
2Þ rd

~rc

d þrT
d
~rc

d � Dc
dI

� �
L�1 Pnþ1

2�Pn�1
2

Dt

� �� �
h

2Dt�2Rekunþ1
2k2

: ð21Þ

The numerical implementation of Eqs. (13), (14) and (18)–(20) is discussed in Sections 4 and 5 where it is

shown how the implicit solutions at time tnþ1 are obtained using multigrid methods.
3.2. Properties of schemes

We next demonstrate a number of properties of the numerical schemes. At this stage, we assume there
are no restrictions to solving the implicit systems of equations. Later, we examine the effectiveness of the

multigrid algorithms used to solve the implicit equations. Before we proceed, we first state without proof

the following lemma which is a easy consequence of discrete summation by parts.

Lemma 1. Let c1 and c2 be defined on Xh satisfying (9). Let u be defined on Xh and satisfy (16). Finally, let P
be defined on Xh;1

2
. Then,
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ðc1;Ddc2Þh ¼ ðDdc1; c2Þh ¼ �ðre
dc1;re

dc2Þe; ð22Þ
ðu;rdc1Þh ¼ �ðrd � u; c1Þh; ð23Þ
ðu; ~rc

dP Þh ¼ �ðrc
d � u; P Þh;1

2
; ð24Þ

where the cell-corner inner product is given by the trapezoidal rule approximation of the continuous inner

product:

ðrc
d � u; P Þh;1

2
¼ h2

2

XNx

i¼0

XNy

j¼0

rc
d � uiþ1

2
;jþ1

2
Piþ1

2
;jþ1

2
þ h2

2

XNx�1

i¼1

XNy�1

j¼1

rc
d � uiþ1

2
;jþ1

2
Piþ1

2
;jþ1

2
:

The following theorem establishes the mass conservation and the existence of a discrete energy func-

tional in the absence of flow.

Theorem 2. If fcn; ln�1
2g is the solution of (13) and (14) and if we define the discrete energy functional by

FhðcÞ ¼ ðF ðcÞ; 1Þh þ
�2

2
jcj2e;1; ð25Þ

where F is defined in (3), then

ðcnþ1; 1Þh ¼ ðcn; 1Þh;

and

Fhðcnþ1Þ �FhðcnÞ ¼ �Dtjlnþ1
2j2e;1 �

1

4
ððcnþ1 � cnÞ4; 1Þh: ð26Þ
Proof. The first assertion is due to the combination of (13) and the discrete version of integration by parts in

Lemma 1. Indeed,

ðcnþ1; 1Þh ¼ ðcn; 1Þh þ DtðDdl
nþ1

2; 1Þh ¼ ðcn; 1Þh � Dtðrdl
nþ1

2;rd1Þe ¼ ðcn; 1Þh:

It remains to prove the second assertion. Multiplying lnþ1
2 and cnþ1 � cn to (13) and (14), respectively, and

summing by parts, we obtain the following two identities

ðcnþ1 � cn; lnþ1
2Þh þ Dtjlnþ1

2j2e;1 ¼ 0;

ðcnþ1 � cn; lnþ1
2Þh �

�2

2
jcnþ1j2e;1 þ

�2

2
jcnj2e;1 ¼ ð/̂/ðcn; cnþ1Þ; cnþ1 � cnÞh:

Using the identities above, we obtain

Fhðcnþ1Þ �FhðcnÞ ¼
�2

2
jcnþ1j2e;1 �

�2

2
jcnj2e;1 þ ðF ðcnþ1Þ � F ðcnÞ; 1Þh

¼ �Dtjlnþ1
2j2e;1 � ð/̂/ðcn; cnþ1Þ; cnþ1 � cnÞh þ ðF ðcnþ1Þ � F ðcnÞ; 1Þh:

From the Taylor expansion, we have

F ðcnþ1Þ � F ðcnÞ ¼ /ðcnþ1Þðcnþ1 � cnÞ � 1

2
/0ðcnþ1Þðcnþ1 � cnÞ2 þ 1

3!
/00ðcnþ1Þðcnþ1 � cnÞ3

� 1

4!
/000ðcnþ1Þðcnþ1 � cnÞ4:
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Since /000ðcnþ1Þ ¼ 6, we obtain
Fhðcnþ1Þ �FhðcnÞ þ Dtjlnþ1
2j2e;1 ¼ �ð/̂/ðcn; cnþ1Þ; cnþ1 � cnÞh þ ðF ðcnþ1Þ � F ðcnÞ; 1Þh

¼ � 6

4!
ððcnþ1 � cnÞ4; 1Þh ¼ � 1

4
ððcnþ1 � cnÞ4; 1Þh:
This completes the proof. �

Remark 3. From Theorem 2, it follows that the numerical solution kcnk is bounded (assuming that it

is possible to solve the nonlinear scheme at the implicit time-level). This yields stability (in discrete L2)

of the numerical scheme. It can be proven [3] that the implicit scheme has a unique solution for

Dt6Dt0ð�;/Þ. The numerical solution of the equations at the implicit time-level is discussed in Sections

4 and 6.1, where, respectively, the nonlinear multigrid is presented and the weak time step restrictions
Dt6Dt0ð�;/Þ or Dt � h are shown to be sufficient to obtain convergence of the nonlinear multigrid

method.

Remark 4. The presence of the second term on the right-hand side of Eq. (26) suggests that our method is

more stable than that of [38] where this term is absent.

Remark 5. Theorem 2 still holds for regular solution model free energies of the form [32]:

F ðcÞ :¼ h c lnðcÞ½ þ ð1� cÞ lnð1� cÞ� � 2hccð1� cÞ;

(h and hc are the absolute and the critical temperatures, respectively) provided that they are regularized by

fourth-order polynomials near the singular points, i.e.,

FdðcÞ ¼
plðcÞ if c6 d;
F ðcÞ if d < c < 1� d;
prðcÞ if cP 1� d;

8<
:

where plðcÞ and prðcÞ are fourth-order polynomials which match values with F ðcÞ up to fourth-order de-

rivatives at c ¼ d and c ¼ 1� d, respectively, and d is a small positive parameter.

Next, we demonstrate the existence of an energy functional in the presence of flow. For simplicity, we

state and prove the theorem for the case in which the viscosity g is constant.

Theorem 6. Let fcn; ln�1
2; ung be the solutions of (14) and (17), and (18) and (19) with g constant and let the

discrete total energy functional be

Ehðc; uÞ ¼
1

2
ðu; uÞh þ

We�1
s

�
ðF ðcÞ; 1Þh
	

þ �2

2
jcj21


; ð27Þ

then

Ehðcnþ1; unþ1Þ � Ehðcn; unÞ
Dt

¼ � 1

Re
junþ1

2j2e;1
�

þ jvnþ1
2j2e;1
�
� We�1

s

�
jlnþ1

2j2e;1 �
We�1

s

4�Dt
ððcnþ1 � cnÞ4; 1Þh: ð28Þ
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Proof. Multiply Eq. (19) by unþ
1
2 and sum over cell-centers to get

ðunþ1; unþ1Þh � ðun; unÞh
2Dt

¼ �ðunþ1
2; ~rc

dP
nþ1

2Þh þ dðunþ1
2; unþ

1
2Þh �

We�1
s

�
ðunþ1

2cnþ
1
2;rdl

nþ1
2Þh

þ 1

Re
ðunþ1

2;Ddu
nþ1

2Þh

¼ We�1
s

�
ðrd � unþ

1
2cnþ

1
2

� �
; lnþ1

2Þh �
1

Re
junþ1

2j2e;1
�

þ jvnþ1
2Þj2e;1

�
; ð29Þ

where we have used the value of d from Eq. (20) and we have summed by parts using Lemma 1. Next,

multiply Eq. (13) by lnþ1
2 and sum to get

ðcnþ1 � cn; lnþ1
2Þh ¼ �Dtðrd � ðcnþ

1
2 unþ

1
2Þ; lnþ1

2Þh þ DtðDdl
nþ1

2; lnþ1
2Þh

¼ �Dtðrd � ðcnþ
1
2 unþ

1
2Þ; lnþ1

2Þh � Dtjlnþ1
2j2e;1: ð30Þ

Combining Eqs. (29) and (30) and using the argument in the proof of Theorem 2, we obtain

Ehðcnþ1; unþ1Þ � Ehðcn; unÞ ¼ � Dt
Re

junþ1
2j2e;1

�
þ jvnþ1

2j2e;1
�
� We�1

s Dt
�

jlnþ1
2j2e;1 �

We�1
s

4�
ððcnþ1 � cnÞ4; 1Þh;

where we have used that the terms that couple flow with concentration in the equations cancel one another
exactly. This completes the proof of the theorem. �

Remark 7. From Theorem 6, it follows that both kcnk and kunk are bounded uniformly in n. This yields
stability (in discrete L2) of the numerical scheme in the presence of flow where again we have assumed that it

is possible to solve the equations at the implicit time-level.

Remark 8. Using the more general discretization (19) and the choice of d given in (21), the theorem also

holds if the viscosity g is not constant.
4. Solution of the system in absence of flow

In this section, we develop a nonlinear Full Approximation Storage (FAS) multigrid method to solve the

nonlinear discrete CH system (13) and (14) at the implicit time-level in the absence of flow. The funda-

mental idea of nonlinear multigrid is analogous to the linear case. First, the errors to the solution have to be

smoothed so that they can be approximated on a coarser grid. An analogue of the linear defect equation is

transformed to the coarse grid. The coarse grid corrections are interpolated back to the fine grid, where the

errors are again smoothed. However, because the system is nonlinear we do not work with the errors, but

rather with full approximations to the discrete solution on the coarse grid. The nonlinearity is treated using

one step of Newton�s iteration and a pointwise Gauss–Seidel relaxation scheme is used as the smoother in
the multigrid method. This corresponds to a local rather than global linearization of the nonlinear scheme

and as such is more efficient than standard Newton–Gauss–Seidel global linearization schemes. See the

reference text [53] for additional details and background.

Let us rewrite equations (13), (14) as follows:

NSOðcn; cnþ1; lnþ1
2Þ ¼ ðf n; gnÞ;

where

NSOðcn; cnþ1; lnþ1
2Þ ¼

cnþ1
ij

Dt

 
� Ddl

nþ1
2

ij ; l
nþ1

2
ij � /̂/ðcnij; cnþ1

ij Þ þ �2

2
Ddcnþ1

ij

!
;
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and the source term is

ðf n; gnÞ ¼
cnij
Dt

;

	
� �2

2
Ddcnij



:

In the following description of one FAS cycle, we assume a sequence of grids Xk (Xk�1 is coarser than Xk by

factor 2). Given the number m of pre- and post-smoothing relaxation sweeps, an iteration step for the

nonlinear multigrid method using the V-cycle is formally written as follows:
4.1. FAS multigrid cycle

fcmþ1
k ; l

mþ1
2

k g ¼ FAScycleðk; cnk ; cmk ; l
m�1

2

k ;NSOk; f n
k ; g

n
k ; mÞ:

That is, fcmk ; l
m�1

2

k g and fcmþ1
k ; l

mþ1
2

k g are the approximations of ckðxi; yjÞ and lkðxi; yjÞ before and after a

FAScycle. Now, we define the FAScycle.

(1) Pre-smoothing

Compute f�ccmk ; �ll
m�1

2

k g by applying m smoothing steps to fcmk ; l
m�1

2

k g

f�ccmk ; �ll
m�1

2

k g ¼ SMOOTHmðcnk ; cmk ; l
m�1

2

k ;NSOk; f n
k ; g

n
kÞ;

which means performing m smoothing steps with initial approximation cmk ; l
m�1

2

k , cnk , source terms f n
k ; g

n
k ,

and the SMOOTH relaxation operator (see Appendix A for its derivation) to get the approximation
�ccmk ; �ll

m�1
2

k :
One SMOOTH relaxation operator step consists of solving the system (31) and (32) given below by

2� 2 matrix inversion for each i and j.

�ccmij
Dt

þ 2

Dx2

	
þ 2

Dy2



�ll
m�1

2
ij ¼

l
m�1

2

iþ1;j þ �ll
m�1

2

i�1;j

Dx2
þ
l
m�1

2

i;jþ1 þ �ll
m�1

2

i;j�1

Dy2
þ f n

ij ð31Þ

and

� �2

2

2

Dx2

	"
þ 2

Dy2



þ
o/̂/ðcnij; cmijÞ

ov

#
�ccmij þ �ll

m�1
2

ij ¼ gnij þ /̂/ðcnij; cmijÞ �
o/̂/ðcnij; cmijÞ

ov
cmij �

�2

2Dx2
ðcmiþ1;j þ �ccmi�1;jÞ

� �2

2Dy2
ðcmi;jþ1 þ �ccmi;j�1Þ: ð32Þ

(2) Compute the defect
ð�ddm
1k
; �ddm

2k
Þ ¼ ðf n

k ; g
n
kÞ �NSOkð�ccnk ; �ccmk ; �ll

m�1
2

k Þ:

(3) Restrict the defect and f�ccmk ; �ll
m�1

2

k g
ð�ddm
1k�1

; �ddm
2k�1

Þ ¼ Ik�1
k ð�ddm

1k
; �ddm

2k
Þ; ð�ccmk�1; �ll

m�1
2

k�1 Þ ¼ Ik�1
k ð�ccmk ; �ll

m�1
2

k Þ:
The restriction operator Ik�1
k maps k-level functions to ðk � 1Þ-level functions:
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dk�1ðxi; yjÞ ¼ Ik�1
k dkðxi; yjÞ

¼ 1

4
dk xi

	�
� h
2
; yj �

h
2



þ dk xi

	
� h
2
; yj þ

h
2




þ dk xi

	
þ h
2
; yj �

h
2



þ dk xi

	
þ h
2
; yj þ

h
2


�
:

That is, coarse grid values are obtained by averaging the four nearby fine grid values.

(4) Compute the right-hand side

ðf n
k�1; g

n
k�1Þ ¼ ð�ddm

1k�1
; �ddm

2k�1
Þ þNSOk�1ð�ccnk�1; �cc

m
k�1; �ll

m�1
2

k�1 Þ:

(5) Compute an approximate solution fĉcmk�1; l̂l
m�1

2

k�1g of the coarse grid equation on Xk�1, i.e., solve

NSOk�1ðcnk�1; ĉc
m
k�1; l̂l

m�1
2

k�1 Þ ¼ ðf n
k�1; g

n
k�1Þ: ð33Þ

If k ¼ 1, we explicitly invert a 2� 2 matrix to obtain the solution. If k > 1, we solve (33) by performing

a FAS k-grid cycle using f�ccmk�1; �ll
m�1

2

k�1g as an initial approximation:

fĉcmk�1; l̂l
m�1

2

k�1g ¼ FAScycleðk � 1; cnk�1; �cc
m
k�1; �ll

m�1
2

k�1 ;NSOk�1; f n
k�1; g

n
k�1; mÞ:

(6) Compute the coarse grid correction (CGC):

v̂vm1k�1
¼ ĉcmk�1 � �ccmk�1; v̂v

m�1
2

2k�1
¼ l̂l

m�1
2

k�1 � �ll
m�1

2

k�1 :

(7) Interpolate the correction

v̂vm1k ¼ Ikk�1v̂v
m
1k�1

; v̂v
m�1

2

2k
¼ Ikk�1v̂v

m�1
2

2k�1
:

The interpolation operator Ikk�1 maps ðk � 1Þ-level functions to k-level functions. Here, the coarse
values are simply transferred to the four nearby fine grid points, i.e., vkðxi; yjÞ ¼ Ikk�1vk�1ðxi; yjÞ ¼
vk�1ðxi þ h

2
; yj þ h

2
Þ for i and j odd-numbered integers. The values at the other node points are given

by

vkðxi þ h; yjÞ ¼ vkðxi; yj þ hÞ ¼ vkðxi þ h; yj þ hÞ ¼ vk�1 xi

	
þ h
2
; yj þ

h
2



;

where i and j are odd.

(8) Compute the corrected approximation on Xk

cm; after CGC
k ¼ �ccmk þ v̂vm1k ; l

m�1
2
; after CGC

k ¼ �ll
m�1

2

k þ v̂v
m�1

2

2k
:

(9) Postsmoothing

Compute fcmþ1
k ; l

mþ1
2

k g by applying m smoothing steps to cm;after CGC
k ; l

m�1
2
; after CGC

k

fcmþ1
k ; l

mþ1
2

k g ¼ SMOOTHmðcnk ; c
m; after CGC
k ;l

m�1
2
; after CGC

k ;NSOk; f n
k ; g

n
kÞ:

This completes the description of a nonlinear FAScycle. We next turn to the solution of the discrete system

in the presence of flow.
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5. Solution of system in presence of flow

Here, we present an iterative projection method for solving the coupled discrete NSCH system (14)–(17)
and (18), (19). For simplicity, we focus on the case in which g is constant. Let u	;kþ1 be an intermediate

velocity field and satisfy the following system for the iteration number kP 0:

u	;kþ1 � un

Dt
þ xnþ1

2
;k � unþ

1
2
;k ¼ � ~rc

dP
nþ1

2
;k þ dkunþ

1
2
;k þ 1

2Re
Ddðu	;kþ1 þ unÞ � We�1

s

�
cnþ

1
2
;krdl

nþ1
2
;k; ð34Þ

where

x
nþ1

2
;k

ij � u
nþ1

2
;k

ij ¼
 

� �vviþ1;j � �vvi�1;j � �uui;jþ1 þ �uui;j�1

2h
�vvij;

�vviþ1;j � �vvi�1;j � �uui;jþ1 þ �uui;j�1

2h
�uuij

!
;

and

dk ¼ ðunþ1
2
;k;rc

dP
nþ1

2
;kÞh=kunþ

1
2
;kk2 ð35Þ

and ð�uu; �vvÞ ¼ unþ
1
2
;k � ðunþ1;k þ unÞ=2 and cnþ

1
2
;k is defined analogously. In the first step of the iteration, we

take unþ1;0 ¼ un and pnþ
1
2
;0 ¼ pn�

1
2. Note that the pressure gradient, advection and surface force terms are

treated as forcing functions. The fact that the latter two terms are treated in this way ensures, from Lemma

6, that the discrete system has an energy functional as k ! 1, assuming that the iteration converges.

Numerically, we found convergence is typically achieved in just two or three iterations. We are also in-

vestigating other algorithms for which the CH and NS equations are solved simultaneously. Following
[27,28,53], Eq. (34) is solved for u	;kþ1 using a linear multigrid method.

The velocity field u	;kþ1 is not, in general, divergence-free. The projection step of the algorithm de-

composes the intermediate velocity into a discrete gradient of a scalar potential and an approximately

divergence-free vector field. They correspond to the pressure gradient and to the velocity updates, re-

spectively. In particular, if P represents the projection operator, then

unþ1;kþ1 � un

Dt
¼ P

u	;kþ1 � un

Dt

	 

� u	;kþ1 � un

Dt
� ~rc

dw; ð36Þ

where w is obtained by

Dc
dw ¼ rc

d �
u	;kþ1 � un

Dt

	 

; ð37Þ

with Neumann boundary conditions which are imposed by introducing a ring of ghost-cells surrounding

the physical domain. Note that the velocity unþ1;kþ1 is only approximately divergence-free, i.e.,

rc
d �

unþ1;kþ1 � un

Dt

	 

¼ Dc

d

�
�rc

d � ~r
c

d

�
w: ð38Þ

The pressure is then updated using the second-order accurate scheme [25]:

pnþ
1
2
;kþ1 ¼ pnþ

1
2
;k þ w� Dt

2Re
Dc

dw: ð39Þ

We note that combining Eqs. (39) and (38) and letting k ! 1 (assuming that the iteration converges) yields
Eq. (18) as claimed in Section 3. Analogously, plugging Eq. (36) into (34), and using Eq. (39), yields Eq.

(19) also as claimed.
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The approximate projection Poisson�s equation (37) is solved using a linear multigrid method. Similar

multigrid methods have been used in 3D [28] and in a finite element context in 2D [27].

In Section 6, we analyze the projection algorithm and demonstrate that the multigrid method conver-
gence rate is insensitive to the grid size.

We next update the concentration field by

cnþ1;kþ1 � cn

Dt
þrd � unþ

1
2
;kþ1cnþ

1
2
;k

� �
¼ Ddl

nþ1
2
;kþ1; ð40Þ

lnþ1
2
;kþ1 ¼ /̂/ðcn; cnþ1;kþ1Þ � �2

2
Ddðcn þ cnþ1;kþ1Þ: ð41Þ

This system is solved using the non-linear multigrid method presented in Section 4 where the source term f n

is modified to account for the advection.
The above system (34)–(36) and (40), (41) is iterated in k until the difference between successive iterates is

less than an error tolerance. As mentioned above, typically only two or three iterations are required to

achieve an error tolerance of 10�7. We found that this number is insensitive to the value of the Weber

number.
6. Local Fourier analysis

6.1. Absence of flow

To analyze the behavior of the multigrid method, we linearize the nonlinear scheme and perform a local

Fourier analysis (e.g., see [53]). In particular, we analyze the smoother since the performance of the mul-

tigrid method depends strongly on the smoother.

Let cnþ1
ij ; l

nþ1
2

ij be the solution of the nonlinear discrete CH system (13) and (14). After linearizing the

nonlinear term /̂/ðcnij; cnþ1
ij Þ ¼ a

2
ðcnij þ cnþ1

ij Þ þ b; where a ¼ /0ðcmÞ; cm is an average concentration, and b is a

constant and substituting l
nþ1

2
ij into (13), the scheme becomes

Lhcnþ1
h ¼ f n

h ;

where

Lhcnþ1
h :¼

cnþ1
ij

Dt
� a
2h2

cnþ1
i�1;j

�
þ cnþ1

iþ1;j � 4cnþ1
ij þ cnþ1

i;j�1 þ cnþ1
i;jþ1

�
þ �2

2h4
cnþ1
i�2;j

h
þ cnþ1

iþ2;j þ cnþ1
i;j�2 þ cnþ1

i;jþ2

þ 2 cnþ1
i�1;jþ1

�
þ cnþ1

iþ1;jþ1 þ cnþ1
i�1;j�1 þ cnþ1

iþ1;j�1

�
� 8 cnþ1

i�1;j

�
þ cnþ1

iþ1;j þ cnþ1
i;j�1 þ cnþ1

i;jþ1

�
þ 20cnþ1

ij

i
and

f n
h ¼ a

2
Ddcnij �

�2

2
D2

dc
n
ij þ

cnij
Dt

:

For Gauss–Seidel iteration with a lexicographic ordering of the grid points applied to the above equation,
we have the following operator decomposition:

Lþ
h c

nþ1
h :¼

cnþ1
ij

Dt
� a
2h2

cnþ1
i�1;j

�
þ cnþ1

i;j�1 � 4cnþ1
ij

�
þ �2

2h4
cnþ1
i�2;j

h
þ cnþ1

i;j�2 þ 2 cnþ1
i�1;jþ1

�
þ cnþ1

i�1;j�1

�
� 8 cnþ1

i�1;j

�
þ cnþ1

i;j�1

�
þ 20cnþ1

ij

i
;
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L�
h c

nþ1
h :¼ � a

2h2
cnþ1
iþ1;j

�
þ cnþ1

i;jþ1

�
þ �2

2h4
cnþ1
iþ2;j

h
þ cnþ1

i;jþ2 þ 2 cnþ1
iþ1;jþ1

�
þ cnþ1

iþ1;j�1

�
� 8 cnþ1

iþ1;j

�
þ cnþ1

i;jþ1

�i
:

Therefore, this relaxation method (which is the linear analogue of the nonlinear multigrid smoother) can be

written locally as

Lþ
h ~zzh þ L�

h zh ¼ f n
h ; ð42Þ

where zh corresponds to the old approximation of ch (approximation before the relaxation step) and ~zzh to
the new approximation (after the step). Subtracting (42) from the discrete equation Lhch ¼ fh and letting
~vvh ¼ ch � ~zzh and vh ¼ ch � zh, we obtain the equation

Lþ
h ~vvh þ L�

h vh ¼ 0;

or, equivalently,

~vvh ¼ Shvh;

where Sh ¼ �ðLþ
h Þ

�1L�
h is the resulting smoothing operator. Applying Lþ

h and L�
h to the formal eigenfunc-

tions eih1x=heih2y=h; we obtain

Lþ
h e

ih1x=heih2y=h ¼ L̂Lþ
h e

ih1x=heih2y=h;

L�
h e

ih1x=heih2y=h ¼ L̂L�
h e

ih1x=heih2y=h;

where L̂Lþ
h and L̂L�

h are the symbols of the operators Lþ
h and L�

h , respectively:

L̂Lþ
h ðh1; h2Þ ¼

1

Dt
� a
2h2

ðe�ih1 þ e�ih2 � 4Þ þ �2

2h4
½e�2ih1 þ e�2ih2 þ 2ðe�iðh1�h2Þ þ e�iðh1þh2ÞÞ

� 8ðe�ih1 þ e�ih2Þ þ 20�;
L̂L�
h ðh1; h2Þ ¼ � a

2h2
ðeih1 þ eih2Þ þ �2

2h4
½e2ih1 þ e2ih2 þ 2ðeiðh1þh2Þ þ eiðh1�h2ÞÞ � 8ðeih1 þ eih2Þ�:

The amplification factor of the relaxation scheme is

ŜShðh1; h2Þ :¼ � L̂L�
h ðh1; h2Þ

L̂Lþ
h ðh1; h2Þ

:

Define the high frequency smoothing (HFS) factor:

llocðShÞ :¼ sup jŜShðh1; h2Þj :
p
2

n
6 jh1j; jh2j6 p

o
:

Here, as is typically done [53], we assume that the coarse grid operations are ideal and annihilate the low

frequency error components while leaving the high frequency components unchanged. Therefore, we only

consider p
2
6 jh1j; jh2j6 p: We define a convergence factor as an average of the quantity kdm

h k=kdm�1
h k, where

dm
h ðm ¼ 1; 2; . . .Þ are the defects.

The convergence factor is estimated numerically using our nonlinear code with the parameters � ¼ 0:01,
and the mesh-dependent time step Dt ¼ 0:1h and initial conditions

c0ðx; yÞ ¼
0:0þ 0:01 cosð0:5px=hÞ cosð0:5py=hÞ; a ¼ 0:5;
0:5þ 0:01 cosð0:5px=hÞ cosð0:5py=hÞ; a ¼ �0:25:

�
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We measure the V ðm; nÞ-HFS factors, where m and n are the numbers of pre-smoothing and post-

smoothing, with different mesh sizes. We focus on m ¼ 1 and n ¼ 0 and 1 as these yield the most efficient

algorithms. In addition, we consider a ¼ 0:5 and )0.25, where the positive (negative) values correspond to
linearization in the stable (unstable, i.e., spinodal region) ranges of the evolution.

Table 1 shows HFS factors and measured V ðm; nÞ-cycle convergence factors with different mesh sizes

and a ¼ 0:5. Note
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V ð1; 1Þ

p
-cycle means the square root of V ð1; 1Þ-cycle convergence factor. Observe

that with m ¼ 1 and n ¼ 0, the HFS factor tends to 1 as the mesh is refined and thus suggests that the

number of V-cycles required to solve the full system increases with increasing resolution. In fact this

result is comparable to simply using Gauss–Siedel iteration without multigrid. However, the HFS

factor corresponding to m ¼ 1 and n ¼ 1 remains uniformly bounded below 1 with increasing reso-

lution and apparently converges to 0.4196 as h ! 0. This is significantly below the theoretical estimate
0.6693. Thus the number of V ð1; 1Þ-cycles required to solve the full problem is insensitive to the

resolution.

The HFS factors for a ¼ �0:25 are given in Table 2. Their behavior is analogous to that observed for the

a ¼ 0:5. Note that the HFS factor for V ð1; 0Þ-cycles is actually greater than 1 at the finest resolution.

Together, these results for a ¼ 0:5 and � 0:25 suggest that the multigrid method using a V ð1; 1Þ-cycle
with time step Dt � h converges uniformly with respect to increasing resolution. Correspondingly, this

would impose a first-order time step constraint on our discrete scheme to solve the CH equation.

Next, let us consider results obtained using a fixed Dt ¼ 0:005 independent of the mesh size h. All other
parameters are as before. This value of Dt roughly corresponds to that used in Tables 1 and 2 with

h ¼ 1=16. Table 3 shows the V ð1; 1Þ-HFS factors with different mesh sizes and a ¼ 0:5. Again, the results

are qualitatively similar to the case with variable Dt � h. When a ¼ �0:25, however, the results are very

different. This is seen in Table 4. The numerical HFS factor now tends to 1 as the mesh is refined in spite

of the fact that theoretical HFS factors are comparable for all choices of Dt and a. This behavior at fine
grids occurs because the coarse grid correction steps internal to the V -cycle use much larger time steps

when Dt is fixed than when Dt � h, where h is the fine grid size. This can be seen in Figs. 1(left,right),

where diagonal slices of the amplification factors jŜShðh; hÞj, for h 2 �p; p½ �, are shown for h ¼ 1=16, 1/32
and 1/2048, where Dt ¼ 0:005 (left) and Dt ¼ 0:1=2048 (right). Observe that for the latter case, the am-

plification factors for the coarse meshes are nearly equal to zero in contrast to the case with the larger

time step.

These results suggest that when a fixed Dt is used, its value should be such that the coarse grid HFS

factors are less than 1. This is confirmed in Table 5 where the HFS factors are shown with

Dt ¼ 0:1=64 ¼ 1:5625� 10�3. This suggests that the multigrid method using a V ð1; 1Þ-cycle with fixed time

step Dt converges uniformly with respect to increasing resolution if Dt is small enough. This would impose

no grid-dependent time step constraints on our discrete scheme to solve the CH equation.
Table 1

HFS factors for different mesh sizes. a ¼ 0:5, Dt ¼ 0:1h and h ¼ 1=N

Case 16� 16 32� 32 64� 64 128� 128

lloc 0.1493 0.1581 0.4570 0.6092

V ð1; 0Þ-cycle 0.1643 0.2108 0.2865 0.3489ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V ð1; 1Þ

p
-cycle 0.2108 0.2462 0.2840 0.3434

Case 256� 256 512� 512 1024� 1024 2048� 2048

lloc 0.6541 0.6657 0.6686 0.6693

V ð1; 0Þ-cycle 0.4636 0.6563 0.8198 0.9810ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V ð1; 1Þ

p
-cycle 0.4021 0.4171 0.4196 0.4196



Table 2

HFS factors for different mesh sizes. a ¼ �0:25, Dt ¼ 0:1h and h ¼ 1=N

Case 16� 16 32� 32 64� 64 128� 128

lloc 1.3773 1.1563 0.7874 0.6992

V ð1; 0Þ-cycle 0.5183 0.5837 0.4245 0.4829ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V ð1; 1Þ

p
-cycle 0.5501 0.6061 0.3706 0.4162

Case 256� 256 512� 512 1024� 1024 2048� 2048

lloc 0.6771 0.6714 0.6700 0.6697

V ð1; 0Þ-cycle 0.6260 0.7904 0.8719 N/Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V ð1; 1Þ

p
-cycle 0.4141 0.4209 0.4299 0.4382

Table 3

HFS factors for different mesh sizes. a ¼ 0:5 and Dt ¼ 5� 10�3

Case 16� 16 32� 32 64� 64 128� 128

lloc 0.1390 0.1629 0.4634 0.6106ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V ð1; 1Þ

p
-cycle 0.1930 0.2706 0.3428 0.3920

Case 256� 256 512� 512 1024� 1024 2048� 2048

lloc 0.6543 0.6657 0.6686 0.6693ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V ð1; 1Þ

p
-cycle 0.4127 0.4199 0.4294 0.4452

Table 4

HFS factors for different mesh sizes. a ¼ �0:25 and Dt ¼ 5� 10�3

Case 16� 16 32� 32 64� 64 128� 128

lloc 0.9594 1.2796 0.8014 0.7009ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V ð1; 1Þ

p
-cycle 0.3925 0.8503 0.9098 0.9177

Case 256� 256 512� 512 1024� 1024 2048� 2048

lloc 0.6773 0.6715 0.6700 0.6697ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V ð1; 1Þ

p
-cycle 0.9209 0.9220 0.9208 0.9860

Fig. 1. Diagonal slice of amplification factor jŜShðh; hÞj, over the interval ½�p;p�. In the left figure, Dt ¼ 0:005. In the right figure,

Dt ¼ 0:1=2048.
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Table 5

HFS factors for different mesh sizes. a ¼ �0:25, Dt ¼ :1=64 ¼ 1:5625� 10�3

Case 16� 16 32� 32 64� 64 128� 128

lloc 0.2324 0.9016 0.7874 0.7002ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V ð1; 1Þ

p
-cycle 0.1305 0.5117 0.3522 0.3907

Case 256� 256 512� 512 1024� 1024 2048� 2048

lloc 0.6772 0.6715 0.6700 0.6697ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V ð1; 1Þ

p
-cycle 0.4228 0.4206 0.4290 0.4495
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Remark 9.Numerical results (e.g., not shown here) also demonstrate that the HFS factors are insensitive to

the value of � provided variations in c are resolved by the computational mesh. For example, 4 grid points

seem to be sufficient to resolve a transition from c ¼ 0:1 to c ¼ 0:9. Such a transition occurs over a layer of

width 4
ffiffiffi
2

p
� during the later stages of phase-separation and the quartic free energy is used [4].

6.2. Presence of flow

Here, we analyze approximate projection algorithm given in Section 5 (an analysis of the multigrid
method used to solve for the intermediate velocity is similar and thus is not presented). The multigrid

smoothing operator Lapprox
h ¼ La;þ

h þ La;�
h where

La;þ
h w :¼ wiþ1

2
;jþ3

2

�
� 4wiþ1

2
;jþ1

2
þ wiþ3

2
;jþ1

2

�.
h2;

La;�
h w :¼ wi�1

2
;jþ1

2

�
þ wiþ1

2
;j�1

2

�.
h2:

The resulting amplification factor is

ŜSa
hðh1; h2Þ :¼ � L̂La;�

h ðh1; h2Þ
L̂La;þ
h ðh1; h2Þ

;

where the symbols are calculated as in Section 6.1. In Fig. 2 (left), the diagonal slice jŜSa
hðh; hÞj is shown.

Observe that the HFS factor lloc � 0:45 which suggests that the linear multigrid converges uniformly with

respect to increasing resolution. For purposes of comparison, the corresponding amplification factor is
Fig. 2. Diagonal slices of amplification factor. Approximate projection (left), exact projection (right).
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shown (right) for the exact projection method (i.e., where Dc
d � rc

d � ~r
c

d). In the case of exact projection,

however, the HFS factor lloc � 1:0 and suggests that the smoothing operator does not remove high fre-

quencies efficiently which reflects the ill-conditioning of the system. The corresponding multigrid method
requires a prohibitive number of iterations to converge when the mesh size h is small. This is why the

approximate projection algorithm is used (see also [49]).
7. Numerical experiments

In this section, we validate our scheme by verifying the second-order convergence and comparing the

numerical results with the prediction of a linear stability analysis. We then perform simulations of spinodal
decomposition and examine the effect of boundary conditions, flow and interfacial tension.

7.1. Convergence test

To obtain an estimate of the rate of convergence, we perform a number of simulations for a sample

initial problem on a set of increasingly finer grids. We begin by considering the case in the absence of flow

(u ¼ 0). The initial data is

c0ðx; yÞ ¼ 0:5þ 0:12 cosð2pxÞ cosð2pyÞ þ 0:2 cosðpxÞ cosð3pyÞ ð43Þ

on a square domain, ½0; 1� � ½0; 1�. The numerical solutions are computed on the uniform grids,

Dx ¼ Dy ¼ h ¼ 1=2n for n ¼ 5 to 9. For each case, the convergence is measured at time t ¼ 0:2, the uniform
time steps, Dt ¼ 0:1h and � ¼ 0:01, are used to establish the convergence rates.

In our formulation of the method for the CH equation, since a cell centered grid is used, we define the

error to be the discrete L2-norm of the difference between that grid and the average of the next finer grid

cells covering it:

eh=h
2 ij

¼def chij � ch
2 2i;2j

�
þ ch

2 2i�1;2j
þ ch

2 2i;2j�1
þ ch

2 2i�1;2j�1

�.
4:

The rate of convergence is defined as the ratio of successive errors:

log2ðkeh=h
2
k=keh

2
=h
4
kÞ:

The errors and rates of convergence are given in Table 6. The results suggest that the scheme is indeed

second-order accurate. The deterioration of the rates from 2 at higher resolutions is believed to be due to

accumulation of errors from coarse grid correction steps internal to the nonlinear multigrid method. In

Fig. 3, the time evolution of the energy is shown accompanied with grey-scale contour images of the nu-

merical solution c at the (filled) levels from 0 to 0.25 (black), 0.25 to 0.5, 0.5 to 0.75 and 0.75 to 1.0 (white).

As expected from theorem (26), the energy is non-increasing and tends to a constant value. The concen-

tration phase-separates and depletes the center region of the domain. The phase accumulates at the y-
boundaries which then straighten to lower the energy and to subsequently form two horizontal bands. This

is in fact a local equilibrium for Neumann boundary conditions. The global equilibrium consists of a single

interface.
Table 6

l2-norm of the errors and convergence rates for concentration c

Case 32–64 Rate 64–128 Rate 128–256 Rate 256–512

l2 4.03e) 02 3.29 4.12e) 03 2.03 1.01e) 03 1.96 2.60e) 04



Fig. 3. The time dependent energy of the numerical solutions with the initial data (43). Snapshots of the concentration field are shown

with filled contours at the three levels c ¼ 0:25, 0.5 and 0.75.
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Next, let us consider the convergence of the algorithm in the presence of flow. We take the same initial

concentration as in Eq. (43) and the initial velocity is taken to be the rotation

uðx; yÞ ¼ � sin2ðpxÞ sinð2pyÞ; vðx; yÞ ¼ sin2ðpyÞ sinð2pxÞ: ð44Þ

The viscosity g is constant and Re ¼ 100 and Wes ¼ 100, which corresponds to the physical Weber number

We ¼ 848:5. No-slip boundary conditions are applied at the boundaries of the domain. The simulation

parameters, convergence time and error measurement are as in the case without flow. In Table 7, the errors

and rates of convergence are shown for the concentration c and the velocity components u and v, re-
spectively. Observe that these quantities converge with second-order accuracy.

In Table 8, the errors and convergence rate for the pressure are shown. Here, the rate of convergence

appears to be less than second order.

Finally, in Table 9, the values of d are shown. Observe that d converges to zero with second-order

accuracy.

In Fig. 4, the time evolution of the energy is shown accompanied by the grey-scale contour images of the

concentration field at the indicated times. The contour values shown are the same as in the case without

flow. At early times, the phases separate and rotate about the center of the domain due to the fluid flow.

Between t ¼ 0:7 and t ¼ 1:0, the thin necks pinchoff and the lower (upper) bulbs of fluid reconnect with the
upper (lower) regions of fluid near the boundaries of the domain and a wiggly interface develops. Due to

surface tension, the wiggles straighten out and the bulbs redevelop. At the same time, the rotation slows due
Table 7

l2-norm of the errors and convergence rates for concentration c and velocity ðu; vÞ

Case 32–64 Rate 64–128 Rate 128–256 Rate 256–512

c 6.03e) 02 3.59 5.00e) 03 2.06 1.20e) 03 2.01 2.97e) 04

u 1.10e) 03 1.79 3.23e) 04 1.99 8.13e) 05 2.00 2.04e) 05

v 1.20e) 03 1.83 3.24e) 04 1.99 8.16e) 05 2.00 2.05e) 05



Table 8

l2-norm of the errors and convergence rates for pressure p

Case 33–65 Rate 65–129 Rate 129–257 Rate 257–513

l2 2.40e) 03 2.92 3.13e) 04 1.77 9.15e) 05 1.55 3.13e) 05

Table 9

Values of d and convergence rate

Case 64 Rate 128 Rate 256 Rate 512

d )4.40e) 04 1.98 )1.11e) 04 2.00 )2.80e) 05 1.99 )7.04e) 06

Fig. 4. The time dependent total energy of the numerical solutions with the initial data (43).

532 J. Kim et al. / Journal of Computational Physics 193 (2004) 511–543
to viscous dissipation. The regions of fluid then further straighten, again due to surface tension, to form two

horizontal bands. This is the same local equilibrium structure that develops in the case without flow even

though the dynamics is very different. However, here the bands consist of fluid originating in both the upper

and lower regions of the box while in the case without flow, the fluid in the bands originates from the same

region of the box as the band. Observe that the total energy decreases to a constant value consistent with

Theorem 6.

7.2. Comparison with linear stability theory

Next, to ensure that we are simulating the correct physical problem, we consider the agreement between

the numerics and the results of a linear stability analysis about a constant concentration c ¼ cm and velocity

u ¼ 0. Accordingly, we look for a solution of equation (1) of the form

cðx; tÞ ¼ cm þ
X1
k¼1

ckðtÞ cosðkpxÞ;
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where jckðtÞj 
 1: Neglecting quadratic terms in ckðtÞ, we find that ckðtÞ must solve the ordinary differential

equation,

dck

dt
¼ �ðkpÞ2½/0ðcmÞ þ �2ðkpÞ2�ck: ð45Þ

Note that there is no flow at the linear level since at that level the pressure balances the extra-stress coupling

term in the Navier–Stokes equation. The solution of Eq. (45) is ckðtÞ ¼ ckð0Þegk t, where gk ¼
�ðkpÞ2ð/0ðcmÞ þ �2ðkpÞ2Þ is the growth rate. Taking cm in the spinodal region (i.e., cm 2 ð3�

ffiffi
3

p

6
; 3þ

ffiffi
3

p

6
Þ,

/0ðcmÞ < 0Þ, Eq. (45) shows that the amplitude of a finite number of long wavelength perturbations will

grow exponentially in time for sufficiently small �. In particular the fastest growing mode is

kmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�/0ðcmÞ=ð2�2p2Þ

q
;

and the growth rate of this mode is gkmax
¼ �ðkmaxpÞ2/0ðcmÞ=2:

In Fig. 5, the theoretical growth rate gk is compared to that obtained from the nonlinear scheme. The

numerical growth rate is defined by

~ggk ¼ log
maxi;j jcni;j � 0:5j
maxi;j jc0i;j � 0:5j

 !,
tn:

Here, we used cm ¼ 0:5, initial data c0ðxÞ ¼ 0:5þ 0:01 cosðkpxÞ and � ¼ 0:018757, Dt ¼ 10�4, h ¼ 1=128 and

tn ¼ 0:01. The graph shows that the linear analysis (solid line) and numerical solution (circle) are in good

agreement.
Fig. 5. Growth rate for the different wave numbers k.
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7.3. Spinodal decomposition

In order to demonstrate the effectiveness of our new numerical scheme we consider the effect of flow
on spinodal decomposition [26]. We consider an initial concentration field c0ðxÞ ¼ cm þ nðxÞ; where

cm ¼ 0:5 is the spinodal point and nðxÞ is a random perturbation with magnitude jnðxÞj6 0:01: A 64� 64

mesh was used on the square X ¼ ½0; 1� � ½0; 1� with periodic boundary conditions at x ¼ 0 and 1. On

y ¼ 0 and 1 we used either no-slip velocity boundary conditions or an imposed shear. Neumann

boundary conditions are used for c and l. Further, we took � ¼ 0:01; h ¼ 1=64, and Dt ¼ 0:1h. In Fig. 6,

the evolution is shown with no flow (left column) and in the presence of surface tension driven flow

(right column) with Wes ¼ 6
ffiffiffi
2

p
(this corresponds to the physical Weber number We ¼ 1). That is, the

flow arises only due to surface stresses between the components and we have taken Re ¼ 1 and the
viscosity g is constant. In Fig. 7, the evolution is shown in the absence and presence of surface stress

(left and right columns, respectively) and with an imposed shear flow, i.e., ðuðx; 1Þ; vðx; 1ÞÞ ¼ ð1
2
; 0Þ and

ðuðx; 0Þ; vðx; 0ÞÞ ¼ ð� 1
2
; 0Þ. In the absence of surface stress, the velocity is the linear field

ðuðx; yÞ; vðx; yÞÞ ¼ ðy � 1=2; 0Þ and satisfies the Navier–Stokes equation (7) with Wes ¼ 1. In the presence

of surface stress, the velocity field is non-linear and we have again used the same non-dimensional

constants as given above.

In Figs. 6 and 7, three spatial periods are shown, the c ¼ 0:25, 0.5 and 0.75 contours are shown as filled

as before, and the time is constant across a row and increases down the column as indicated in the caption.
The times in the corresponding rows for Figs. 6 and 7 are the same. At early times, there is classical spinodal

decomposition as the unstable mixture phase separates and regions coalesce. There is little effect of surface

stress and flow.

Let us focus first on the effect of surface tension in the absence of shear. In Fig. 6, at later times, we

observe that surface tension acts to decrease the deformation of the interfaces and to reduce their overall

length. This causes the fluid fingers to retract and become more vertical. This leads to the coalescence of the

fingers with semi-circular drops at the bottom of the domain. The resulting vertical bands of fluid are a

local equilibrium. In the absence of surface tension, the fingers do not coalesce with the drops and classical
coarsening occurs as the mass transfers from the drops to the fingers. The fingers then coalesce to form a

horizontal band. This is a global energy minimum.

In the presence of shear, we see from Fig. 7, that surface tension has a similar effect and the deformation

of interfaces is reduced. Here, however, the morphologies are much more elongated due to the shear.

Further, pinchoff and reconnection events occur and the morphology actually repeats itself in time. The

stretched bands at t ¼ 5:63 pinchoff and form drops (see t ¼ 6:56). The drops then reconnect with the

fingers (approximately at t ¼ 7:0, not shown) and re-form the stretched bands. When Wes ¼ 1, this se-

quence occurs twice while when Wes ¼ 6
ffiffiffi
2

p
this sequence occurs three times since the fingers retract more

due to surface tension which enhances their capability to coalesce. This temporal periodicity is discussed

further below. Eventually, the periodicity is broken since the drops that are formed become smaller with

each cycle. After the last cycle, there is no reconnection. The fingers then merge to form a single horizontal

band which is the global energy minimum.

In Fig. 8 the total energy (27) evolution for the different simulations is plotted versus time. In the absence

of shear (dot-dashed: Wes ¼ 6
ffiffiffi
2

p
and dashed: Wes ¼ 1), the energy decreases monotonically as predicted

by Theorem 6. In the presence of shear (large dots: Wes ¼ 6
ffiffiffi
2

p
and small dots: Wes ¼ 1), there are energy

oscillations. Observe that there are three oscillations when Wes ¼ 6
ffiffiffi
2

p
and two when Wes ¼ 1. These

correspond to the pinchoff and reconnection scenarios described above.

In Fig. 9, we present the scaled kinetic (dashed) and surface energy (solid) evolutions through first

oscillation ending approximately at t ¼ 9:0. In addition, we show the concentration morphology at the

indicated times. To obtain the scaled kinetic energy, the actual kinetic energy is multiplied by 100. At early

times, energy is transferred from the surface to the fluid while at later times this process is reversed as the



Fig. 6. Evolution with Wes ¼ 1 (left column) and Wes ¼ 6
ffiffiffi
2

p
(right column). No applied shear. The times shown are (from top to

bottom) t ¼ 0:03, 0.16, 0.56, 0.94, 1.88, 5.63, 6.56, 17.81 and 45.94.
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Fig. 7. Evolution with Wes ¼ 1 (left column) and Wes ¼ 6
ffiffiffi
2

p
(right column). Applied shear conditions. The times shown are identical

to those in Fig. 6.
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Fig. 8. Energy evolution under the flow different conditions.

Fig. 9. Surface energy and scaled kinetic energy.
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interfaces stretch and elongate. The peaks seen in the kinetic energy correspond to topology transitions of

the concentration field in the flow. For example, lower ends of the stretched bands pinchoff to form drops

at approximately t ¼ 6:4. The drops then recoalesce with the fingers at approximately t ¼ 7:0. Each of

these events is seen to be associated with a local peak in the kinetic energy. Energy is transmitted to the

fluid through the large surface stress that develops during the transition and subsequent retraction of the

fingers.

To understand further the oscillation of the energy in the presence of shear, we compare in Fig. 10 the
difference quotient



Fig. 10. Comparison of Eqs. (46), circles, and (47), solid line.
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Ehðcnþ1; unþ1Þ � Ehðcn; unÞ
Dt

ð46Þ

shown as circles to the corresponding spatial discretization of the analytical value d
dtEðcnþ

1
2; unþ

1
2Þ given by

1

Re
unþ

1
2;Dunþ

1
2

� �
h
� We�1

s

�
jrlnþ1

2j2; 1
� �

h
� We�1

s

�Dt
ððcnþ1 � cnÞ4; 1Þh ð47Þ

shown as the solid line. Observe that there is excellent agreement between these two independently cal-

culated quantities. This shows that the oscillations are due to the flow through the shear boundary con-
dition and provides an independent validation of the accuracy of our numerical results.
8. Conclusions

In this paper, we have developed a conservative, second-order accurate fully implicit discretization of the

NSCH system that has an associated discrete energy functional. In addition, the scheme has a straight-

forward extension to multi-component systems. This is exploited in [3] where we examine fluid flows with
three constituent components.

To efficiently solve the discrete system at the implicit time-level, we have developed a nonlinear multigrid

method to solve the CH equation which is then coupled to a projection method that is used to solve the NS

equation. We demonstrated convergence of our scheme numerically in both the presence and absence of

flow and performed simulations of phase separation via spinodal decomposition. We examined the separate

effects of surface tension and external flow on the decomposition. We found surface tension driven flow

alone increases coalescence rates through the retraction of interfaces. When there is an external shear flow,

the evolution of the flow is nontrivial and the flow morphology repeats itself in time as multiple pinchoff
and reconnection events occur. Eventually, the periodic motion ceases and the system relaxes to a global

equilibrium. The equilibria we observe appears has a similar structure in all cases although the dynamics of

the evolution is quite different.

We view the work presented in this paper as preparatory for the detailed investigation of liquid–liquid

interfaces with surface tension where the interfaces separate two immiscible fluids. In this situation, the

interface layer has thickness 4
ffiffiffi
2

p
� using the quartic free energy [4]. Simulations suggest that 4 grid cells
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are needed across the layer for accuracy and thus h �
ffiffiffi
2

p
� is required. This is approximately the same

condition relating the grid spacing and smoothing width used in a variety of level set and volume of

fluid methods (e.g., see the reviews [55–57] and the references therein). To improve performance and
increase efficiency, clearly adaptive mesh algorithms should be used. See for example [33] for an adaptive

finite element algorithm for the CH equation and [58] for an adaptive finite difference method for level-

set simulations of two-phase flows. We have also recently developed an adaptive remeshing algorithm

for unstructured meshes [59] and performed simulations of interface transitions in multiphase flows using

a finite-element level-set method. This adaptive algorithm will be used in the future with the NSCH

system.

To demonstrate the potential of using the NSCH system to accurately describe complex multiphase

flows, we present an example simulation of the break-up of an axisymmetric thread of viscous fluid sur-
rounded by another liquid due to the Rayleigh instability. In Fig. 11, the break-up of such a thread is shown

using an axisymmetric version of the NSCH algorithm presented in this paper using a nonconstant mobility

MðcÞ ¼ cð1� cÞ [23]. In this simulation, the initial condition consists of a column of fluid with radius

r0 ¼ 0:5 perturbed by a cosine perturbation with an amplitude of að0Þ ¼ 0:025. The initial velocity is equal

to zero. The inner and outer fluids are have the same density and viscosity. The Reynolds number (using the

characteristic velocity scale that is proportional to the ratio of surface tension and viscosity and length scale

that is proportional to the radius of the column) is Re ¼ 0:125. The physical Weber number is

We ¼ 6:25� 10�3, which corresponds to Wes ¼ 7:37� 10�4. The time step Dt ¼ 1� 10�3, the domain is
06 r6 p and 06 z6 2p. The grid size is h ¼ p=128 � 0:0245 in both r and z. Periodic boundary conditions

are imposed at z ¼ 0 and 2p. Neumann and no-slip boundary conditions are imposed at r ¼ p for c, l and

u, respectively. Finally, � ¼ 0:01 and Pe ¼ 10=�.
Fig. 11. Time evolution of a liquid/liquid thread undergoing the Rayleigh instability. The dimensionless times are shown below each

figure.



Fig. 12. Comparision of the perturbation amplitudes: �o� numerical result and �–� linear stability theory.
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In the simulation presented in Fig. 11 only the region interior to the c ¼ 0:5 contour is shown. In the

early stages (t ¼ 0:0, 1.2, and 2.2), the interface has only one minimum at the middle of the thread. As the

time increases, nonlinearity becomes important and the and two local minima develop at time t � 2:6.
The interface grows more complex and by time t ¼ 3:4, multiple minima develop and lead to the pinchoff of
a number of satellite drops. Note that a higher resolution is needed to capture the smallest satellite drop

shown at t ¼ 4:4.
As a check on the accuracy of the simulation, we present in Fig. 12 a comparison of the growth of the

perturbation from the numerical solution (circles) and from linear stability theory (solid) [52]. The nu-

merical perturbation is determined by averaging the maximum and minimum values of the interface de-

scribed by the c ¼ 0:5 contour. At early times, when the perturbation is small, there is excellent agreement

between the theory and simulation. The results deviate when nonlinearity becomes important. This will be

investigated in more detail in [23].
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Appendix A. Smoothing operator

The derivation of the SMOOTH relaxation operator given in Eqs. (31) and (32) is as follows. Rewriting

(13), we get
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cnþ1
ij

Dt
þ 2

Dx2

	
þ 2

Dy2



l
nþ1

2
ij ¼

l
nþ1

2

iþ1;j þ l
nþ1

2

i�1;j

Dx2
þ
l
nþ1

2

i;jþ1 þ l
nþ1

2

i;j�1

Dy2
þ

cnij
Dt

: ðA:1Þ

By Eq. (14),

� �2

2

2

Dx2

	
þ 2

Dy2



cnþ1
ij þ l

nþ1
2

ij ¼ � �2

2
Ddcnij þ /̂/ðcnij; cnþ1

ij Þ � �2

2Dx2
ðcnþ1

iþ1;j þ cnþ1
i�1;jÞ �

�2

2Dy2
ðcnþ1

i;jþ1 þ cnþ1
i;j�1Þ:

ðA:2Þ

Since /̂/ðcnij; cnþ1
ij Þ is nonlinear with respect to cnþ1

ij , we linearize /̂/ðcnij; cnþ1
ij Þ at cmij

/̂/ðcnij; cnþ1
ij Þ ¼ /̂/ðcnij; cmijÞ þ

o/̂/ðcnij; cmijÞ
oc2

ðcnþ1
ij � cmijÞ:

After substitution of this into (A.2), we replace cnþ1 and lnþ1
2 in Eqs. (A.1) and (A.2) with cmþ1 and lmþ1

2, to
obtain the relaxation scheme:

cmþ1
ij

Dt
þ 2

Dx2

	
þ 2

Dy2



l
mþ1

2
ij ¼

l
m�1

2

iþ1;j þ l
mþ1

2

i�1;j

Dx2
þ
l
m�1

2

i;jþ1 þ l
mþ1

2

i;j�1

Dy2
þ

cnij
Dt

; ðA:3Þ

and

� �2

2

2

Dx2

	"
þ 2

Dy2



þ
o/̂/ðcnij; cmijÞ

oc2

#
cmþ1
ij þ l

mþ1
2

ij ¼ � �2

2
Ddcnij þ /̂/ðcnij; cmijÞ �

o/̂/ðcnij; cmijÞ
oc2

cmij

� �2

2Dx2
ðcmiþ1;j þ cmþ1

i�1;jÞ �
�2

2Dy2
ðcmi;jþ1 þ cmþ1

i;j�1Þ; ðA:4Þ

as claimed in Section 4.
Appendix B. Crank–Nicholson scheme

Here, we present another scheme in which

/̂/ðcn; cnþ1Þ ¼ 1
2
/ðcnÞ
�

þ /ðcnþ1Þ
�
:

This results in the traditional Crank–Nicolson scheme:

cnþ1
ij � cnij
Dt

¼ Ddl
nþ1

2
ij ;

l
nþ1

2
ij ¼ 1

2
ð/ðcnþ1

ij Þ þ /ðcnijÞÞ �
�2

2
Ddðcnþ1

ij þ cnijÞ:

This algorithm extends straightforwardly to the ternary case and the nonlinear multigrid method given in

Section 4 also can be modified to solve the new nonlinear system at the implicit time-level. Moreover, at the

linear level (i.e., / is a linear function), this scheme is the same as that considered in the body of the paper.

However, at the nonlinear level, we are unable to prove that the system given above has a discrete energy

function unless a second-order time step constraint is imposed. This constraint is much stronger than that

needed for stability and seems to be a shortcoming of the analysis as simulation results using the traditional
Crank–Nicolson scheme always yield non-increasing discrete energies.
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