Table of antidifferentiation formulas

Function	Particular antiderivative	Function	Particular antiderivative
$x^{n}(n \neq-1)$	$\frac{x^{n+1}}{n+1}$	$\frac{1}{x}$	$\ln \|x\|$
e^{x}	e^{x}	$a^{x}(a>0)$	$\frac{a^{x}}{\ln a}$
$\cos x$	$\sin x$	$\sin x$	$-\cos x$
$\sec ^{2} x$	$\tan x$	$\sec x \tan x$	$\sec x$
$\frac{1}{1+x^{2}}$	$\tan { }^{-1} x$	$\frac{1}{\sqrt{1-x^{2}}}$	$\sin -1 x$
$\cosh ^{2}$	$\sinh x$	$\sinh x$	$\cosh x$
$\csc ^{2} x$	$-\cot x$	$\csc x \cot x$	$-\csc x$

Let f and g be two functions defined on an interval I. Let F and G be respectively antiderivatives of f and g on I. Let k be a constant.
(a) $k F$ is an antiderivative of $k f$ on I.
(b) $F+G$ is an antiderivative of $f+g$ on I.

To obtain the most general antiderivative from the particular ones in the table, just add a constant C.

