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11 INFINITE SEQUENCES AND SERIES

11.1 Sequences

1. (a) A sequence is an ordered list of numbers. It can also be defined as a function whose domain is the set of positive integers.

(b) The terms  approach 8 as  becomes large. In fact, we can make  as close to 8 as we like by taking  sufficiently

large.

(c) The terms  become large as  becomes large. In fact, we can make  as large as we like by taking  sufficiently large.

2. (a) From Definition 1, a convergent sequence is a sequence for which lim
→∞

 exists. Examples: {1}, {12}

(b) A divergent sequence is a sequence for which lim
→∞

 does not exist. Examples: {}, {sin}

3.  =
2

2+ 1
, so the sequence is


21

2(1) + 1


22

2(2) + 1


23

2(3) + 1


24

2(4) + 1


25

2(5) + 1
   


=


2

3

4

5

8

7

16

9

32

11
   


.

4.  =
2 − 1

2 + 1
, so the sequence is


1− 1

1 + 1

4− 1

4 + 1

9− 1

9 + 1

16− 1

16 + 1

25− 1

25 + 1
   


=


0

3

5


8

10

15

17

24

26
   


.

5.  =
(−1)−1

5
, so the sequence is


1

51

−1

52


1

53

−1

54


1

55
   


=


1

5
− 1

25


1

125
− 1

625


1

3125
   


.

6.  = cos


2
, so the sequence is


cos



2
 cos cos

3

2
 cos 2 cos

5

2
   


= {0−1 0 1 0   }.

7.  =
1

(+ 1)!
, so the sequence is


1

2!


1

3!


1

4!


1

5!


1

6!
   


=


1

2

1

6


1

24


1

120


1

720
   


.

8.  =
(−1)

! + 1
, so 1 =

(−1)11

1! + 1
=
−1

2
, and the sequence is−1

2


2

2 + 1

−3

6 + 1


4

24 + 1

−5

120 + 1
   


=


−1

2

2

3
−3

7


4

25
− 5

121
   


.

9. 1 = 1, +1 = 5 − 3. Each term is defined in terms of the preceding term. 2 = 51 − 3 = 5(1)− 3 = 2.

3 = 52 − 3 = 5(2)− 3 = 7. 4 = 53 − 3 = 5(7)− 3 = 32. 5 = 54 − 3 = 5(32)− 3 = 157.

The sequence is {1 2 7 32 157   }.

10. 1 = 6, +1 =



. 2 =

1

1
=

6

1
= 6. 3 =

2

2
=

6

2
= 3. 4 =

3

3
=

3

3
= 1. 5 =

4

4
=

1

4
.

The sequence is

6 6 3 1 1

4
   


.

11. 1 = 2, +1 =


1 + 
. 2 =

1

1 + 1

=
2

1 + 2
=

2

3
. 3 =

2

1 + 2

=
23

1 + 23
=

2

5
. 4 =

3

1 + 3

=
25

1 + 25
=

2

7
.

5 =
4

1 + 4

=
27

1 + 27
=

2

9
. The sequence is


2 2

3
 2

5
 2

7
 2

9
   


.
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12. 1 = 2, 2 = 1, +1 =  − −1. Each term is defined in term of the two preceding terms.

3 = 2 − 1 = 1− 2 = −1. 4 = 3 − 2 = −1− 1 = −2. 5 = 4 − 3 = −2− (−1) = −1.

6 = 5 − 4 = −1− (−2) = 1. The sequence is {2 1−1−2−1 1   }.

13.


1
2
, 1

4
, 1

6
, 1

8
, 1

10
,   


. The denominator is two times the number of the term, , so  =

1

2
.

14.

4, −1, 1

4
, − 1

16
, 1

64
,   


. The first term is 4 and each term is − 1

4
times the preceding one, so  = 4

− 1
4

−1
.

15.
−3 2− 4

3
 8

9
− 16

27
   


. The first term is −3 and each term is − 2

3
times the preceding one, so  = −3

− 2
3

−1
.

16. {5 8 11 14 17   }. Each term is larger than the preceding term by 3, so  = 1 + (− 1) = 5 + 3(− 1) = 3+ 2.

17.


1
2
− 4

3
 9

4
− 16

5
 25

6
   


. The numerator of the nth term is 2 and its denominator is + 1. Including the alternating signs,

we get  = (−1)+1 2

+ 1
.

18. {1 0−1 0 1 0−1 0   }. Two possibilities are  = sin


2
and  = cos

(− 1)

2
.

19.
  =

3

1 + 6

1 04286

2 04615

3 04737

4 04800

5 04839

6 04865

7 04884

8 04898

9 04909

10 04918

It appears that lim
→∞

 = 05.

lim
→∞

3

1 + 6
= lim

→∞
(3)

(1 + 6)
= lim

→∞
3

1+ 6
=

3

6
=

1

2

20.
  = 2 +

(−1)



1 10000

2 25000

3 16667

4 22500

5 18000

6 21667

7 18571

8 21250

9 18889

10 21000

It appears that lim
→∞

 = 2.

lim
→∞


2 +

(−1)




= lim

→∞
2 + lim

→∞
(−1)


= 2 + 0 = 2 since lim

→∞
1


= 0

and by Theorem 6, lim
→∞

(−1)


= 0.
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21.
  = 1 +

− 1
2


1 05000

2 12500

3 08750

4 10625

5 09688

6 10156

7 09922

8 10039

9 09980

10 10010

It appears that lim
→∞

 = 1.

lim
→∞


1 +

− 1
2


= lim

→∞
1 + lim

→∞

− 1
2


= 1 + 0 = 1 since

lim
→∞

− 1
2


= 0 by (9).

22.
  = 1 +

10

9

1 21111

2 22346

3 23717

4 25242

5 26935

6 28817

7 30908

8 33231

9 35812

10 38680

It appears that the sequence does not have a limit.

lim
→∞

10

9
= lim

→∞


10

9


, which diverges by (9) since 10

9
 1.

23.  =
3 + 52

+ 2
=

(3 + 52)2

(+ 2)2
=

5 + 32

1 + 1
, so  → 5 + 0

1 + 0
= 5 as →∞. Converges

24.  =
3 + 52

1 + 
=

(3 + 52)

(1 + )
=

3+ 5

1+ 1
, so  →∞ as →∞ since lim

→∞


3


+ 5


= ∞ and

lim
→∞


1


+ 1


= 0 + 1 = 1. Diverges

25.  =
4

3 − 2
=

43

(3 − 2)3
=



1− 2 /2
, so  → ∞ as  →∞ since lim

→∞
 = ∞ and

lim
→∞


1− 2

2


= 1− 0 = 1. Diverges

26.  = 2 + (086) → 2 + 0 = 2 as →∞ since lim
→∞

(086) = 0 by (9) with  = 086. Converges

27.  = 37− =
3

7
=


3

7


, so lim

→∞
 = 0 by (9) with  =

3

7
. Converges
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28.  =
3
√
√

+ 2
=

3
√

√


(
√
+ 2)

√


=
3

1 + 2
√

→ 3

1 + 0
= 3 as →∞. Converges

29. Because the natural exponential function is continuous at 0, Theorem 7 enables us to write

lim
→∞

 = lim
→∞

−1
√
 = 

lim
→∞(−1

√
)

= 0 = 1. Converges

30.  =
4

1 + 9
=

49

(1 + 9)9
=

(49)

(19) + 1
→ 0

0 + 1
= 0 as →∞ since lim

→∞


4

9


= 0 and

lim
→∞


1

9


= 0 by (9). Converges

31.  =


1 + 42

1 + 2
=


(1 + 42)2

(1 + 2)2
=


(12) + 4

(12) + 1
→√

4 = 2 as →∞ since lim
→∞

(12) = 0. Converges

32.  = cos




+ 1


= cos




(+ 1)


= cos




1 + 1


, so  → cos = −1 as →∞ since lim

→∞
1 = 0

Converges

33.  =
2

√
3 + 4

=
2
√
3

√
3 + 4

√
3

=

√


1 + 42
, so  →∞ as →∞ since lim

→∞
√
 = ∞ and

lim
→∞


1 + 42 = 1. Diverges

34. If  =
2

+ 2
, then lim

→∞
 = lim

→∞
(2)

(+ 2)
= lim

→∞
2

1 + 2
=

2

1
= 2. Since the natural exponential function is

continuous at 2, by Theorem 7, lim
→∞

2(+2) = lim→∞  = 2. Converges

35. lim
→∞

|| = lim
→∞

 (−1)

2
√


 =
1

2
lim
→∞

1

12
=

1

2
(0) = 0, so lim

→∞
 = 0 by (6). Converges

36. lim
→∞



+
√


= lim
→∞



(+
√
 )

= lim
→∞

1

1 + 1
√


=
1

1 + 0
= 1. Thus,  =

(−1)+1

+
√


has odd-numbered terms

that approach 1 and even-numbered terms that approach−1 as →∞, and hence, the sequence {} is divergent.

37.  =
(2− 1)!

(2+ 1)!
=

(2− 1)!

(2+ 1)(2)(2− 1)!
=

1

(2+ 1)(2)
→ 0 as →∞. Converges

38.  =
ln

ln 2
=

ln

ln 2 + ln
=

1
ln 2
ln

+ 1
→ 1

0 + 1
= 1 as →∞. Converges

39.  = sin. This sequence diverges since the terms don’t approach any particular real number as →∞. The terms take on

values between −1 and 1. Diverges

40.  =
tan−1 


. lim

→∞
tan−1  = lim

→∞
tan−1  =



2
by (3), so lim

→∞
 = 0. Converges

41.  = 2− =
2


. Since lim

→∞
2


H
= lim

→∞
2


H
= lim

→∞
2


= 0, it follows from Theorem 3 that lim

→∞
 = 0. Converges
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42.  = ln(+ 1)− ln = ln


+ 1




= ln


1 +

1




→ ln (1) = 0 as →∞ because ln is continuous. Converges

43. 0 ≤ cos2 

2
≤ 1

2
[since 0 ≤ cos2  ≤ 1], so since lim

→∞
1

2
= 0,


cos2 

2


converges to 0 by the Squeeze Theorem.

44.  =

√

21+3 = (21+3)1 = (2123)1 = 2123 = 8 · 21, so

lim
→∞

 = 8 lim
→∞

21 = 8 · 2lim→∞(1) = 8 · 20 = 8 by Theorem 7, since the function () = 2 is continuous at 0.

Converges

45.  =  sin(1) =
sin(1)

1
. Since lim

→∞
sin(1)

1
= lim

→0+

sin 


[where  = 1] = 1, it follows from Theorem 3

that {} converges to 1.

46.  = 2− cos. 0 ≤
cos

2

 ≤ 1

2
=


1

2


, so lim

→∞
|| = 0 by (9), and lim

→∞
 = 0 by (6) Converges

47.  =


1 +

2




⇒ ln  =  ln


1 +

2




, so

lim
→∞

ln  = lim
→∞

ln(1 + 2)

1

H
= lim

→∞


1

1 + 2


− 2

2


−12

= lim
→∞

2

1 + 2
= 2 ⇒

lim
→∞


1 +

2




= lim

→∞
ln  = 2, so by Theorem 3, lim

→∞


1 +

2




= 2. Converges

48.  = 1 ⇒ ln  =
1


ln, so lim

→∞
ln  = lim

→∞
ln



H
= lim

→∞
1

1
= lim

→∞
1


= 0 ⇒

lim
→∞

1 = lim
→∞

ln  = 0 = 1, so by Theorem 3, lim
→∞


√
 = 1. Converges

49.  = ln(22 + 1)− ln(2 + 1) = ln


22 + 1

2 + 1


= ln


2 + 12

1 + 12


→ ln 2 as →∞. Converges

50. lim
→∞

(ln)2



H
= lim

→∞
2(ln)(1)

1
= 2 lim

→∞
ln



H
= 2 lim

→∞
1

1
= 0, so by Theorem 3, lim

→∞
(ln)2


= 0. Converges

51.  = arctan(ln). Let () = arctan(ln). Then lim
→∞

() = 
2
since ln→∞ as →∞ and arctan is continuous.

Thus, lim
→∞

 = lim
→∞

() = 
2
. Converges

52.  = −√+ 1
√
+ 3 = −√2 + 4+ 3 =

−√2 + 4+ 3

1
· +

√
2 + 4+ 3

+
√
2 + 4+ 3

=
2 − (2 + 4+ 3)

+
√
2 + 4+ 3

=
−4− 3

+
√
2 + 4+ 3

=
(−4− 3)

+
√
2 + 4+ 3




=
−4− 3

1 +


1 + 4+ 32
,

so lim
→∞

 =
−4− 0

1 +
√

1 + 0 + 0
=
−4

2
= −2. Converges
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53. {0 1 0 0 1 0 0 0 1   } diverges since the sequence takes on only two values, 0 and 1, and never stays arbitrarily close to
either one (or any other value) for  sufficiently large.

54.


1
1
 1

3
 1

2
 1

4
 1

3
 1

5
 1

4
 1

6
   


. 2−1 =

1


and 2 =

1

+ 2
for all positive integers . lim

→∞
 = 0 since

lim
→∞

2−1 = lim
→∞

1


= 0 and lim

→∞
2 = lim

→∞
1

+ 2
= 0. For  sufficiently large,  can be made as close to 0

as we like. Converges

55.  =
!

2
=

1

2
· 2

2
· 3

2
· · · · · (− 1)

2
· 

2
≥ 1

2
· 

2
[for   1] =



4
→∞ as →∞, so {} diverges.

56. 0  || = 3

!
=

3

1
· 3

2
· 3

3
· · · · · 3

(− 1)
· 3


≤ 3

1
· 3

2
· 3


[for   2] =

27

2
→ 0 as →∞, so by the Squeeze

Theorem and Theorem 6, {(−3)!} converges to 0.

57. From the graph, it appears that the sequence {} =


(−1)



+ 1


is

divergent, since it oscillates between 1 and −1 (approximately). To prove this,

suppose that {} converges to . If  =


+ 1
, then {} converges to 1,

and lim
→∞




=



1
= . But




= (−1), so lim

→∞



does not exist. This

contradiction shows that {} diverges.

58. From the graph, it appears that the sequence converges to 0.

|| =
 sin

 =
|sin|
|| ≤ 1


, so lim

→∞
|| = 0. By (6), it follows that

lim
→∞

 = 0.

59. From the graph, it appears that the sequence converges to a number between

07 and 08.

 = arctan


2

2 + 4


= arctan


22

(2 + 4)2


= arctan


1

1 + 42


→

arctan 1 =


4
[≈ 0785] as →∞.

60. From the graph, it appears that the sequence converges to 5

5 =

√

5 ≤ 
√

3 + 5 ≤ 
√

5 + 5 =

√

2

√

5

=

√

2 · 5→ 5 as →∞


lim
→∞

2
1

= 2
0

= 1


Hence,  → 5 by the Squeeze Theorem.

[continued]
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Alternate solution: Let  = (3 + 5)
1. Then

lim
→∞

ln  = lim
→∞

ln (3 + 5)



H
= lim

→∞
3 ln 3 + 5 ln 5

3 + 5
= lim

→∞


3
5


ln 3 + ln 5
3
5


+ 1

= ln 5,

so lim
→∞

 = ln 5 = 5, and so


√

3 + 5

converges to 5.

61. From the graph, it appears that the sequence {} =


2 cos

1 + 2


is

divergent, since it oscillates between 1 and −1 (approximately). To

prove this, suppose that {} converges to . If  =
2

1 + 2
, then

{} converges to 1, and lim
→∞




=



1
= . But




= cos, so

lim
→∞




does not exist. This contradiction shows that {} diverges.

62.

From the graphs, it seems that the sequence diverges.  =
1 · 3 · 5 · · · · · (2− 1)

!
. We first prove by induction that

 ≥


3

2

−1

for all . This is clearly true for  = 1, so let  () be the statement that the above is true for . We must

show it is then true for + 1. +1 =  · 2+ 1

+ 1
≥


3

2

−1

· 2+ 1

+ 1
(induction hypothesis). But

2+ 1

+ 1
≥ 3

2

[since 2 (2+ 1) ≥ 3 (+ 1) ⇔ 4+ 2 ≥ 3+ 3 ⇔  ≥ 1], and so we get that +1 ≥


3
2

−1 · 3
2

=


3
2


which

is  (+ 1). Thus, we have proved our first assertion, so since


3
2

−1

diverges [by (9)], so does the given sequence {}.

63. From the graph, it appears that the sequence approaches 0.

0   =
1 · 3 · 5 · · · · · (2− 1)

(2)
 =

1

2
· 3

2
· 5

2
· · · · · 2− 1

2

≤ 1

2
· (1) · (1) · · · · · (1) =

1

2
→ 0 as →∞

So by the Squeeze Theorem,


1 · 3 · 5 · · · · · (2− 1)

(2)



converges to 0.
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64. (a) 1 = 1, +1 = 4−  for  ≥ 1. 1 = 1, 2 = 4− 1 = 4− 1 = 3, 3 = 4− 2 = 4− 3 = 1,

4 = 4− 3 = 4− 1 = 3, 5 = 4− 4 = 4− 3 = 1. Since the terms of the sequence alternate between 1 and 3,

the sequence is divergent.

(b) 1 = 2, 2 = 4− 1 = 4− 2 = 2, 3 = 4− 2 = 4− 2 = 2. Since all of the terms are 2, lim
→∞

 = 2 and hence, the

sequence is convergent.

65. (a)  = 1000(106) ⇒ 1 = 1060, 2 = 112360, 3 = 119102, 4 = 126248, and 5 = 133823.

(b) lim
→∞

 = 1000 lim
→∞

(106), so the sequence diverges by (9) with  = 106  1.

66. (a) Substitute 1 to 6 for  in  = 100


10025 − 1

00025
− 


to get 1 = $0, 2 = $025, 3 = $075, 4 = $150,

5 = $251, and 6 = $376.

(b) For two years, use 2 · 12 = 24 for  to get $7028.

67. (a) We are given that the initial population is 5000, so 0 = 5000. The number of catfish increases by 8% per month and is

decreased by 300 per month, so 1 = 0 + 8%0 − 300 = 1080 − 300, 2 = 1081 − 300, and so on. Thus,

 = 108−1 − 300.

(b) Using the recursive formula with 0 = 5000, we get 1 = 5100, 2 = 5208, 3 = 5325 (rounding any portion of a

catfish), 4 = 5451, 5 = 5587, and 6 = 5734, which is the number of catfish in the pond after six months.

68. +1 =


1
2
 if  is an even number

3 + 1 if  is an odd number
When 1 = 11, the first 40 terms are 11, 34, 17, 52, 26, 13, 40, 20, 10, 5,

16, 8, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4. When 1 = 25, the first 40 terms are 25, 76, 38,

19, 58, 29, 88, 44, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4.

The famous Collatz conjecture is that this sequence always reaches 1, regardless of the starting point 1.

69. If || ≥ 1, then {} diverges by (9), so {} diverges also, since || =  || ≥ ||. If ||  1 then

lim
→∞

 = lim
→∞



−
H
= lim

→∞
1

(− ln ) −
= lim

→∞


− ln 
= 0, so lim

→∞
 = 0, and hence {} converges

whenever ||  1.

70. (a) Let lim
→∞

 = . By Definition 2, this means that for every   0 there is an integer  such that | − |  

whenever    . Thus, |+1 − |   whenever + 1   ⇔    − 1. It follows that lim
→∞

+1 =  and so

lim
→∞

 = lim
→∞

+1.

(b) If  = lim
→∞

 then lim
→∞

+1 =  also, so  must satisfy  = 1 (1 + ) ⇒ 2 +− 1 = 0 ⇒  = −1 +
√

5
2

(since  has to be nonnegative if it exists).
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71. Since {} is a decreasing sequence,   +1 for all  ≥ 1. Because all of its terms lie between 5 and 8, {} is a
bounded sequence. By the Monotonic Sequence Theorem, {} is convergent; that is, {} has a limit .  must be less than

8 since {} is decreasing, so 5 ≤   8.

72. Since {} = {cos} ≈ {054−042−099−065 028   }, the sequence is not monotonic. The sequence is bounded
since −1 ≤ cos ≤ 1 for all .

73.  =
1

2+ 3
is decreasing since +1 =

1

2(+ 1) + 3
=

1

2+ 5


1

2+ 3
=  for each  ≥ 1. The sequence is

bounded since 0   ≤ 1
5
for all  ≥ 1. Note that 1 = 1

5
.

74.   +1 ⇔ 1− 

2 + 


1− (+ 1)

2 + (+ 1)
⇔ 1− 

2 + 


−
+ 3

⇔ −2 − 2+ 3  −2 − 2 ⇔ 3  0, which

is true for all  ≥ 1, so {} is decreasing. Since 1 = 0 and lim
→∞

1− 

2 + 
= lim

→∞
1− 1

2+ 1
= −1, the sequence is bounded

(−1   ≤ 0).

75. The terms of  = (−1) alternate in sign, so the sequence is not monotonic. The first five terms are−1, 2, −3, 4, and −5.

Since lim
→∞

|| = lim
→∞

 =∞, the sequence is not bounded.

76. Since {} =


2 +

(−1)




=

1 2 1

2
 1 2

3
   


, the sequence is not monotonic. The sequence is bounded since

1 ≤  ≤ 5
2
for all .

77.  = 3− 2−. Let () = 3− 2−. Then  0() = 0− 2[(−−) + −] = 2−(− 1), which is positive for

  1, so  is increasing on (1∞). It follows that the sequence {} = {()} is increasing. The sequence is bounded

below by 1 = 3− 2−1 ≈ 226 and above by 3, so the sequence is bounded.

78.  = 3 − 3+ 3. Let () = 3 − 3 + 3. Then  0() = 32 − 3 = 3(2 − 1), which is positive for   1, so  is

increasing on (1∞). It follows that the sequence {} = {()} is increasing. The sequence is bounded below by 1 = 1,

but is not bounded above, so it is not bounded.

79. For

√
2,


2
√

2,


2


2
√

2,   


, 1 = 212, 2 = 234, 3 = 278,   , so  = 2(2−1)2 = 21−(12).

lim
→∞

 = lim
→∞

21−(12) = 21 = 2.

Alternate solution: Let  = lim
→∞

. (We could show the limit exists by showing that {} is bounded and increasing.)

Then  must satisfy  =
√

2 ·  ⇒ 2 = 2 ⇒ (− 2) = 0.  6= 0 since the sequence increases, so  = 2.

80. (a) Let  be the statement that +1 ≥  and  ≤ 3. 1 is obviously true. We will assume that  is true and

then show that as a consequence +1 must also be true. +2 ≥ +1 ⇔ √
2 + +1 ≥

√
2 +  ⇔

2 + +1 ≥ 2 +  ⇔ +1 ≥ , which is the induction hypothesis. +1 ≤ 3 ⇔ √
2 +  ≤ 3 ⇔
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2 +  ≤ 9 ⇔  ≤ 7, which is certainly true because we are assuming that  ≤ 3. So  is true for all , and so

1 ≤  ≤ 3 (showing that the sequence is bounded), and hence by the Monotonic Sequence Theorem, lim
→∞

 exists.

(b) If  = lim
→∞

, then lim
→∞

+1 =  also, so  =
√

2 +  ⇒ 2 = 2 +  ⇔ 2 − − 2 = 0 ⇔

(+ 1)(− 2) = 0 ⇔  = 2 [since  can’t be negative].

81. 1 = 1, +1 = 3− 1


. We show by induction that {} is increasing and bounded above by 3. Let  be the proposition

that +1   and 0    3. Clearly 1 is true. Assume that  is true. Then +1   ⇒ 1

+1


1


⇒

− 1

+1

 − 1


. Now +2 = 3− 1

+1

 3− 1


= +1 ⇔ +1. This proves that {} is increasing and bounded

above by 3, so 1 = 1    3, that is, {} is bounded, and hence convergent by the Monotonic Sequence Theorem.

If  = lim
→∞

, then lim
→∞

+1 =  also, so  must satisfy  = 3− 1 ⇒ 2 − 3+ 1 = 0 ⇒  = 3±√5
2

.

But   1, so  = 3 +
√

5
2

.

82. 1 = 2, +1 =
1

3− 
. We use induction. Let  be the statement that 0  +1 ≤  ≤ 2. Clearly 1 is true, since

2 = 1(3− 2) = 1. Now assume that  is true. Then +1 ≤  ⇒ −+1 ≥ − ⇒ 3− +1 ≥ 3−  ⇒

+2 =
1

3− +1

≤ 1

3− 
= +1. Also +2  0 [since 3− +1 is positive] and +1 ≤ 2 by the induction

hypothesis, so +1 is true. To find the limit, we use the fact that lim
→∞

 = lim
→∞

+1 ⇒  = 1
3−

⇒

2 − 3+ 1 = 0 ⇒  = 3±√5
2

. But  ≤ 2, so we must have  = 3−√5
2

.

83. (a) Let  be the number of rabbit pairs in the nth month. Clearly 1 = 1 = 2. In the nth month, each pair that is

2 or more months old (that is, −2 pairs) will produce a new pair to add to the −1 pairs already present. Thus,

 = −1 + −2, so that {} = {}, the Fibonacci sequence.

(b)  =
+1


⇒ −1 =



−1

=
−1 + −2

−1

= 1 +
−2

−1

= 1 +
1

−1 /−2

= 1 +
1

−2

. If  = lim
→∞

,

then  = lim
→∞

−1 and  = lim
→∞

−2, so  must satisfy  = 1 +
1


⇒ 2 − − 1 = 0 ⇒  = 1 +

√
5

2

[since  must be positive].

84. (a) If  is continuous, then () = 


lim
→∞




= lim

→∞
() = lim

→∞
+1 = lim

→∞
 =  by Exercise 70(a).

(b) By repeatedly pressing the cosine key on the calculator (that is, taking cosine of the previous answer) until the displayed

value stabilizes, we see that  ≈ 073909.
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85. (a) From the graph, it appears that the sequence


5

!



converges to 0, that is, lim
→∞

5

!
= 0.

(b)

From the first graph, it seems that the smallest possible value of corresponding to  = 01 is 9, since 5!  01

whenever  ≥ 10, but 959!  01. From the second graph, it seems that for  = 0001, the smallest possible value for

is 11 since 5!  0001 whenever  ≥ 12.

86. Let   0 and let be any positive integer larger than ln() ln ||. If    , then   ln() ln || ⇒  ln ||  ln 

[since ||  1 ⇒ ln ||  0] ⇒ ln(||)  ln  ⇒ ||   ⇒ | − 0|  , and so by Definition 2,

lim
→∞

 = 0.

87. Theorem 6: If lim
→∞

|| = 0 then lim
→∞

− || = 0, and since − || ≤  ≤ ||, we have that lim
→∞

 = 0 by the

Squeeze Theorem.

88. Theorem 7: If lim
→∞

 =  and the function  is continuous at , then lim
→∞

() = ().

Proof: We must show that, given a number   0, there is an integer such that |()− ()|   whenever    .

Suppose   0. Since  is continuous at , there is a number   0 such that |()− ()|   if |− |  . Since

lim
→∞

 = , there is an integer  such that | − |   if    . Suppose    . Then 0  | − |  , so

|()− ()|  .

89. To Prove: If lim
→∞

 = 0 and {} is bounded, then lim
→∞

() = 0.

Proof: Since {} is bounded, there is a positive number such that || ≤ and hence, || || ≤ || for

all  ≥ 1. Let   0 be given. Since lim
→∞

 = 0, there is an integer  such that | − 0|  


if    . Then

| − 0| = || = || || ≤ || = | − 0| 



· =  for all    . Since  was arbitrary,

lim
→∞

() = 0.
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90. (a)
+1 − +1

− 
=  + −1+ −22 + −33 + · · ·+ −1 + 

  + −1+ −22 + −33 + · · ·+ −1 +  = (+ 1)

(b) Since −   0, we have +1 − +1  ( + 1)(− ) ⇒ +1 − (+ 1)(− )  +1 ⇒
[(+ 1)− ]  +1.

(c) With this substitution, (+ 1)−  = 1, and so  =


1 +

1




 +1 =


1 +

1

+ 1

+1

.

(d) With this substitution, we get


1 +

1

2


1

2


 1 ⇒


1 +

1

2


 2 ⇒


1 +

1

2

2

 4.

(e)   2 since {} is increasing, so   2  4.

(f ) Since {} is increasing and bounded above by 4, 1 ≤  ≤ 4, and so {} is bounded and monotonic, and hence has a
limit by the Monotonic Sequence Theorem.

91. (a) First we show that   1  1  .

1 − 1 = + 
2
−
√
 = 1

2


− 2

√
+ 


= 1

2

√
−

√

2

 0 [since   ] ⇒ 1  1. Also

− 1 = − 1
2
(+ ) = 1

2
(− )  0 and − 1 = −

√
 =

√

√

−√

 0, so   1  1  . In the same

way we can show that 1  2  2  1 and so the given assertion is true for  = 1. Suppose it is true for  = , that is,

  +1  +1  . Then

+2 − +2 = 1
2
(+1 + +1)−


+1+1 = 1

2


+1 − 2


+1+1 + +1


= 1

2

√
+1 −


+1

2

 0,

+1 − +2 = +1 − 1
2
(+1 + +1) = 1

2
(+1 − +1)  0, and

+1 − +2 = +1 −

+1+1 =


+1


+1 −√+1


 0 ⇒ +1  +2  +2  +1,

so the assertion is true for  =  + 1. Thus, it is true for all  by mathematical induction.

(b) From part (a) we have     +1  +1    , which shows that both sequences, {} and {}, are
monotonic and bounded. So they are both convergent by the Monotonic Sequence Theorem.

(c) Let lim
→∞

 =  and lim
→∞

 = . Then lim
→∞

+1 = lim
→∞

 + 

2
⇒  =

+ 

2
⇒

2 = +  ⇒  = .

92. (a) Let   0. Since lim
→∞

2 = , there exists1 such that |2 − |   for   1. Since lim
→∞

2+1 = , there

exists2 such that |2+1 − |   for   2. Let = max {21 22 + 1} and let    . If  is even, then

 = 2 where  1, so | − | = |2 − |  . If  is odd, then  = 2 + 1, where  2, so

| − | = |2+1 − |  . Therefore lim
→∞

 = .

(b) 1 = 1, 2 = 1 + 1
1+ 1

= 3
2

= 15, 3 = 1 + 1
52

= 7
5

= 14, 4 = 1 + 1
125

= 17
12

= 1416,

5 = 1 + 1
2912

= 41
29
≈ 1413793, 6 = 1 + 1

7029
= 99

70
≈ 1414286, 7 = 1 + 1

16970
= 239

169
≈ 1414201,
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8 = 1 + 1
408169

= 577
408

≈ 1414216. Notice that 1  3  5  7 and 2  4  6  8. It appears that the

odd terms are increasing and the even terms are decreasing. Let’s prove that 2−2  2 and 2−1  2+1 by

mathematical induction. Suppose that 2−2  2. Then 1 + 2−2  1 + 2 ⇒ 1

1 + 2−2


1

1 + 2

⇒

1 +
1

1 + 2−2

 1 +
1

1 + 2

⇒ 2−1  2+1 ⇒ 1 + 2−1  1 + 2+1 ⇒

1

1 + 2−1


1

1 + 2+1

⇒ 1 +
1

1 + 2−1

 1 +
1

1 + 2+1

⇒ 2  2+2. We have thus shown, by

induction, that the odd terms are increasing and the even terms are decreasing. Also all terms lie between 1 and 2, so both

{} and {} are bounded monotonic sequences and are therefore convergent by the Monotonic Sequence Theorem. Let

lim
→∞

2 = . Then lim
→∞

2+2 =  also. We have

+2 = 1 +
1

1 + 1 + 1(1 + )
= 1 +

1

(3 + 2)(1 + )
=

4 + 3

3 + 2

so 2+2 =
4 + 32

3 + 22

. Taking limits of both sides, we get  =
4 + 3

3 + 2
⇒ 3+ 22 = 4 + 3 ⇒ 2 = 2 ⇒

 =
√

2 [since   0]. Thus, lim
→∞

2 =
√

2. Similarly we find that lim
→∞

2+1 =
√

2. So, by part (a),

lim
→∞

 =
√

2.

93. (a) Suppose {} converges to . Then +1 =


+ 
⇒ lim

→∞
+1 =

 lim
→∞



+ lim
→∞


⇒  =



+ 
⇒

2 +  =  ⇒ (+ − ) = 0 ⇒  = 0 or  = − .

(b) +1 =


+ 
=









1 +












 since 1 +




 1.

(c) By part (b), 1 







0, 2 







1 






2

0, 3 







2 






3

0, etc. In general,  







0,

so lim
→∞

 ≤ lim
→∞







· 0 = 0 since   .


By (7) lim

→∞
 = 0 if − 1    1. Here  =




∈ (0 1) .


(d) Let   . We first show, by induction, that if 0  − , then   −  and +1  .

For  = 0, we have 1 − 0 =
0

+ 0

− 0 =
0(− − 0)

+ 0

 0 since 0  − . So 1  0.

Now we suppose the assertion is true for  = , that is,   −  and +1  . Then

− − +1 = − − 

+ 
=

(− ) +  −  − 

+ 
=

(− − )

+ 
 0 because   − . So

+1  − . And +2 − +1 =
+1

+ +1

− +1 =
+1(− − +1)

+ +1

 0 since +1  − . Therefore,

+2  +1. Thus, the assertion is true for  =  + 1. It is therefore true for all  by mathematical induction.

A similar proof by induction shows that if 0  − , then   −  and {} is decreasing.
In either case the sequence {} is bounded and monotonic, so it is convergent by the Monotonic Sequence Theorem.

It then follows from part (a) that lim
→∞

 = − .
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LABORATORY PROJECT Logistic Sequences

1. To write such a program in Maple it is best to calculate all the points first and then graph them. One possible sequence of

commands [taking 0 = 1
2
and  = 15 for the difference equation] is

t:=’t’;p(0):=1/2;k:=1.5;

for j from 1 to 20 do p(j):=k*p(j-1)*(1-p(j-1)) od;

plot([seq([t,p(t)] t=0..20)],t=0..20,p=0..0.5,style=point);

In Mathematica, we can use the following program:

p[0]=1/2

k=1.5

p[j_]:=k*p[j-1]*(1-p[j-1])

P=Table[p[t],{t,20}]

ListPlot[P]

With 0 = 1
2
and  = 15:

     

0 05 7 03338465076 14 03333373303

1 0375 8 03335895255 15 03333353318

2 03515625 9 03334613309 16 03333343326

3 03419494629 10 03333973076 17 03333338329

4 03375300416 11 03333653143 18 03333335831

5 03354052689 12 03333493223 19 03333334582

6 03343628617 13 03333413274 20 03333333958

With 0 = 1
2
and  = 25:

     

0 05 7 06004164790 14 05999967417

1 0625 8 05997913269 15 06000016291

2 05859375 9 06001042277 16 05999991854

3 06065368651 10 05999478590 17 06000004073

4 05966247409 11 06000260637 18 05999997964

5 06016591486 12 05999869664 19 06000001018

6 05991635437 13 06000065164 20 05999999491

Both of these sequences seem to converge

the first to about 1

3
, the second to about 0.60


.
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With 0 = 7
8
and  = 15:

     

0 0875 7 03239166554 14 03332554829

1 01640625 8 03284919837 15 03332943990

2 02057189941 9 03308775005 16 03333138639

3 02450980344 10 03320963702 17 03333235980

4 02775374819 11 03327125567 18 03333284655

5 03007656421 12 03330223670 19 03333308994

6 03154585059 13 03331777051 20 03333321164

With 0 = 7
8
and  = 25:

     

0 0875 7 06016572368 14 05999869815

1 02734375 8 05991645155 15 06000065088

2 04966735840 9 06004159972 16 05999967455

3 06249723374 10 05997915688 17 06000016272

4 05859547872 11 06001041070 18 05999991864

5 06065294364 12 05999479194 19 06000004068

6 05966286980 13 06000260335 20 05999997966

The limit of the sequence seems to depend on , but not on 0.

2. With 0 = 7
8
and  = 32:

     

0 0875 7 05830728495 14 07990633827

1 035 8 07779164854 15 05137954979

2 0728 9 05528397669 16 07993909896

3 06336512 10 07910654689 17 05131681132

4 07428395416 11 05288988570 18 07994451225

5 06112926626 12 07973275394 19 05130643795

6 07603646184 13 05171082698 20 07994538304

It seems that eventually the terms fluctuate between two values (about 05 and 08 in this case).
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3. With 0 = 7
8
and  = 342:

     

0 0875 7 04523028596 14 08442074951

1 03740625 8 08472194412 15 04498025048

2 08007579316 9 04426802161 16 08463823232

3 05456427596 10 08437633929 17 04446659586

4 08478752457 11 04508474156 18 08445284520

5 04411212220 12 08467373602 19 04490464985

6 08431438501 13 04438243545 20 08461207931

With 0 = 7
8
and  = 345:

     

0 0875 7 04670259170 14 08403376122

1 037734375 8 08587488490 15 04628875685

2 08105962830 9 04184824586 16 08577482026

3 05296783241 10 08395743720 17 04209559716

4 08594612299 11 04646778983 18 08409445432

5 04167173034 12 08581956045 19 04614610237

6 08385707740 13 04198508858 20 08573758782

From the graphs above, it seems that for  between 34 and 35, the terms eventually fluctuate between four values. In the

graph below, the pattern followed by the terms is 0395 0832 0487 0869 0395   . Note that even for  = 342 (as in the

first graph), there are four distinct “branches”; even after 1000 terms, the first and third terms in the pattern differ by about

2× 10−9, while the first and fifth terms differ by only 2× 10−10. With 0 = 7
8
and  = 348:
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4.

0 = 05,  = 37 0 = 0501,  = 37

0 = 075,  = 39 0 = 0749,  = 39

0 = 05,  = 3999

From the graphs, it seems that if 0 is changed by 0001, the whole graph changes completely. (Note, however, that this might

be partially due to accumulated round-off error in the CAS. These graphs were generated by Maple with 100-digit accuracy,

and different degrees of accuracy give different graphs.) There seem to be some some fleeting patterns in these graphs, but on

the whole they are certainly very chaotic. As  increases, the graph spreads out vertically, with more extreme values close to 0

or 1.

11.2 Series

1. (a) A sequence is an ordered list of numbers whereas a series is the sum of a list of numbers.

(b) A series is convergent if the sequence of partial sums is a convergent sequence. A series is divergent if it is not convergent.

2.
∞
=1

 = 5 means that by adding sufficiently many terms of the series we can get as close as we like to the number 5.

In other words, it means that lim→∞  = 5, where  is the th partial sum, that is,

=1

.
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3.
∞
=1

 = lim
→∞

 = lim
→∞

[2− 3(08)] = lim
→∞

2− 3 lim
→∞

(08) = 2− 3(0) = 2

4.
∞
=1

 = lim
→∞

 = lim
→∞

2 − 1

42 + 1
= lim

→∞
(2 − 1)2

(42 + 1)2
= lim

→∞
1− 12

4 + 12
=

1− 0

4 + 0
=

1

4

5. For
∞
=1

1

4 + 2
,  =

1

4 + 2
. 1 = 1 =

1

14 + 12
=

1

2
= 05, 2 = 1 + 2 =

1

2
+

1

16 + 4
= 055,

3 = 2 + 3 ≈ 05611, 4 = 3 + 4 ≈ 05648, 5 = 4 + 5 ≈ 05663, 6 = 5 + 6 ≈ 05671,

7 = 6 + 7 ≈ 05675, and 8 = 7 + 8 ≈ 05677. It appears that the series is convergent.

6. For
∞
=1

1
3
√

,  =

1
3
√

. 1 = 1 =

1
3
√

1
= 1, 2 = 1 + 2 = 1 +

1
3
√

2
≈ 17937,

3 = 2 + 3 ≈ 24871, 4 = 3 + 4 ≈ 31170, 5 = 4 + 5 ≈ 37018, 6 = 5 + 6 ≈ 42521,

7 = 6 + 7 ≈ 47749, and 8 = 7 + 8 ≈ 52749. It appears that the series is divergent.

7. For
∞
=1

sin,  = sin. 1 = 1 = sin 1 ≈ 08415, 2 = 1 + 2 ≈ 17508,

3 = 2 + 3 ≈ 18919, 4 = 3 + 4 ≈ 11351, 5 = 4 + 5 ≈ 01762, 6 = 5 + 6 ≈ −01033,

7 = 6 + 7 ≈ 05537, and 8 = 7 + 8 ≈ 15431. It appears that the series is divergent.

8. For
∞
=1

(−1)−1

!
,  = (−1)−1 1

!
. 1 = 1 =

1

1!
= 1, 2 = 1 + 2 = 1− 1

2!
= 05,

3 = 2 + 3 = 05 +
1

3!
≈ 06667, 4 = 3 + 4 = 0625, 5 = 4 + 5 ≈ 06333, 6 = 5 + 6 ≈ 06319,

7 = 6 + 7 ≈ 06321, and 8 = 7 + 8 ≈ 06321. It appears that the series is convergent.

9.

 

1 −240000

2 −192000

3 −201600

4 −199680

5 −200064

6 −199987

7 −200003

8 −199999

9 −200000

10 −200000

From the graph and the table, it seems that the series converges to−2. In fact, it is a geometric

series with  = −24 and  = − 1
5
, so its sum is

∞
=1

12

(−5)
=

−24

1− − 1
5

 =
−24

12
= −2

Note that the dot corresponding to  = 1 is part of both {} and {}.

TI-86 Note: To graph {} and {}, set your calculator to Param mode and DrawDot mode. (DrawDot is under

GRAPH, MORE, FORMT (F3).) Now under E(t)= make the assignments: xt1=t, yt1=12/(-5)ˆt, xt2=t,

yt2=sum seq(yt1,t,1,t,1). (sum and seq are under LIST, OPS (F5), MORE.) Under WIND use

1,10,1,0,10,1,-3,1,1 to obtain a graph similar to the one above. Then use TRACE (F4) to see the values.
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10.

 

1 054030

2 012416

3 −086584

4 −151948

5 −123582

6 −027565

7 047825

8 033275

9 −057838

10 −141745

The series
∞
=1

cos diverges, since its terms do not approach 0.

11.
 

1 044721

2 115432

3 198637

4 288080

5 380927

6 475796

7 571948

8 668962

9 766581

10 864639

The series
∞
=1

√
2 + 4

diverges, since its terms do not approach 0.

12.
 

1 490000

2 833000

3 1073100

4 1241170

5 1358819

6 1441173

7 1498821

8 1539175

9 1567422

10 1587196

From the graph and the table, we see that the terms are getting smaller and may approach 0,

and that the series approaches a value near 16. The series is geometric with 1 = 49 and

 = 07, so its sum is
∞
=1

7+1

10
=

49

1− 07
=

49

03
= 163.
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13.
 

2 100000

3 133333

4 150000

5 160000

6 166667

7 171429

8 175000

9 177778

10 180000

11 181818

From the graph and the table, we see that the terms are getting smaller and may approach 0,

and that the series may approach a number near 2. Using partial fractions, we have


=2

2

2 − 
=


=2


2

− 1
− 2




=


2

1
− 2

2


+


2

2
− 2

3


+


2

3
− 2

4


+ · · ·+


2

 − 2
− 2

 − 1


+


2

 − 1
− 2




= 2− 2



As →∞, 2− 2


→ 2, so

∞
=2

2

2 − 
= 2.

14.

 

1 036205

2 051428

3 059407

4 064280

5 067557

6 069910

7 071680

8 073059

9 074164

10 075069

From the graph and the table, we see that the terms are getting smaller and may approach 0, and

that the series may approach a number near 1.


=1


sin

1


− sin

1

+ 1


=


sin 1− sin

1

2


+


sin

1

2
− sin

1

3


+ · · ·+


sin

1

 − 1
+ sin

1




+


sin

1


− sin

1

 + 1


= sin 1− sin

1

 + 1

As →∞, sin 1− sin
1

 + 1
→ sin 1− sin 0 = sin 1, so

∞
=1


sin

1


− sin

1

+ 1


= sin 1 ≈ 084147.
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15. (a) lim
→∞

 = lim
→∞

2

3+ 1
=

2

3
, so the sequence {} is convergent by (11.1.1).

(b) Since lim
→∞

 = 2
3
6= 0, the series

∞
=1

 is divergent by the Test for Divergence.

16. (a) Both

=1

 and

=1

 represent the sum of the first  terms of the sequence {}, that is, the th partial sum.

(b)

=1

 =  +  + · · ·+   
 terms

=  , which, in general, is not the same as

=1

 = 1 + 2 + · · ·+ .

17. 3− 4 + 16
3
− 64

9
+ · · · is a geometric series with ratio  = −4

3
. Since || = 4

3
 1, the series diverges.

18. 4 + 3 + 9
4

+ 27
16

+ · · · is a geometric series with ratio 3
4
. Since || = 3

4
 1, the series converges to



1− 
=

4

1− 34
= 16.

19. 10− 2 + 04− 008 + · · · is a geometric series with ratio − 2
10

= − 1
5
. Since || = 1

5
 1, the series converges to



1− 
=

10

1− (−15)
=

10

65
=

50

6
=

25

3
.

20. 2 + 05 + 0125 + 003125 + · · · is a geometric series with ratio  = 05
2

= 1
4
. Since || = 1

4
 1, the series converges

to


1− 
=

2

1− 14
=

2

34
=

8

3
.

21.
∞
=1

12 (0.73)−1 is a geometric series with first term  = 12 and ratio  = 073. Since || = 073  1, the series converges

to


1− 
=

12

1− 073
=

12

027
=

12(100)

27
=

400

9
.

22.
∞
=1

5


= 5

∞
=1


1




. The latter series is geometric with  =

1


and ratio  =

1


. Since || = 1


 1, it converges to

1

1− 1
=

1

 − 1
. Thus, the given series converges to 5


1

 − 1


=

5

 − 1
.

23.
∞
=1

(−3)
−1

4
=

1

4

∞
=1


−3

4

−1

. The latter series is geometric with  = 1 and ratio  = − 3
4
. Since || = 3

4
 1, it

converges to
1

1− (−34)
= 4

7
. Thus, the given series converges to


1
4


4
7


= 1

7
.

24.
∞
=0

3+1

(−2)
 = 3

∞
=0

−3
2


is a geometric series with ratio  = − 3

2
. Since || = 3

2
 1, the series diverges.

25.
∞
=1

2

6−1
=

∞
=1

(2)

66−1
= 6

∞
=1


2

6


is a geometric series with ratio  =

2

6
. Since || = 2

6
[≈ 123]  1, the series

diverges.
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26.
∞
=1

6 · 22−1

3
=

∞
=1

6(22) · 2−1

3
= 3

∞
=1


4

3


is a geometric series with ratio  =

4

3
. Since || = 4

3
 1, the series

diverges.

27.
1

3
+

1

6
+

1

9
+

1

12
+

1

15
+ · · · =

∞
=1

1

3
=

1

3

∞
=1

1


. This is a constant multiple of the divergent harmonic series, so

it diverges.

28. 1
3

+ 2
9

+ 1
27

+ 2
81

+ 1
243

+ 2
729

+ · · · = 
1
3

+ 1
27

+ 1
243

+ · · · +


2
9

+ 2
81

+ 2
729

+ · · · , which are both convergent
geometric series with sums

13

1− 19
=

3

8
and

29

1− 19
=

1

4
, so the original series converges and its sum is 3

8
+ 1

4
= 5

8
.

29.
∞
=1

2 + 

1− 2
diverges by the Test for Divergence since lim

→∞
 = lim

→∞
2 + 

1− 2
= lim

→∞
2+ 1

1− 2
= −1

2
6= 0.

30.
∞
=1

2

2 − 2 + 5
diverges by the Test for Divergence since lim

→∞
2

2 − 2 + 5
= lim

→∞
1

1− 2 + 52
= 1 6= 0.

31.
∞
=1

3+14− =

∞
=1

3 · 31

4
= 3

∞
=1


3

4


. The latter series is geometric with  =

3

4
and ratio  =

3

4
. Since || = 3

4
 1,

it converges to
34

1− 34
= 3. Thus, the given series converges to 3(3) = 9.

32.
∞
=1

[(−02) + (06)−1] =

∞
=1

(−02) +

∞
=1

(06)−1 [sum of two geometric series]

=
−02

1− (−02)
+

1

1− 06
= −1

6
+

5

2
=

7

3

33.
∞
=1

1

4 + −
diverges by the Test for Divergence since lim

→∞
1

4 + −
=

1

4 + 0
=

1

4
6= 0.

34.
∞
=1

2 + 4


diverges by the Test for Divergence since lim

→∞
2 + 4


= lim

→∞


2


+

4




≥ lim

→∞


4




= ∞

since
4


 1.

35.
∞
=1

(sin 100) is a geometric series with first term  = sin 100 [≈ −0506] and ratio  = sin 100. Since ||  1, the series

converges to
sin 100

1− sin 100
≈ −0336.

36.
∞
=1

1

1 +


2
3

 diverges by the Test for Divergence since lim
→∞

1

1 +


2
3

 =
1

1 + 0
= 1 6= 0.
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37.
∞
=1

ln


2 + 1

22 + 1


diverges by the Test for Divergence since

lim
→∞

 = lim
→∞

ln


2 + 1

22 + 1


= ln


lim
→∞

2 + 1

22 + 1


= ln 1

2
6= 0.

38.
∞
=0

(
√

2)− =

∞
=0


1√
2


is a geometric series with first term  =


1√
2

0

= 1 and ratio  =
1√
2
. Since ||  1, the

series converges to
1

1− 1
√

2
=

√
2√

2− 1
≈ 3414.

39.
∞
=1

arctan  diverges by the Test for Divergence since lim
→∞

 = lim
→∞

arctan = 
2
6= 0.

40.
∞
=1


3

5
+

2




diverges because

∞
=1

2


= 2

∞
=1

1


diverges. (If it converged, then

1

2
· 2

∞
=1

1


would also converge by

Theorem 8(i), but we know from Example 9 that the harmonic series
∞
=1

1


diverges.) If the given series converges, then the

difference
∞
=1


3

5
+

2




−

∞
=1

3

5
must converge (since

∞
=1

3

5
is a convergent geometric series) and equal

∞
=1

2


, but

we have just seen that
∞
=1

2


diverges, so the given series must also diverge.

41.
∞
=1

1


=

∞
=1


1




is a geometric series with first term  =

1


and ratio  =

1


. Since || = 1


 1, the series converges

to
1

1− 1
=

1

1− 1
· 


=
1

− 1
. By Example 8,

∞
=1

1

(+ 1)
= 1. Thus, by Theorem 8(ii),

∞
=1


1


+

1

(+ 1)


=

∞
=1

1


+

∞
=1

1

(+ 1)
=

1

− 1
+ 1 =

1

− 1
+

− 1

− 1
=



− 1
.

42.
∞
=1



2
diverges by the Test for Divergence since lim

→∞
 = lim

→∞


2
= lim

→∞


2

H
= lim

→∞


2

H
= lim

→∞


2
=∞ 6= 0.

43. Using partial fractions, the partial sums of the series
∞
=2

2

2 − 1
are

 =

=2

2

(− 1)(+ 1)
=


=2


1

− 1
− 1

+ 1



=


1− 1

3


+


1

2
− 1

4


+


1

3
− 1

5


+ · · ·+


1

− 3
− 1

− 1


+


1

− 2
− 1





This sum is a telescoping series and  = 1 +
1

2
− 1

− 1
− 1


.

Thus,
∞
=2

2

2 − 1
= lim

→∞
 = lim

→∞


1 +

1

2
− 1

− 1
− 1




=

3

2
.
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44. For the series
∞
=1

ln


+ 1
,

 = (ln 1− ln 2) + (ln 2− ln 3) + (ln 3− ln 4) + · · ·+ [ln− ln(+ 1)] = ln 1− ln(+ 1) = − ln(+ 1)

[telescoping series]

Thus, lim
→∞

 = −∞, so the series is divergent.

45. For the series
∞
=1

3

(+ 3)
,  =


=1

3

(+ 3)
=


=1


1


− 1

+ 3


[using partial fractions]. The latter sum is


1− 1

4


+


1
2
− 1

5


+


1
3
− 1

6


+


1
4
− 1

7


+ · · ·+


1

−3
− 1




+


1
−2

− 1
+ 1


+


1
−1

− 1
+2


+


1

− 1

+3


= 1 + 1

2
+ 1

3
− 1

+1
− 1

+ 2
− 1

+3
[telescoping series]

Thus,
∞
=1

3

(+ 3)
= lim

→∞
 = lim

→∞


1 + 1

2
+ 1

3
− 1

+1
− 1

+2
− 1

+3


= 1 + 1

2
+ 1

3
= 11

6
. Converges

46. For the series
∞
=4


1√

− 1√

+ 1



 =

=4


1√

− 1√

+ 1


=


1√
4
− 1√

5


+


1√
5
− 1√

6


+ · · ·+


1√

− 1√

+ 1


=

1√
4
− 1√

+ 1
[telescoping series]

Thus,
∞
=4


1√

− 1√

+ 1


= lim

→∞
 = lim

→∞


1√
4
− 1√

+ 1


=

1√
4
− 0 =

1

2
. Converges

47. For the series
∞
=1


1 − 1(+1)


,

 =

=1


1 − 1(+1)


= (1 − 12) + (12 − 13) + · · ·+


1 − 1(+1)


= − 1(+1)

[telescoping series]

Thus,
∞
=1


1 − 1(+1)


= lim

→∞
 = lim

→∞


− 1(+1)


= − 0 = − 1. Converges

48. Using partial fractions, the partial sums of the series
∞
=2

1

3 − 
are

 =

=2

1

(− 1)(+ 1)
=


=2


−1


+

12

− 1
+

12

+ 1


=

1

2


=2


1

− 1
− 2


+

1

+ 1



=
1

2


1

1
− 2

2
+

1

3


+


1

2
− 2

3
+

1

4


+


1

3
− 2

4
+

1

5


+


1

4
− 2

5
+

1

6


+ · · ·

+


1

− 3
− 2

− 2
+

1

− 1


+


1

− 2
− 2

− 1
+

1




+


1

− 1
− 2


+

1

+ 1


Note: In three consecutive expressions in parentheses, the 3rd term in the first expression plus
the 2nd term in the second expression plus the 1st term in the third expression sum to 0.

=
1

2


1

1
− 2

2
+

1

2
+

1


− 2


+

1

+ 1


=

1

4
− 1

2
+

1

2+ 2

Thus,
∞
=2

1

3 − 
= lim

→∞
 = lim

→∞


1

4
− 1

2
+

1

2+ 2


=

1

4
.
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49. (a) Many people would guess that   1, but note that  consists of an infinite number of 9s.

(b)  = 099999    =
9

10
+

9

100
+

9

1000
+

9

10,000
+ · · · =

∞
=1

9

10
, which is a geometric series with 1 = 09 and

 = 01. Its sum is
09

1− 01
=

09

09
= 1, that is,  = 1.

(c) The number 1 has two decimal representations, 100000    and 099999    .

(d) Except for 0, all rational numbers that have a terminating decimal representation can be written in more than one way. For

example, 05 can be written as 049999    as well as 050000    .

50. 1 = 1,  = (5− )−1 ⇒ 2 = (5− 2)1 = 3(1) = 3, 3 = (5− 3)2 = 2(3) = 6, 4 = (5− 4)3 = 1(6) = 6,

5 = (5− 5)4 = 0, and all succeeding terms equal 0. Thus,
∞
=1

 =
4

=1

 = 1 + 3 + 6 + 6 = 16.

51. 08 =
8

10
+

8

102
+ · · · is a geometric series with  =

8

10
and  =

1

10
. It converges to



1− 
=

810

1− 110
=

8

9
.

52. 046 =
46

100
+

46

1002
+ · · · is a geometric series with  =

46

100
and  =

1

100
. It converges to



1− 
=

46100

1− 1100
=

46

99
.

53. 2516 = 2 +
516

103
+

516

106
+ · · · . Now 516

103
+

516

106
+ · · · is a geometric series with  =

516

103
and  =

1

103
. It converges to



1− 
=

516103

1− 1103
=

516103

999103
=

516

999
. Thus, 2516 = 2 +

516

999
=

2514

999
=

838

333
.

54. 10135 = 101 +
35

103
+

35

105
+ · · · . Now 35

103
+

35

105
+ · · · is a geometric series with  =

35

103
and  =

1

102
. It converges

to


1− 
=

35103

1− 1102
=

35103

99102
=

35

990
. Thus, 10135 = 101 +

35

990
=

9999 + 35

990
=

10,034
990

=
5017

495
.

55. 1234567 = 1234 +
567

106
+

567

109
+ · · · . Now 567

106
+

567

109
+ · · · is a geometric series with  =

567

106
and

 =
1

103
. It converges to



1− 
=

567106

1− 1103
=

567106

999103
=

567

999,000
=

21

37,000
. Thus,

1234567 = 1234 +
21

37,000
=

1234

1000
+

21

37,000
=

45,658
37,000

+
21

37,000
=

45,679
37,000

.

56. 571358 = 5 +
71,358
105

+
71,358
1010

+ · · · . Now 71,358
105

+
71,358
1010

+ · · · is a geometric series with  =
71,358
105

and

 =
1

105
. It converges to



1− 
=

71,358105

1− 1105
=

71,358105

99,999105
=

71,358
99,999

=
23,786
33,333

. Thus,

571358 = 5 +
23,786
33,333

=
166,665
33,333

+
23,786
33,333

=
190,451
33,333

.
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57.
∞
=1

(−5) =
∞
=1

(−5) is a geometric series with  = −5, so the series converges ⇔ ||  1 ⇔

|−5|  1 ⇔ ||  1
5
, that is,− 1

5
   1

5
. In that case, the sum of the series is



1− 
=

−5

1− (−5)
=

−5

1 + 5
.

58.
∞
=1

( + 2) is a geometric series with  =  + 2, so the series converges ⇔ ||  1 ⇔ |+ 2|  1 ⇔

−1  + 2  1 ⇔ −3    −1. In that case, the sum of the series is


1− 
=

+ 2

1− (+ 2)
=

+ 2

−− 1
.

59.
∞
=0

(− 2)

3
=

∞
=0


− 2

3


is a geometric series with  =

− 2

3
, so the series converges ⇔ ||  1 ⇔

− 2

3

  1 ⇔ −1 
− 2

3
 1 ⇔ −3  − 2  3 ⇔ −1    5. In that case, the sum of the series is



1− 
=

1

1− − 2

3

=
1

3− (− 2)

3

=
3

5− 
.

60.
∞
=0

(−4)(− 5) =
∞
=0

[−4(− 5)]
 is a geometric series with  = −4(− 5), so the series converges ⇔

||  1 ⇔ |−4(− 5)|  1 ⇔ |− 5|  1
4
⇔ −1

4
 − 5  1

4
⇔ 19

4
   21

4
. In that case, the sum of

the series is


1− 
=

1

1− [−4(− 5)]
=

1

4− 19
.

61.
∞
=0

2


=

∞
=0


2




is a geometric series with  =

2


, so the series converges ⇔ ||  1 ⇔

 2
  1 ⇔

2  || ⇔   2 or   −2. In that case, the sum of the series is


1− 
=

1

1− 2
=



− 2
.

62.
∞
=0

sin 

3
=

∞
=0


sin

3


is a geometric series with  =

sin

3
, so the series converges ⇔ ||  1 ⇔

 sin3

  1 ⇔ |sin|  3, which is true for all . Thus, the sum of the series is


1− 
=

1

1− (sin)3
=

3

3− sin
.

63.
∞
=0

 =
∞
=0

()
 is a geometric series with  = , so the series converges ⇔ ||  1 ⇔ ||  1 ⇔

−1    1 ⇔ 0    1 ⇔   0. In that case, the sum of the series is


1− 
=

1

1− 
.

64. Because
1


→ 0 and ln is continuous, we have lim

→∞
ln


1 +

1




= ln 1 = 0.

We now show that the series
∞
=1

ln


1 +

1




=

∞
=1

ln


+ 1




=

∞
=1

[ln(+ 1)− ln] diverges.

 = (ln 2− ln 1) + (ln 3− ln 2) + · · ·+ (ln(+ 1)− ln) = ln(+ 1)− ln 1 = ln(+ 1)

As →∞,  = ln(+ 1)→∞, so the series diverges.
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65. After defining  , We use convert(f,parfrac); in Maple, Apart in Mathematica, or Expand Rational and

Simplify in Derive to find that the general term is
32 + 3+ 1

(2 + )3
=

1

3
− 1

(+ 1)3
. So the nth partial sum is

 =


=1


1

3
− 1

( + 1)3


=


1− 1

23


+


1

23
− 1

33


+ · · ·+


1

3
− 1

(+ 1)3


= 1− 1

(+ 1)3

The series converges to lim
→∞

 = 1. This can be confirmed by directly computing the sum using

sum(f,n=1..infinity); (in Maple), Sum[f,{n,1,Infinity}] (in Mathematica), or Calculus Sum

(from 1 to∞) and Simplify (in Derive).

66. See Exercise 65 for specific CAS commands.

1

5 − 53 + 4
=

1

24(− 2)
+

1

24(+ 2)
− 1

6(− 1)
− 1

6(+ 1)
+

1

4
. So the th partial sum is

 =
1

24


=3


1

 − 2
− 4

 − 1
+

6


− 4

 + 1
+

1

 + 2



=
1

24


1

1
− 4

2
+

6

3
− 4

4
+

1

5


+ · · ·+


1

− 2
− 4

− 1
+

6


− 4

+ 1
+

1

+ 2


The terms with denominator 5 or greater cancel, except for a few terms with  in the denominator. So as →∞,

 → 1

24


1

1
− 3

2
+

3

3
− 1

4


=

1

24


1

4


=

1

96
.

67. For  = 1, 1 = 0 since 1 = 0. For   1,

 =  − −1 =
− 1

+ 1
− (− 1)− 1

(− 1) + 1
=

(− 1)− (+ 1)(− 2)

(+ 1)
=

2

(+ 1)

Also,
∞
=1

 = lim
→∞

 = lim
→∞

1− 1

1 + 1
= 1.

68. 1 = 1 = 3− 1
2

= 5
2
. For  6= 1,

 =  − −1 =

3− 2−

− 3− (− 1)2−(−1)


= − 

2
+

− 1

2−1
· 2

2
=

2(− 1)

2
− 

2
=

− 2

2

Also,
∞
=1

 = lim
→∞

 = lim
→∞


3− 

2


= 3 because lim

→∞


2
H
= lim

→∞
1

2 ln 2
= 0.

69. (a) The quantity of the drug in the body after the first tablet is 100 mg. After the second tablet, there is 100 mg plus 20% of

the first 100-mg tablet; that is, 100 + 020(100) = 120 mg. After the third tablet, the quantity is 100 + 020(120) or,

equivalently, 100 + 100(020) + 100(020)2. Either expression gives us 124 mg.

(b) From part (a), we see that +1 = 100 + 020.

(c)  = 100 + 100(020)1 + 100(020)2 + · · ·+ 100(020)−1

=

=1

100(020)−1 [geometric with  = 100 and  = 020].

The quantity of the antibiotic that remains in the body in the long run is lim
→∞

 =
100

1− 020
=

100

45
= 125 mg.
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70. (a) The concentration of the drug after the first injection is 15 mgL. “Reduced by 90%” is the same as 10% remains, so the

concentration after the second injection is 15 + 010(15) = 165 mgL. The concentration after the third injection is

15 + 010(165), or, equivalently, 15 + 15(010) + 15(010)2. Either expression gives us 1665 mgL.

(b)  = 15 + 15(010)1 + 15(010)2 + · · ·+ 15(010)−1

=

=1

15(010)−1 [geometric with  = 15 and  = 010].

By (3),  =
15[1− (010)]

1− 010
=

15

09
[1− (010)] =

5

3
[1− (010)] mgL.

(c) The limiting value of the concentration is lim
→∞

 = lim
→∞

5
3
[1− (010)] = 5

3
(1− 0) = 5

3
mgL.

71. (a) The quantity of the drug in the body after the first tablet is 150 mg. After the second tablet, there is 150 mg plus 5%

of the first 150-mg tablet, that is, [150 + 150(005)] mg. After the third tablet, the quantity is

[150 + 150(005) + 150(005)2] = 157875 mg. After  tablets, the quantity (in mg) is

150 + 150(005) + · · ·+ 150(005)−1. We can use Formula 3 to write this as
150(1− 005)

1− 005
=

3000

19
(1− 005).

(b) The number of milligrams remaining in the body in the long run is lim
→∞


3000
19

(1− 005)


= 3000
19

(1− 0) ≈ 157895,

only 002 mg more than the amount after 3 tablets.

72. (a) The residual concentration just before the second injection is− ; before the third,− +−2 ; before the

(+ 1)st,− +−2 + · · ·+− . This sum is equal to
−


1− −


1− −

[Formula 3].

(b) The limiting pre-injection concentration is lim
→∞

−

1− −


1− −

=
− (1− 0)

1− −
· 




=



 − 1
.

(c)


 − 1
≥  ⇒  ≥ 


 − 1


, so the minimal dosage is = 


 − 1


.

73. (a) The first step in the chain occurs when the local government spends dollars. The people who receive it spend a

fraction  of those dollars, that is, dollars. Those who receive the dollars spend a fraction  of it, that is,

2 dollars. Continuing in this way, we see that the total spending after  transactions is

 =  ++2 + · · ·+–1 =
(1− )

1− 
by (3).

(b) lim
→∞

 = lim
→∞

(1− )

1− 
=



1− 
lim
→∞

(1− ) =


1− 


since 0    1 ⇒ lim

→∞
 = 0


=




[since +  = 1] =  [since  = 1]

If  = 08, then  = 1−  = 02 and the multiplier is  = 1 = 5.
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74. (a) Initially, the ball falls a distance, then rebounds a distance , falls , rebounds 2, falls 2, etc. The total

distance it travels is

 + 2 + 22 + 23 + · · · = 

1 + 2 + 22 + 23 + · · ·  = 


1 + 2


1 +  + 2 + · · · 

= 


1 + 2


1

1− 


= 


1 + 

1− 


meters

(b) From Example 3 in Section 2.1, we know that a ball falls 1
2
2 meters in  seconds, where  is the gravitational

acceleration. Thus, a ball falls  meters in  =


2 seconds. The total travel time in seconds is
2


+ 2


2


 + 2


2


2 + 2


2


3 + · · · =


2




1 + 2

√
 + 2

√


2
+ 2

√


3
+ · · ·


=


2




1 + 2

√


1 +

√
 +

√


2
+ · · ·


=


2




1 + 2

√



1

1−√


=


2



1 +
√


1−√

(c) It will help to make a chart of the time for each descent and each rebound of the ball, together with the velocity just before

and just after each bounce. Recall that the time in seconds needed to fall  meters is


2. The ball hits the ground with

velocity −


2 = −√2 (taking the upward direction to be positive) and rebounds with velocity




2 = 
√

2, taking time 


2 to reach the top of its bounce, where its velocity is 0. At that point,

its height is 2. All these results follow from the formulas for vertical motion with gravitational acceleration −:
2

2
= − ⇒  =




= 0 −  ⇒  = 0 + 0− 1

2
2.

number of
descent

time of
descent

speed before
bounce

speed after
bounce

time of
ascent

peak
height

1


2
√

2 
√

2 


2 2

2


22


22 


22 


22 4

3


24


24 


24 


24 6

· · · · · · · · · · · · · · · · · ·

The total travel time in seconds is
2


+ 


2


+ 


2


+ 2


2


+ 2


2


+ · · · =


2




1 + 2 + 22 + 23 + · · · 

=


2




1 + 2(1 +  + 2 + · · · )

=


2




1 + 2


1

1− 


=


2



1 + 

1− 

Another method: We could use part (b). At the top of the bounce, the height is 2 = , so
√
 =  and the result follows

from part (b).
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75.
∞
=2

(1 + )− is a geometric series with  = (1 + )
−2 and  = (1 + )

−1, so the series converges when

(1 + )
−1
  1 ⇔ |1 + |  1 ⇔ 1 +   1 or 1 +   −1 ⇔   0 or   −2. We calculate the sum of the

series and set it equal to 2:
(1 + )

−2

1− (1 + )
−1

= 2 ⇔


1

1 + 

2

= 2− 2


1

1 + 


⇔ 1 = 2(1 + )2 − 2(1 + ) ⇔

22 + 2− 1 = 0 ⇔  = −2±√12
4

= ±√3− 1
2

. However, the negative root is inadmissible because−2  −√3− 1
2

 0.

So  =
√

3− 1
2

.

76.
∞
=0

 =
∞
=0

() is a geometric series with  = ()0 = 1 and  = . If   1, it has sum
1

1− 
, so

1

1− 
= 10 ⇒

1
10

= 1−  ⇒  = 9
10

⇒  = ln 9
10
.

77.  = 1+
1
2
+

1
3
+···+ 1

 = 11213 · · · 1  (1 + 1)

1 + 1

2

 
1 + 1

3

 · · · 1 + 1



[  1 + ]

=
2

1

3

2

4

3
· · · + 1


= + 1

Thus,   + 1 and lim
→∞

 = ∞. Since {} is increasing, lim
→∞

 = ∞, implying that the harmonic series is

divergent.

78. The area between  = −1 and  =  for 0 ≤  ≤ 1 is 1

0

(
−1 − 


) =





− +1

+ 1

1
0

=
1


− 1

+ 1

=
(+ 1)− 

(+ 1)
=

1

(+ 1)

We can see from the diagram that as →∞, the sum of the areas

between the successive curves approaches the area of the unit square,

that is, 1. So
∞
=1

1

 (+ 1)
= 1.

79. Let  be the diameter of . We draw lines from the centers of the  to

the center of (or ), and using the Pythagorean Theorem, we can write

12 +

1− 1

2
1

2
=

1 + 1

2
1

2 ⇔

1 =

1 + 1

2
1

2 − 1− 1
2
1

2
= 21 [difference of squares] ⇒ 1 = 1

2
.

Similarly,

1 =

1 + 1

2
2

2 − 1− 1 − 1
2
2

2
= 22 + 21 − 2

1 − 12

= (2− 1)(1 + 2) ⇔
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2 =
1

2− 1

− 1 =
(1− 1)

2

2− 1

, 1 =

1 + 1

2
3

2 − 1− 1 − 2 − 1
2
3

2 ⇔ 3 =
[1− (1 + 2)]

2

2− (1 + 2)
, and in general,

+1 =


1−

=1 
2

2−

=1


. If we actually calculate 2 and 3 from the formulas above, we find that they are
1

6
=

1

2 · 3 and

1

12
=

1

3 · 4 respectively, so we suspect that in general,  =
1

(+ 1)
. To prove this, we use induction: Assume that for all

 ≤ ,  =
1

( + 1)
=

1


− 1

 + 1
. Then


=1

 = 1− 1

+ 1
=



+ 1
[telescoping sum]. Substituting this into our

formula for +1, we get +1 =


1− 

+ 1

2
2−




+ 1

 =

1

(+ 1)
2

+ 2

+ 1

=
1

(+ 1)(+ 2)
, and the induction is complete.

Now, we observe that the partial sums


=1  of the diameters of the circles approach 1 as →∞; that is,

∞
=1

 =
∞
=1

1

(+ 1)
= 1, which is what we wanted to prove.

80. || =  sin , || = || sin  =  sin2 , | | = || sin  =  sin3 ,    . Therefore,

||+ ||+ | |+ ||+ · · · = 
∞
=1

sin  = 


sin 

1− sin 


since this is a geometric series with  = sin 

and |sin |  1

because 0    

2


.

81. The series 1− 1 + 1− 1 + 1− 1 + · · · diverges (geometric series with  = −1) so we cannot say that

0 = 1− 1 + 1− 1 + 1− 1 + · · · .

82. If
∞
=1

 is convergent, then lim
→∞

 = 0 by Theorem 6, so lim
→∞

1


6= 0, and so

∞
=1

1


is divergent by the Test for

Divergence.

83.
∞

=1  = lim
→∞



=1  = lim
→∞




=1  =  lim
→∞



=1  = 
∞

=1 , which exists by hypothesis.

84. If


 were convergent, then


(1)() =


 would be also, by Theorem 8(i). But this is not the case, so




must diverge.

85. Suppose on the contrary that


( + ) converges. Then


( + ) and


 are convergent series. So by

Theorem 8(iii),


[( + )− ] would also be convergent. But


[( + )− ] =


, a contradiction, since
 is given to be divergent.

86. No. For example, take


 =


 and


 =


(−), which both diverge, yet


( + ) =


0, which converges

with sum 0.
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87. The partial sums {} form an increasing sequence, since  − −1 =   0 for all . Also, the sequence {} is bounded
since  ≤ 1000 for all . So by the Monotonic Sequence Theorem, the sequence of partial sums converges, that is, the series

 is convergent.

88. (a) RHS =
1

−1
− 1

+1

=
+1 − −1

2
−1+1

=
+1 − −1

−1+1

=
(−1 + )− −1

−1+1

=
1

−1+1

= LHS

(b)
∞
=2

1

−1+1

=
∞
=2


1

−1
− 1

+1


[from part (a)]

= lim
→∞


1

12

− 1

23


+


1

23

− 1

34


+


1

34

− 1

45


+ · · ·+


1

−1
− 1

+1


= lim

→∞


1

12

− 1

+1


=

1

12

− 0 =
1

1 · 1 = 1 because  →∞ as →∞.

(c)
∞
=2



−1+1

=
∞
=2




−1
− 

+1


[as above]

=
∞
=2


1

−1

− 1

+1



= lim
→∞


1

1

− 1

3


+


1

2

− 1

4


+


1

3

− 1

5


+


1

4

− 1

6


+ · · ·+


1

−1

− 1

+1



= lim
→∞


1

1

+
1

2

− 1


− 1

+1


= 1 + 1− 0− 0 = 2 because  →∞ as →∞.

89. (a) At the first step, only the interval


1
3
 2

3


(length 1

3
) is removed. At the second step, we remove the intervals


1
9
 2

9


and

7
9
 8

9


, which have a total length of 2 ·  1

3

2
. At the third step, we remove 22 intervals, each of length


1
3

3
. In general,

at the nth step we remove 2−1 intervals, each of length


1
3


, for a length of 2−1 ·  1

3


= 1

3


2
3

−1
. Thus, the total

length of all removed intervals is
∞
=1

1
3


2
3

−1
=

13

1− 23
= 1


geometric series with  = 1

3
and  = 2

3


. Notice that at

the th step, the leftmost interval that is removed is


1
3





2
3


, so we never remove 0, and 0 is in the Cantor set. Also,

the rightmost interval removed is

1−  2

3


 1−  1

3


, so 1 is never removed. Some other numbers in the Cantor set

are 1
3
, 2

3
, 1

9
, 2

9
, 7

9
, and 8

9
.

(b) The area removed at the first step is 1
9
; at the second step, 8 ·  1

9

2
; at the third step, (8)2 ·  1

9

3
. In general, the area

removed at the th step is (8)
−1


1
9


= 1

9


8
9

−1
, so the total area of all removed squares is

∞
=1

1

9


8

9

−1

=
19

1 − 89
= 1.
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90. (a)
1 1 2 4 1 1 1000

2 2 3 1 4 1000 1

3 15 25 25 25 5005 5005

4 175 275 175 325 75025 25075

5 1625 2625 2125 2875 625375 375625

6 16875 26875 19375 30625 687813 313188

7 165625 265625 203125 296875 656594 344406

8 167188 267188 198438 301563 672203 328797

9 166406 266406 200781 299219 664398 336602

10 166797 266797 199609 300391 668301 332699

11 166602 266602 200195 299805 666350 334650

12 166699 266699 199902 300098 667325 333675

The limits seem to be 5
3
, 8
3
, 2, 3, 667, and 334. Note that the limits appear to be “weighted” more toward 2. In general, we

guess that the limit is
1 + 22

3
.

(b) +1 −  = 1
2
( + −1)−  = −1

2
( − −1) = − 1

2


1
2
(−1 + −2)− −1


= − 1

2

−1
2
(−1 − −2)


= · · · = − 1

2

−1
(2 − 1)

Note that we have used the formula  = 1
2
(−1 + −2) a total of − 1 times in this calculation, once for each 

between 3 and + 1. Now we can write

 = 1 + (2 − 1) + (3 − 2) + · · ·+ (−1 − −2) + ( − −1)

= 1 +
−1
=1

(+1 − ) = 1 +
−1
=1

−1
2

−1
(2 − 1)

and so

lim
→∞

 = 1 + (2 − 1)
∞
=1

− 1
2

−1
= 1 + (2 − 1)


1

1 − (−12)


= 1 + 2

3
(2 − 1) =

1 + 22

3
.

91. (a) For
∞
=1



(+ 1)!
, 1 =

1

1 · 2 =
1

2
, 2 =

1

2
+

2

1 · 2 · 3 =
5

6
, 3 =

5

6
+

3

1 · 2 · 3 · 4 =
23

24
,

4 =
23

24
+

4

1 · 2 · 3 · 4 · 5 =
119

120
. The denominators are (+ 1)!, so a guess would be  =

(+ 1)!− 1

(+ 1)!
.

(b) For  = 1, 1 =
1

2
=

2!− 1

2!
, so the formula holds for  = 1. Assume  =

( + 1)!− 1

( + 1)!
. Then

+1 =
( + 1)!− 1

( + 1)!
+

 + 1

( + 2)!
=

( + 1)!− 1

( + 1)!
+

 + 1

( + 1)!( + 2)
=

( + 2)!− ( + 2) +  + 1

( + 2)!

=
( + 2)!− 1

( + 2)!

Thus, the formula is true for  =  + 1. So by induction, the guess is correct.

(c) lim
→∞

 = lim
→∞

(+ 1)!− 1

(+ 1)!
= lim

→∞


1− 1

(+ 1)!


= 1 and so

∞
=1



(+ 1)!
= 1.

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

FOR INSTRUCTOR USE ONLY



NOT FOR S
ALE

990 ¤ CHAPTER 11 INFINITE SEQUENCES AND SERIES

92. Let 1 = radius of the large circle, 2 = radius of next circle, and so on.

From the figure we have ∠ = 60◦ and cos 60◦ = 1 ||, so
|| = 21 and || = 22. Therefore, 21 = 1 + 2 + 22 ⇒
1 = 32. In general, we have +1 = 1

3
, so the total area is

= 2
1 + 32

2 + 32
3 + · · · = 2

1 + 322


1 +

1

32
+

1

34
+

1

36
+ · · ·


= 2

1 + 32
2 · 1

1 − 19
= 21 + 27

8
2

2

Since the sides of the triangle have length 1, || = 1
2
and tan 30◦ =

1

12
. Thus, 1 =

tan 30◦

2
=

1

2
√

3
⇒ 2 =

1

6
√

3
,

so  = 


1

2
√

3

2
+

27

8


1

6
√

3

2
=



12
+



32
=

11

96
. The area of the triangle is

√
3

4
, so the circles occupy about 831%

of the area of the triangle.

11.3 The Integral Test and Estimates of Sums

1. The picture shows that 2 =
1

213


 2

1

1

13
,

3 =
1

313


 3

2

1

13
, and so on, so

∞
=2

1

13


 ∞

1

1

13
. The

integral converges by (7.8.2) with  = 13  1, so the series converges.

2. From the first figure, we see that
 6

1
()  

5
=1

. From the second figure, we see that
6

=2

 
 6

1
() . Thus, we

have
6

=2

 
 6

1
()  

5
=1

.

3. The function () = −3 is continuous, positive, and decreasing on [1∞), so the Integral Test applies. ∞

1


−3

 = lim
→∞

 

1


−3

 = lim
→∞


−2

−2


1

= lim
→∞


− 1

22
+

1

2


=

1

2
.

Since this improper integral is convergent, the series
∞
=1

−3 is also convergent by the Integral Test.
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4. The function () = −03 is continuous, positive, and decreasing on [1∞), so the Integral Test applies. ∞

1


−03

 = lim
→∞

 

1


−03

 = lim
→∞


07

07


1

= lim
→∞


07

07
− 1

07


=∞.

Since this improper integral is divergent, the series
∞
=1

−03 is also divergent by the Integral Test.

5. The function () =
2

5− 1
is continuous, positive, and decreasing on [1∞), so the Integral Test applies.

 ∞

1

2

5− 1
 = lim

→∞

 

1

2

5− 1
 = lim

→∞


2

5
ln(5− 1)


1

= lim
→∞


2

5
ln(5− 1)− 2

5
ln 4


=∞.

Since this improper integral is divergent, the series
∞
=1

2

5− 1
is also divergent by the Integral Test.

6. The function () =
1

(3− 1)4
is continuous, positive, and decreasing on [1∞), so the Integral Test applies.

 ∞

1

1

(3− 1)4
 = lim

→∞

 

1

(3− 1)
−4

 = lim
→∞


1

(−3)3
(3− 1)

−3


1

= lim
→∞


− 1

9(3− 1)3
+

1

9 · 23


=

1

72
.

Since this improper integral is convergent, the series
∞
=1

1

(3− 1)4
is also convergent by the Integral Test.

7. The function () =


2 + 1
is continuous, positive, and decreasing on [1∞), so the Integral Test applies.

 ∞

1



2 + 1
 = lim

→∞

 

1



2 + 1
 = lim

→∞


1

2
ln(

2
+ 1)


1

=
1

2
lim
→∞

[ln(
2

+ 1)− ln 2] =∞. Since this improper

integral is divergent, the series
∞
=1



2 + 1
is also divergent by the Integral Test.

8. The function () = 2−
3

is continuous, positive, and decreasing () on [1∞), so the Integral Test applies. ∞

1


2

−3

 = lim
→∞

 

1


2

−3

 = lim
→∞


−1

3

−3


1

= −1

3
lim
→∞



−3 − 

−1


= −1

3


0− 1




=

1

3
.

Since this improper integral is convergent, the series
∞
=1

2−
3

is also convergent by the Integral Test.

():  0() = 2−
3

(−32) + −
3

(2) = −
3

(−33 + 2) =
(2− 33)


3  0 for   1

9.
∞
=1

1


√

2
is a -series with  =

√
2  1, so it converges by (1).

10.
∞
=3

−09999 =
∞
=3

1

09999
is a -series with  = 09999 ≤ 1, so it diverges by (1). The fact that the series begins with

 = 3 is irrelevant when determining convergence.

11. 1 +
1

8
+

1

27
+

1

64
+

1

125
+ · · · =

∞
=1

1

3
. This is a -series with  = 3  1, so it converges by (1).
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12.
1

5
+

1

7
+

1

9
+

1

11
+

1

13
+ · · · =

∞
=1

1

2+ 3
. The function () =

1

2+ 3
is continuous, positive, and decreasing on [1∞),

so the Integral Test applies. ∞

1

1

2+ 3
 = lim

→∞

 

1

1

2+ 3
 = lim

→∞


1
2

ln(2+ 3)

1

= lim
→∞


1
2

ln(2+ 3)− 1
2

ln 5


= ∞, so the series

∞
=1

1

2+ 3
diverges.

13.
1

3
+

1

7
+

1

11
+

1

15
+

1

19
+ · · · =

∞
=1

1

4− 1
. The function () =

1

4− 1
is continuous, positive, and decreasing on

[1∞), so the Integral Test applies. ∞

1

1

4− 1
 = lim

→∞

 

1

1

4− 1
 = lim

→∞


1
4

ln(4− 1)

1

= lim
→∞


1
4

ln(4− 1)− 1
4

ln 3


=∞, so the series

∞
=1

1

4− 1
diverges.

14. 1 +
1

2
√

2
+

1

3
√

3
+

1

4
√

4
+

1

5
√

5
+ · · · =

∞
=1

1


√


=
∞
=1

1

32
. This is a -series with  = 3

2
 1, so it converges by (1).

15.
∞
=1

√
+ 4

2
=

∞
=1

√


2
+

4

2


=

∞
=1

1

32
+

∞
=1

4

2
.

∞
=1

1

32
is a convergent -series with  = 3

2
 1.

∞
=1

4

2
= 4

∞
=1

1

2
is a constant multiple of a convergent -series with  = 2  1, so it converges. The sum of two

convergent series is convergent, so the original series is convergent.

16. The function () =

√


1 + 32
is continuous and positive on [1∞).

 0() =
(1 + 32)


1
2
−12


− 12


3
2
12


(1 + 32)2

=
1
2
−12 + 1

2
− 3

2


(1 + 32)2
=

1− 232

2
√
(1 + 32)2

 0 for  ≥ 1, so  is

decreasing on [1∞), and the Integral Test applies. ∞

1

√


1 + 32
= lim

→∞

 

1

√


1 + 32
 = lim

→∞


2
3

ln(1 + 
32

)

1


substitution

with  = 1 + 32


= lim

→∞


2
3

ln(1 + 32)− 2
3

ln 2


=∞,

so the series
∞
=1

√


1 + 32
diverges.

17. The function () =
1

2 + 4
is continuous, positive, and decreasing on [1∞), so we can apply the Integral Test.

 ∞

1

1

2 + 4
= lim

→∞

 

1

1

2 + 4
 = lim

→∞


1

2
tan

−1 

2


1

=
1

2
lim
→∞


tan

−1




2


− tan

−1


1

2


=

1

2




2
− tan−1


1

2


Therefore, the series

∞
=1

1

2 + 4
converges.
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18. The function () =
1

2 + 2+ 2
is continuous, positive, and decreasing on [1∞), so the Integral Test applies. ∞

1

1

2 + 2+ 2
= lim

→∞

 

1

1

(+ 1)2 + 1
 = lim

→∞


arctan(+ 1)


1

= lim
→∞

[arctan( + 1)− arctan 2] =


2
− arctan 2,

so the series
∞
=1

1

2 + 2+ 2
converges.

19. The function () =
3

4 + 4
is continuous and positive on [2∞), and is also decreasing since

 0() =
(4 + 4)(32)− 3(43)

(4 + 4)2
=

122 − 6

(4 + 4)2
=

2(12− 4)

(4 + 4)2
 0 for  

4
√

12 ≈ 186, so we can use the

Integral Test on [2∞). ∞

2

3

4 + 4
 = lim

→∞

 

2

3

4 + 4
 = lim

→∞


1
4

ln(
4

+ 4)

2

= lim
→∞


1
4

ln(
4
+ 4)− 1

4
ln 20


= ∞, so the series

∞
=2

3

4 + 4
diverges, and it follows that

∞
=1

3

4 + 4
diverges as well.

20. The function () =
3− 4

2 − 2
=

2


+

1

− 2
[by partial fractions] is continuous, positive, and decreasing on [3∞) since it

is the sum of two such functions, so we can apply the Integral Test. ∞

3

3− 4

2 − 
 = lim

→∞

 

3


2


+

1

− 2


 = lim

→∞


2 ln+ ln(− 2)


3

= lim
→∞

[2 ln  + ln(− 2)− 2 ln 3] =∞.

The integral is divergent, so the series
∞
=3

3− 4

2 − 
is divergent.

21. () =
1

 ln
is continuous and positive on [2∞), and also decreasing since  0() = − 1 + ln

2(ln)2
 0 for   2, so we can

use the Integral Test.
 ∞

2

1

 ln
 = lim

→∞
[ln(ln)]



2 = lim
→∞

[ln(ln )− ln(ln 2)] =∞, so the series
∞
=2

1

 ln
diverges.

22. The function () =
ln

2
is continuous and positive on [2∞), and also decreasing since

 0() =
2(1)− (ln)(2)

(2)2
=

− 2 ln

4
=

1− 2 ln

3
 0 for   12 ≈ 165, so we can use the Integral Test

on [2∞).  ∞

2

ln

2
= lim

→∞

 

2

ln

2
 = lim

→∞


− ln




2

+

 

2

1

2


 
by parts with

 = ln,  = (12) 



= lim
→∞


− ln 


+

ln 2

2
+


− 1




2


H
= lim

→∞


−1

1
+

ln 2

2
− 1


+

1

2


=

ln 2 + 1

2
,

so the series
∞
=2

ln

2
converges.
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23. The function () = − =



is continuous and positive on [1∞), and also decreasing since

 0() =
 · 1− 

()2
=

(1− )

()2
=

1− 


 0 for   1 [and (1)  (2)], so we can use the Integral Test on [1∞).

 ∞

1


−

= lim
→∞

 

1


−

 = lim
→∞


−−


1

+

 

1


−



 
by parts with

 = ,  = − 


= lim

→∞


−− + −1 +


−−


1


= lim

→∞


− 


+

1


− 1


+

1




H
= lim

→∞


− 1


+

1


− 0 +

1




=

2


,

so the series
∞
=1

− converges.

24. The function () = −
2

=



2 is continuous and positive on [1∞), and also decreasing since

 0() =


2 · 1− 
2 · 2

(
2
)2

=
1− 22


2  0 for  


1
2
≈ 07, so we can use the Integral Test on [1∞).

 ∞

1


−2

= lim
→∞

 

1


−2

 = lim
→∞


− 1

2

−2


1

= lim
→∞


− 1

2

−2

+ 1
2

−1


=
1

2
, so the series

∞
=1

−
2

converges.

25. The function () =
1

2 + 3
=

1

2
− 1


+

1

+ 1
[by partial fractions] is continuous, positive and decreasing on [1∞),

so the Integral Test applies. ∞

1

() = lim
→∞

 

1


1

2
− 1


+

1

+ 1


 = lim

→∞


− 1


− ln+ ln( + 1)


1

= lim
→∞


−1


+ ln

+ 1


+ 1− ln 2


= 0 + 0 + 1− ln 2

The integral converges, so the series
∞
=1

1

2 + 3
converges.

26. The function () =


4 + 1
is positive, continuous, and decreasing on [1∞). [Note that

 0() =
4 + 1− 44

(4 + 1)2
=

1− 34

(4 + 1)2
 0 on [1∞).] Thus, we can apply the Integral Test.

 ∞

1



4 + 1
 = lim

→∞

 

1

1
2
(2)

1 + (2)2
 = lim

→∞


1

2
tan

−1
(

2
)


1

=
1

2
lim
→∞

[tan
−1

(
2
)− tan

−1
1] =

1

2


2
− 

4


=



8

so the series
∞
=1



4 + 1
converges.

27. The function () =
cos√


is neither positive nor decreasing on [1∞), so the hypotheses of the Integral Test are not

satisfied for the series
∞
=1

cos√


.
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28. The function () =
cos2 

1 + 2
is not decreasing on [1∞), so the hypotheses of the Integral Test are not satisfied for the

series
∞
=1

cos2 

1 + 2
.

29. We have already shown (in Exercise 21) that when  = 1 the series
∞
=2

1

(ln)
diverges, so assume that  6= 1.

() =
1

(ln)
is continuous and positive on [2∞), and  0() = − + ln

2(ln)+1
 0 if   −, so that  is eventually

decreasing and we can use the Integral Test. ∞

2

1

(ln)
 = lim

→∞


(ln)1−

1− 


2

[for  6= 1] = lim
→∞


(ln )1−

1− 
− (ln 2)1−

1− 


This limit exists whenever 1−   0 ⇔   1, so the series converges for   1.

30. () =
1

 ln [ln(ln)]
is positive and continuous on [3∞). For  ≥ 0,  clearly decreases on [3∞); and for   0,

it can be verified that  is ultimately decreasing. Thus, we can apply the Integral Test.

 =

 ∞

3



 ln [ln(ln)]
= lim

→∞

 

3

[ln(ln)]−

 ln
 = lim

→∞


[ln(ln)]−+1

− + 1


3

[for  6= 1]

= lim
→∞


[ln(ln )]−+1

−+ 1
− [ln(ln 3)]−+1

− + 1


,

which exists whenever − + 1  0 ⇔   1. If  = 1, then  = lim
→∞


ln(ln(ln))


3

= ∞. Therefore,

∞
=3

1

 ln [ln(ln)]
converges for   1.

31. Clearly the series cannot converge if  ≥ − 1
2
, because then lim

→∞
(1 + 2) 6= 0. So assume   − 1

2
. Then

() = (1 + 2) is continuous, positive, and eventually decreasing on [1∞), and we can use the Integral Test. ∞

1

(1 + 
2
)

 = lim

→∞


1

2
· (1 + 2)+1

+ 1


1

=
1

2(+ 1)
lim
→∞

[(1 + 
2
)
+1 − 2

+1
].

This limit exists and is finite ⇔  + 1  0 ⇔   −1, so the series
∞
=1

(1 + 2) converges whenever   −1.

32. If  ≤ 0, lim
→∞

ln


=∞ and the series diverges, so assume   0. () =

ln


is positive and continuous and  0()  0

for   1, so  is eventually decreasing and we can use the Integral Test. Integration by parts gives ∞

1

ln


 = lim

→∞


1− [(1− ) ln− 1]

(1− )
2


1

(for  6= 1) =
1

(1− )
2


lim
→∞

1− [(1− ) ln − 1] + 1

, which exists

whenever 1−   0 ⇔   1. Thus,
∞
=1

ln


converges ⇔   1.
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33. Since this is a -series with  = , () is defined when   1. Unless specified otherwise, the domain of a function  is the

set of real numbers  such that the expression for () makes sense and defines a real number. So, in the case of a series, it’s

the set of real numbers  such that the series is convergent.

34. (a)
∞
=2

1

2
=

∞
=1

1

2
− 1

12
[subtract 1] =

2

6
− 1

(b)
∞
=3

1

(+ 1)2
=

∞
=4

1

2
=

∞
=1

1

2
−


1

12
+

1

22
+

1

32


=

2

6
− 49

36

(c)
∞
=1

1

(2)2
=

∞
=1

1

42
=

1

4

∞
=1

1

2
=

1

4


2

6


=

2

24

35. (a)
∞
=1


3



4

=
∞
=1

81

4
= 81

∞
=1

1

4
= 81


4

90


=

94

10

(b)
∞
=5

1

( − 2)4
=

1

34
+

1

44
+

1

54
+ · · · =

∞
=3

1

4
=

4

90
−


1

14
+

1

24


[subtract 1 and 2] =

4

90
− 17

16

36. (a) () = 14 is positive and continuous and  0() = −45 is negative for   0, and so the Integral Test applies.

∞
=1

1

4
≈ 10 =

1

14
+

1

24
+

1

34
+ · · ·+ 1

104
≈ 1082037.

10 ≤
 ∞

10

1

4
 = lim

→∞


1

−33


10

= lim
→∞


− 1

33
+

1

3 (10)
3


=

1

3000
, so the error is at most 00003.

(b) 10 +

 ∞

11

1

4
 ≤  ≤ 10 +

 ∞

10

1

4
 ⇒ 10 +

1

3(11)3
≤  ≤ 10 +

1

3(10)3
⇒

1082037 + 0000250 = 1082287 ≤  ≤ 1082037 + 0000333 = 1082370, so we get  ≈ 108233 with

error ≤ 000005.

(c) The estimate in part (b) is  ≈ 108233 with error≤ 000005. The exact value given in Exercise 35 is 490 ≈ 1082323.

The difference is less than 0.00001

(d)  ≤
 ∞



1

4
 =

1

33
. So   000001 ⇒ 1

33


1

105
⇒ 33  105 ⇒   3


(10)53 ≈ 322,

that is, for   32.

37. (a) () =
1

2
is positive and continuous and  0() = − 2

3
is negative for   0, and so the Integral Test applies.

∞
=1

1

2
≈ 10 =

1

12
+

1

22
+

1

32
+ · · ·+ 1

102
≈ 1549768.

10 ≤
 ∞

10

1

2
 = lim

→∞

−1




10

= lim
→∞


−1


+

1

10


=

1

10
, so the error is at most 01.
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(b) 10 +

 ∞

11

1

2
 ≤  ≤ 10 +

 ∞

10

1

2
 ⇒ 10 + 1

11
≤  ≤ 10 + 1

10
⇒

1549768 + 0090909 = 1640677 ≤  ≤ 1549768 + 01 = 1649768, so we get  ≈ 164522 (the average of 1640677

and 1649768) with error ≤ 0005 (the maximum of 1649768− 164522 and 164522− 1640677, rounded up).

(c) The estimate in part (b) is  ≈ 164522 with error ≤ 0005. The exact value given in Exercise 34 is 26 ≈ 1644934.

The difference is less than 00003.

(d)  ≤
 ∞



1

2
 =

1


. So   0001 if

1




1

1000
⇔   1000.

38. () = −2 is continuous, positive, and decreasing on [1∞), so the Integral Test applies. Using (2),

 ≤
 ∞




−2

= lim
→∞

− 1
2
−2




+

 



1
2

−2



 
using parts with

 = ,  = −2 


= lim

→∞

 −
22

+


22
− 1

42
+

1

42


H
= 0 +



22
− 0 +

1

42
=

2+ 1

42

To be correct to four decimal places, we want
2+ 1

42
≤ 5

105
. This inequality is true for  = 6.

6 =
6

=1



2
=

1

2
+

2

4
+

3

6
+

4

8
+

5

10
+

6

12
≈ 01810.

39. () = 1(2+ 1)6 is continuous, positive, and decreasing on [1∞), so the Integral Test applies. Using (2),

 ≤
 ∞



(2+ 1)
−6

 = lim
→∞

 −1

10(2 + 1)5




=
1

10(2+ 1)5
. To be correct to five decimal places, we want

1

10(2+ 1)5
≤ 5

106
⇔ (2+ 1)5 ≥ 20,000 ⇔  ≥ 1

2


5
√

20,000− 1
 ≈ 312, so use  = 4.

4 =
4

=1

1

(2+ 1)6
=

1

36
+

1

56
+

1

76
+

1

96
≈ 0001 446 ≈ 000145.

40. () =
1

(ln)2
is positive and continuous and  0() = − ln+ 2

2(ln)3
is negative for   1, so the Integral Test applies.

Using (2), we need 001 

 ∞





(ln)2
= lim

→∞

 −1

ln




=
1

ln
. This is true for   100, so we would have to add this

many terms to find the sum of the series
∞
=2

1

(ln)2
to within 001, which would be problematic because

100 ≈ 27× 1043.

41.
∞
=1

−1001 =
∞
=1

1

1001
is a convergent -series with  = 1001  1. Using (2), we get

 ≤
 ∞




−1001

 = lim
→∞


−0001

−0001




= −1000 lim
→∞


1

0001




= −1000


− 1

0001


=

1000

0001
. We want
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  0000 000 005 ⇔ 1000

0001
 5 × 10−9 ⇔ 0001 

1000

5× 10−9
⇔

 

2× 1011

1000
= 21000 × 1011,000 ≈ 107× 10301 × 1011,000 = 107× 1011,301.

42. (a) () =


ln



2

is continuous and positive for   1, and since  0() =
2 ln (1− ln)

3
 0 for   , we can apply

the Integral Test. Using a CAS, we get
 ∞

1


ln



2

 = 2, so the series
∞
=1


ln



2

also converges.

(b) Since the Integral Test applies, the error in  ≈  is  ≤
 ∞




ln



2

 =
(ln)

2
+ 2 ln+ 2


.

(c) By graphing the functions 1 =
(ln)

2
+ 2 ln+ 2


and 2 = 005, we see that 1  2 for  ≥ 1373.

(d) Using the CAS to sum the first 1373 terms, we get 1373 ≈ 194.

43. (a) From the figure, 2 + 3 + · · ·+  ≤
 
1
() , so with

() =
1


,
1

2
+

1

3
+

1

4
+ · · ·+ 1


≤
 

1

1


 = ln.

Thus,  = 1 +
1

2
+

1

3
+

1

4
+ · · ·+ 1


≤ 1 + ln.

(b) By part (a), 106 ≤ 1 + ln 106 ≈ 1482  15 and

109 ≤ 1 + ln 109 ≈ 2172  22.

44. (a) The sum of the areas of the  rectangles in the graph to the right is

1 +
1

2
+

1

3
+ · · ·+ 1


. Now

 +1

1




is less than this sum because

the rectangles extend above the curve  = 1, so +1

1

1


 = ln(+ 1)  1 +

1

2
+

1

3
+ · · ·+ 1


, and since

ln  ln(+ 1), 0  1 +
1

2
+

1

3
+ · · ·+ 1


− ln = .

(b) The area under () = 1 between  =  and  = + 1 is +1






= ln(+ 1)− ln, and this is clearly greater than the area of

the inscribed rectangle in the figure to the right


which is

1

+ 1


, so

 − +1 = [ln(+ 1)− ln]− 1

+ 1
 0, and so   +1, so {} is a decreasing sequence.

(c) We have shown that {} is decreasing and that   0 for all . Thus, 0   ≤ 1 = 1, so {} is a bounded monotonic
sequence, and hence converges by the Monotonic Sequence Theorem.
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45. ln =

ln 

ln
=

ln

ln 
= ln  =

1

− ln 
. This is a -series, which converges for all  such that − ln   1 ⇔

ln   −1 ⇔   −1 ⇔   1 [with   0].

46. For the series
∞
=1





− 1

+ 1


,

 =

=1





− 1

+ 1


=




1
− 1

2


+




2
− 1

3


+




3
− 1

4


+ · · ·+





− 1

+ 1



=


1
+

− 1

2
+

− 1

3
+

− 1

4
+ · · ·+ − 1


− 1

+ 1
= + (− 1)


1

2
+

1

3
+

1

4
+ · · ·+ 1




− 1

+ 1

Thus,
∞
=1





− 1

+ 1


= lim

→∞
 = lim

→∞


+ (− 1)


=2

1


− 1

+ 1


. Since a constant multiple of a divergent series

is divergent, the last limit exists only if − 1 = 0, so the original series converges only if  = 1.

11.4 The Comparison Tests

1. (a) We cannot say anything about


. If    for all  and


 is convergent, then


 could be convergent or

divergent. (See the note after Example 2.)

(b) If    for all , then


 is convergent. [This is part (i) of the Comparison Test.]

2. (a) If    for all , then


 is divergent. [This is part (ii) of the Comparison Test.]

(b) We cannot say anything about


. If    for all  and


 is divergent, then


 could be convergent or

divergent.

3.
1

3 + 8


1

3
for all  ≥ 1, so

∞
=1

1

3 + 8
converges by comparison with

∞
=1

1

3
, which converges because it is a -series

with  = 3  1.

4.
1√
− 1


1√

for all  ≥ 2, so

∞
=2

1√
− 1

diverges by comparison with
∞
=2

1√

, which diverges because it is a -series

with  = 1
2
≤ 1.

5.
+ 1


√






√


=
1√

for all  ≥ 1, so

∞
=1

+ 1


√

diverges by comparison with

∞
=1

1√

, which diverges because it is a

p-series with  = 1
2
≤ 1.

6.
− 1

3 + 1




3 + 1




3
=

1

2
for all  ≥ 1, so

∞
=1

− 1

3 + 1
converges by comparison with

∞
=1

1

2
, which converges

because it is a -series with  = 2  1.

7.
9

3 + 10


9

10
=


9

10


for all  ≥ 1.

∞
=1


9
10


is a convergent geometric series

|| = 9
10

 1

, so

∞
=1

9

3 + 10

converges by the Comparison Test.
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8.
6

5 − 1


6

5
=


6

5


for all  ≥ 1.

∞
=1


6
5


is a divergent geometric series

|| = 6
5
 1


, so

∞
=1

6

5 − 1
diverges by

the Comparison Test.

9.
ln 




1


for all k ≥ 3 [since ln   1 for  ≥ 3], so

∞
=3

ln 


diverges by comparison with

∞
=3

1


, which diverges because it

is a -series with  = 1 ≤ 1 (the harmonic series). Thus,
∞
=1

ln 


diverges since a finite number of terms doesn’t affect the

convergence or divergence of a series.

10.
 sin2 

1 + 3
≤ 

1 + 3




3
=

1

2
for all  ≥ 1, so

∞
=1

 sin2 

1 + 3
converges by comparison with

∞
=1

1

2
, which converges

because it is a -series with  = 2  1.

11.
3
√
√

3 + 4 + 3


3
√
√
3

=
13

32
=

1

76
for all  ≥ 1, so

∞
=1

3
√
√

3 + 4 + 3
converges by comparison with

∞
=1

1

76
,

which converges because it is a -series with  = 7
6
 1.

12.
(2 − 1)(2 − 1)

( + 1)(2 + 4)2


2(2)

(2)2
=

23

5
=

2

2
for all  ≥ 1, so

∞
=1

(2 − 1)(2 − 1)

( + 1)(2 + 4)2
converges by comparison with 2

∞
=1

1

2
,

which converges because it is a constant multiple of a -series with  = 2  1.

13.
1 + cos




2


for all  ≥ 1.

∞
=1

2


is a convergent geometric series (|| = 1


 1), so

∞
=1

1 + cos


converges by the

Comparison Test.

14.
1

3
√

34 + 1


1
3
√

34


1
3
√
4

=
1

43
for all  ≥ 1, so

∞
=1

1
3
√

34 + 1
converges by comparison with

∞
=1

1

43
, which

converges because it is a -series with  = 4
3
 1.

15.
4+1

3 − 2


4 · 4
3

= 4


4

3


for all  ≥ 1.

∞
=1

4


4

3


= 4

∞
=1


4

3


is a divergent geometric series

|| = 4
3
 1


, so

∞
=1

4+1

3 − 2
diverges by the Comparison Test.

16.
1


≤ 1

2
for all  ≥ 1, so

∞
=1

1


converges by comparison with

∞
=1

1

2
, which converges because it is a -series with

 = 2  1.

17. Use the Limit Comparison Test with  =
1√

2 + 1
and  =

1


:

lim
→∞




= lim

→∞
√

2 + 1
= lim

→∞
1

1 + (12)
= 1  0. Since the harmonic series

∞
=1

1


diverges, so does

∞
=1

1√
2 + 1

.
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18. Use the Limit Comparison Test with  =
2√
+ 2

and  =
1√

:

lim
→∞




= lim

→∞
2
√
√

+ 2
= lim

→∞
2

1 + 2
√


= 2  0. Since
∞
=1

1√

is a divergent -series [  = 1

2
≤ 1], the series

∞
=1

2√
+ 2

is also divergent.

19. Use the Limit Comparison Test with  =
+ 1

3 + 
and  =

1

2
:

lim
→∞




= lim

→∞
(+ 1)2

(2 + 1)
= lim

→∞
2 + 

2 + 1
= lim

→∞
1 + 1

1 + 12
= 1  0. Since

∞
=1

1

2
is a convergent -series

[ = 2  1], the series
∞
=1

+ 1

3 + 
also converges.

20. Use the Limit Comparison Test with  =
2 + + 1

4 + 2
and  =

1

2
:

lim
→∞




= lim

→∞
(2 + + 1)2

2(2 + 1)
= lim

→∞
2 + + 1

2 + 1
= lim

→∞
1 + 1+ 12

1 + 12
= 1  0. Since

∞
=1

1

2
is a convergent

-series [ = 2  1], the series
∞
=1

2 + + 1

4 + 2
also converges.

21. Use the Limit Comparison Test with  =

√
1 + 

2 + 
and  =

1√

:

lim
→∞




= lim

→∞

√
1 + 

√


2 + 
= lim

→∞

√
2 + 

√
2

(2 + )
= lim

→∞


1 + 1

2+ 1
= 1  0. Since

∞
=1

1√

is a divergent -series

[  = 1
2
≤ 1], the series

∞
=1

√
1 + 

2 + 
also diverges.

22. Use the Limit Comparison Test with  =
+ 2

(+ 1)3
and  =

1

2
:

lim
→∞




= lim

→∞
2(+ 2)

(+ 1)3
= lim

→∞
1 + 2


1 + 1



3 = 1  0. Since
∞
=3

1

2
is a convergent (partial) -series [ = 2  1],

the series
∞
=3

+ 2

(+ 1)3
also converges.

23. Use the Limit Comparison Test with  =
5 + 2

(1 + 2)2
and  =

1

3
:

lim
→∞




= lim

→∞
3(5 + 2)

(1 + 2)2
= lim

→∞
53 + 24

(1 + 2)2
· 14

1(2)2
= lim

→∞

5


+ 2
1

2
+ 1
2 = 2  0. Since

∞
=1

1

3
is a convergent

-series [ = 3  1], the series
∞
=1

5 + 2

(1 + 2)2
also converges.
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24.
+ 3

+ 2


3

+ 2


3

2 + 2
=

3

2 · 2 =
1

2


3

2


, so the series

∞
=1

+ 3

+ 2
diverges by comparison with

1

2

∞
=1


3

2


,

which is a constant multiple of a divergent geometric series [|| = 3
2
 1]. Or: Use the Limit Comparison Test with

 =
+ 3

+ 2
and  =


3

2


.

25.
 + 1

 + 1
≥  + 1

 + 
=

 + 1

( + 1)
=

1


for  ≥ 1, so the series

∞
=1

 + 1

 + 1
diverges by comparison with the divergent

harmonic series
∞
=1

1


. Or: Use the Limit Comparison Test with  =

 + 1

 + 1
and  =

1


.

26. If  =
1


√
2 − 1

and  =
1

2
, then

lim
→∞




= lim

→∞
2


√
2 − 1

= lim
→∞

√
2 − 1

= lim
→∞

1
1− 12

=
1

1
= 1  0, so

∞
=2

1


√
2 − 1

converges by the

Limit Comparison Test with the convergent series
∞
=2

1

2.

27. Use the Limit Comparison Test with  =


1 +

1



2

− and  = −: lim
→∞




= lim

→∞


1 +

1



2

= 1  0. Since

∞
=1

− =
∞
=1

1


is a convergent geometric series

|| = 1

 1


, the series

∞
=1


1 +

1



2

− also converges.

28.
1




1


for all  ≥ 1, so

∞
=1

1


diverges by comparison with the harmonic series

∞
=1

1


.

29. Clearly ! = (− 1)(− 2) · · · (3)(2) ≥ 2 · 2 · 2 · · · · · 2 · 2 = 2−1, so
1

!
≤ 1

2−1
.
∞
=1

1

2−1
is a convergent geometric

series
|| = 1

2
 1


, so

∞
=1

1

!
converges by the Comparison Test.

30.
!


=

1 · 2 · 3 · · · · · (− 1)

 ·  ·  · · · · ·  ·  ≤ 1


· 2


· 1 · 1 · · · · · 1 for  ≥ 2, so since

∞
=1

2

2
converges [ = 2  1],

∞
=1

!


converges

also by the Comparison Test.

31. Use the Limit Comparison Test with  = sin


1




and  =

1


. Then


 and


 are series with positive terms and

lim
→∞




= lim

→∞
sin(1)

1
= lim

→0

sin 


= 1  0. Since

∞
=1

 is the divergent harmonic series,

∞
=1

sin (1) also diverges. [Note that we could also use l’Hospital’s Rule to evaluate the limit:

lim
→∞

sin(1)

1

H
= lim

→∞
cos(1) · −12


−12

= lim
→∞

cos
1


= cos 0 = 1.]
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32. Use the Limit Comparison Test with  =
1

1+1
and  =

1


. lim
→∞




= lim

→∞


1+1
= lim

→∞
1

1
= 1


since lim

→∞
1 = 1 by l’Hospital’s Rule


, so

∞
=1

1


diverges [harmonic series] ⇒

∞
=1

1

1+1
diverges.

33.
10
=1

1

5 + 5
=

1

5 + 15
+

1

5 + 25
+

1

5 + 35
+ · · ·+ 1

5 + 105
≈ 019926. Now

1

5 + 5


1

5
, so the error is

10 ≤ 10 ≤
 ∞

10

1

5
 = lim

→∞

 

10


−5

 = lim
→∞

 −1

44


10

= lim
→∞

−1

44
+

1

40,000


=

1

40,000
= 0000 025.

34.
10
=1

1

4
=

11

14
+

12

24
+

13

34
+ · · ·+ 110

104
≈ 284748. Now

1

4
≤ 

4
for  ≥ 1, so the error is

10 ≤ 10 ≤
 ∞

10



4
 = lim

→∞

 

10


−4

 = lim
→∞

 −
33


10

= lim
→∞

−
33

+


3000


=



3000
≈ 0000 906.

35.
10
=1

5− cos2  =
cos2 1

5
+

cos2 2

52
+

cos2 3

53
+ · · ·+ cos2 10

510
≈ 007393. Now

cos2 

5
≤ 1

5
, so the error is

10 ≤ 10 ≤
 ∞

10

1

5
 = lim

→∞

 

10

5
−

 = lim
→∞


−5−

ln 5


10

= lim
→∞


−5−

ln 5
+

5−10

ln 5


=

1

510 ln 5
 64× 10

−8.

36.
10
=1

1

3 + 4
=

1

31 + 41
+

1

32 + 42
+

1

33 + 43
+ · · ·+ 1

310 + 410
≈ 019788. Now

1

3 + 4


1

3 + 3
=

1

2 · 3 , so the

error is

10 ≤ 10 ≤
 ∞

10

1

2 · 3 = lim
→∞

 

10

1

2
· 3−  = lim

→∞


−1

2

3−

ln 3


10

= lim
→∞


−1

2

3−

ln 3
+

1

2

3−10

ln 3


=

1

2 · 310 ln 3
 77× 10−6

37. Since


10
≤ 9

10
for each , and since

∞
=1

9

10
is a convergent geometric series

|| = 1
10

 1

, 0123    =

∞
=1



10

will always converge by the Comparison Test.

38. Clearly, if   0 then the series diverges, since lim
→∞

1

 ln
= ∞. If 0 ≤  ≤ 1, then  ln ≤  ln ⇒

1

 ln
≥ 1

 ln
and

∞
=2

1

 ln
diverges (Exercise 11.3.21), so

∞
=2

1

 ln
diverges. If   1, use the Limit Comparison

Test with  =
1

 ln
and  =

1


.
∞
=2

 converges, and lim
→∞




= lim

→∞
1

ln
= 0, so

∞
=2

1

 ln
also converges.

(Or use the Comparison Test, since  ln   for   .) In summary, the series converges if and only if   1.

39. Since


 converges, lim
→∞

 = 0, so there exists such that | − 0|  1 for all    ⇒ 0 ≤   1 for

all    ⇒ 0 ≤ 2
 ≤ . Since


 converges, so does


2
 by the Comparison Test.
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40. (a) Since lim
→∞

() = 0, there is a number  0 such that | − 0|  1 for all    , and so    since 

and  are positive. Thus, since


 converges, so does


 by the Comparison Test.

(b) (i) If  =
ln

3
and  =

1

2
, then lim

→∞



= lim

→∞
ln


= lim

→∞
ln



H
= lim

→∞
1

1
= 0, so

∞
=1

ln

3
converges by

part (a).

(ii) If  =
ln√


and  =
1


, then lim

→∞



= lim

→∞
ln√


= lim
→∞

ln√


H
= lim

→∞
1

1(2
√
)

= lim
→∞

2√


= 0. Now
 is a convergent geometric series with ratio  = 1 [ ||  1], so


 converges by part (a).

41. (a) Since lim
→∞




=∞, there is an integer such that




 1 whenever    . (Take = 1 in Definition 11.1.5.)

Then    whenever    and since


 is divergent,


 is also divergent by the Comparison Test.

(b) (i) If  =
1

ln
and  =

1


for  ≥ 2, then lim

→∞



= lim

→∞


ln
= lim

→∞


ln

H
= lim

→∞
1

1
= lim

→∞
 =∞,

so by part (a),
∞
=2

1

ln
is divergent.

(ii) If  =
ln


and  =

1


, then

∞
=1

 is the divergent harmonic series and lim
→∞




= lim

→∞
ln = lim

→∞
ln =∞,

so
∞
=1

 diverges by part (a).

42. Let  =
1

2
and  =

1


. Then lim

→∞



= lim

→∞
1


= 0, but


 diverges while


 converges.

43. lim
→∞

 = lim
→∞



1
, so we apply the Limit Comparison Test with  =

1


. Since lim

→∞
  0 we know that either both

series converge or both series diverge, and we also know that
∞
=1

1


diverges [-series with  = 1]. Therefore,


 must be

divergent.

44. First we observe that, by l’Hospital’s Rule, lim
→0

ln(1 + )


= lim

→0

1

1 + 
= 1. Also, if


 converges, then lim

→∞
 = 0 by

Theorem 11.2.6. Therefore, lim
→∞

ln(1 + )


= lim

→0

ln(1 + )


= 1  0. We are given that


 is convergent and   0.

Thus,


ln(1 + ) is convergent by the Limit Comparison Test.

45. Yes. Since


 is a convergent series with positive terms, lim
→∞

 = 0 by Theorem 11.2.6, and


 =


sin() is a

series with positive terms (for large enough ). We have lim
→∞




= lim

→∞
sin()


= 1  0 by Theorem 3.3.2. Thus,




is also convergent by the Limit Comparison Test.

46. Yes. Since


 converges, its terms approach 0 as →∞, so for some integer  ,  ≤ 1 for all  ≥  . But then∞
=1  =

−1

=1  +
∞

=  ≤
−1

=1  +
∞

= . The first term is a finite sum, and the second term

converges since
∞

=1  converges. So


 converges by the Comparison Test.
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11.5 Alternating Series

1. (a) An alternating series is a series whose terms are alternately positive and negative.

(b) An alternating series
∞
=1

 =
∞
=1

(−1)−1, where  = ||, converges if 0  +1 ≤  for all  and lim
→∞

 = 0.

(This is the Alternating Series Test.)

(c) The error involved in using the partial sum  as an approximation to the total sum  is the remainder = −  and the

size of the error is smaller than +1; that is, || ≤ +1. (This is the Alternating Series Estimation Theorem.)

2.
2

3
− 2

5
+

2

7
− 2

9
+

2

11
− · · · =

∞
=1

(−1)+1 2

2+ 1
. Now  =

2

2+ 1
 0, {} is decreasing, and lim

→∞
 = 0, so the

series converges by the Alternating Series Test.

3. −2

5
+

4

6
− 6

7
+

8

8
− 10

9
+ · · · =

∞
=1

(−1)
2

+ 4
. Now lim

→∞
 = lim

→∞
2

+ 4
= lim

→∞
2

1 + 4
=

2

1
6= 0. Since

lim
→∞

 6= 0 (in fact the limit does not exist), the series diverges by the Test for Divergence.

4.
1

ln 3
− 1

ln 4
+

1

ln 5
− 1

ln 6
+

1

ln 7
− · · · =

∞
=1

(−1)+1

ln(+ 2)
. Now  =

1

ln(+ 2)
 0, {} is decreasing, and lim

→∞
 = 0,

so the series converges by the Alternating Series Test.

5.
∞
=1

 =

∞
=1

(−1)−1

3 + 5
=

∞
=1

(−1)−1. Now  =
1

3 + 5
 0, {} is decreasing, and lim

→∞
 = 0, so the series

converges by the Alternating Series Test.

6.
∞
=0

 =

∞
=0

(−1)+1

√
+ 1

=

∞
=0

(−1)+1. Now  =
1√
+ 1

 0, {} is decreasing, and lim
→∞

 = 0, so the series

converges by the Alternating Series Test.

7.
∞
=1

 =
∞
=1

(−1)
3− 1

2+ 1
=

∞
=1

(−1). Now lim
→∞

 = lim
→∞

3− 1

2 + 1
=

3

2
6= 0. Since lim

→∞
 6= 0

(in fact the limit does not exist), the series diverges by the Test for Divergence.

8.
∞
=1

 =

∞
=1

(−1)
2

2 + + 1
=

∞
=1

(−1). Now lim
→∞

 = lim
→∞

2

2 + + 1
= lim

→∞
1

1 + 1+ 12
= 1 6= 0.

Since lim
→∞

 6= 0, the series diverges by the Test for Divergence.

9.
∞
=1

 =
∞
=1

(−1)− =
∞
=1

(−1). Now  =
1


 0, {} is decreasing, and lim

→∞
 = 0, so the series converges

by the Alternating Series Test.
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10.  =

√


2+ 3
 0 for  ≥ 1. {} is decreasing for  ≥ 2 since

 √


2+ 3

0
=

(2 + 3)


1
2
−12


− 12(2)

(2 + 3)2
=

1
2
−12[(2+ 3)− 4]

(2+ 3)2
=

3− 2

2
√
 (2 + 3)2

 0 for   3
2
.

Also, lim
→∞

 = lim
→∞

√

√


(2+ 3)
√


= lim
→∞

1

2
√
+ 3

√


= 0. Thus, the series
∞
=1

(−1)
√


2+ 3
converges by the

Alternating Series Test.

11.  =
2

3 + 4
 0 for  ≥ 1. {} is decreasing for  ≥ 2 since


2

3 + 4

0
=

(3 + 4)(2)− 2(32)

(3 + 4)2
=

(23 + 8− 33)

(3 + 4)2
=

(8− 3)

(3 + 4)2
 0 for   2. Also,

lim
→∞

 = lim
→∞

1

1 + 43
= 0. Thus, the series

∞
=1

(−1)+1 2

3 + 4
converges by the Alternating Series Test.

12.  = − =



 0 for  ≥ 1. {} is decreasing for  ≥ 1 since (−)0 = (−−) + − = −(1− )  0 for

  1. Also, lim
→∞

 = 0 since lim
→∞




H
= lim

→∞
1


= 0. Thus, the series

∞
=1

(−1)+1− converges by the Alternating

Series Test.

13. lim
→∞

 = lim
→∞

2 = 0 = 1, so lim
→∞

(−1)−12 does not exist. Thus, the series
∞
=1

(−1)−12 diverges by the

Test for Divergence.

14. lim
→∞

 = lim
→∞

arctan = 
2
, so lim

→∞
(−1)−1 arctan does not exist. Thus, the series

∞
=1

(−1)−1 arctan diverges

by the Test for Divergence.

15.  =
sin

+ 1

2




1 +
√


=
(−1)

1 +
√

. Now  =

1

1 +
√

 0 for  ≥ 0, {} is decreasing, and lim

→∞
 = 0, so the series

∞
=0

sin

+ 1

2




1 +
√


converges by the Alternating Series Test.

16.  =
 cos

2
= (−1)



2
= (−1). {} is decreasing for  ≥ 2 since

(2−)0 = (−2− ln 2) + 2− = 2−(1−  ln 2)  0 for  
1

ln 2
[≈14]. Also, lim

→∞
 = 0 since

lim
→∞



2
H
= lim

→∞
1

2 ln 2
= 0. Thus, the series

∞
=1

 cos

2
converges by the Alternating Series Test.

17.
∞
=1

(−1) sin




.  = sin





 0 for  ≥ 2 and sin





≥ sin




+ 1


, and lim

→∞
sin




= sin 0 = 0, so the

series converges by the Alternating Series Test.
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18.
∞
=1

(−1) cos




. lim
→∞

cos




= cos(0) = 1, so lim

→∞
(−1) cos





does not exist and the series diverges by the Test

for Divergence.

19.


!
=

 ·  · · · · · 
1 · 2 · · · · ·  ≥  ⇒ lim

→∞


!
=∞ ⇒ lim

→∞
(−1)




!
does not exist. So the series

∞
=1

(−1)


!
diverges

by the Test for Divergence.

20.  =

√
+ 1−√

1
·
√
+ 1 +

√
√

+ 1 +
√


=
(+ 1)− √
+ 1 +

√


=
1√

+ 1 +
√

 0 for  ≥ 1. {} is decreasing and

lim
→∞

 = 0, so the series
∞
=1

(−1)
√

+ 1−√  converges by the Alternating Series Test.
21. The graph gives us an estimate for the sum of the series

∞
=1

(−08)

!
of −055.

8 =
(08)

8!
≈ 0000 004, so

∞
=1

(−08)

!
≈ 7 =

7
=1

(−08)

!

≈ −08 + 032− 00853 + 001706− 0002 731 + 0000 364− 0000 042 ≈ −05507

Adding 8 to 7 does not change the fourth decimal place of 7, so the sum of the series, correct to four decimal places,

is−05507.

22. The graph gives us an estimate for the sum of the series

∞
=1

(−1)−1 

8
of 01.

6 =
6

86
≈ 0000 023, so

∞
=1

(−1)−1 

8
≈ 5 =

5
=1

(−1)−1 

8

≈ 0125− 003125 + 0005 859− 0000 977 + 0000 153 ≈ 00988

Adding 6 to 5 does not change the fourth decimal place of 5, so the sum of the series, correct to four decimal places,

is 00988.
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23. The series
∞
=1

(−1)+1

6
satisfies (i) of the Alternating Series Test because

1

(+ 1)6


1

6
and (ii) lim

→∞
1

6
= 0, so the

series is convergent. Now 5 =
1

56
= 0000064  000005 and 6 =

1

66
≈ 000002  000005, so by the Alternating Series

Estimation Theorem,  = 5. (That is, since the 6th term is less than the desired error, we need to add the first 5 terms to get the

sum to the desired accuracy.)

24. The series
∞
=1

(− 1
3
)


=

∞
=1

(−1)
1

3
satisfies (i) of the Alternating Series Test because

1

(+ 1)3+1


1

3
and

(ii) lim
→∞

1

3
= 0, so the series is convergent. Now 5 =

1

5 · 35
≈ 00008  00005 and 6 =

1

6 · 36
≈ 00002  00005,

so by the Alternating Series Estimation Theorem,  = 5. (That is, since the 6th term is less than the desired error, we need to

add the first 5 terms to get the sum to the desired accuracy.)

25. The series
∞
=1

(−1)−1

22
satisfies (i) of the Alternating Series Test because

1

(+ 1)22+1


1

22
and (ii) lim

→∞
1

22
= 0,

so the series is convergent. Now 5 =
1

5225
= 000125  00005 and 6 =

1

6226
≈ 00004  00005, so by the Alternating

Series Estimation Theorem,  = 5. (That is, since the 6th term is less than the desired error, we need to add the first 5 terms to

get the sum to the desired accuracy.)

26. The series
∞
=1


− 1




=

∞
=1

(−1)
1


satisfies (i) of the Alternating Series Test because

1

(+ 1)+1


1


and

(ii) lim
→∞

1


= 0, so the series is convergent. Now 5 =

1

55
= 000032  000005 and 6 =

1

66
≈ 000002  000005, so

by the Alternating Series Estimation Theorem,  = 5. (That is, since the 6th term is less than the desired error, we need to add

the first 5 terms to get the sum to the desired accuracy.)

27. 4 =
1

8!
=

1

40,320
≈ 0000 025, so

∞
=1

(−1)

(2)!
≈ 3 =

3
=1

(−1)

(2)!
= −1

2
+

1

24
− 1

720
≈ −0459 722

Adding 4 to 3 does not change the fourth decimal place of 3, so by the Alternating Series Estimation Theorem, the sum of

the series, correct to four decimal places, is −04597.

28.
∞
=1

(−1)+1

6
≈ 9 =

1

16
− 1

26
+

1

36
− 1

46
+

1

56
− 1

66
+

1

76
− 1

86
+

1

96
≈ 0985 552. Subtracting 10 = 1106 from 9

does not change the fourth decimal place of 9, so by the Alternating Series Estimation Theorem, the sum of the series, correct

to four decimal places, is 09856.

29.
∞
=1

(−1)−2 ≈ 5 = − 1

2
+

2

4
− 3

6
+

4

8
− 5

10
≈ −0105 025. Adding 6 = 612 ≈ 0000 037 to 5 does not

change the fourth decimal place of 5, so by the Alternating Series Estimation Theorem, the sum of the series, correct to four

decimal places, is −01050.
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30.
∞
=1

(−1)−1

4
≈ 6 =

1

4
− 1

2 · 42
+

1

3 · 43
− 1

4 · 44
+

1

5 · 45
− 1

6 · 46
≈ 0223136. Adding 7 =

1

7 · 47
≈ 0000 0087 to 6

does not change the fourth decimal place of 6, so by the Alternating Series Estimation Theorem, the sum of the series, correct

to four decimal places, is 02231.

31.
∞
=1

(−1)−1


= 1− 1

2
+

1

3
− 1

4
+ · · ·+ 1

49
− 1

50
+

1

51
− 1

52
+ · · · . The 50th partial sum of this series is an

underestimate, since
∞
=1

(−1)−1


= 50 +


1

51
− 1

52


+


1

53
− 1

54


+ · · · , and the terms in parentheses are all positive.

The result can be seen geometrically in Figure 1.

32. If   0,
1

(+ 1)
 ≤

1


({1} is decreasing) and lim

→∞
1


= 0, so the series converges by the Alternating Series Test.

If  ≤ 0, lim
→∞

(−1)
−1


does not exist, so the series diverges by the Test for Divergence. Thus,

∞
=1

(−1)
−1



converges ⇔   0.

33. Clearly  =
1

+ 
is decreasing and eventually positive and lim

→∞
 = 0 for any . So the series

∞
=1

(−1)

+ 
converges (by

the Alternating Series Test) for any  for which every  is defined, that is, +  6= 0 for  ≥ 1, or  is not a negative integer.

34. Let () =
(ln)




. Then  0() =

(ln)
−1

(− ln)

2
 0 if    so  is eventually decreasing for every . Clearly

lim
→∞

(ln)



= 0 if  ≤ 0, and if   0 we can apply l’Hospital’s Rule [[+ 1]] times to get a limit of 0 as well. So the series

∞
=2

(−1)−1 (ln)


converges for all  (by the Alternating Series Test).

35.


2 =


1(2)2 clearly converges (by comparison with the -series for  = 2). So suppose that


(−1)
−1



converges. Then by Theorem 11.2.8(ii), so does


(−1)−1 + 


= 2

1 + 1

3
+ 1

5
+ · · ·  = 2

 1

2− 1
. But this

diverges by comparison with the harmonic series, a contradiction. Therefore,


(−1)
−1

 must diverge. The Alternating

Series Test does not apply since {} is not decreasing.

36. (a) We will prove this by induction. Let  () be the proposition that 2 = 2 − .  (1) is the statement 2 = 2 − 1,

which is true since 1− 1
2

=

1 + 1

2

− 1. So suppose that  () is true. We will show that  (+ 1) must be true as a

consequence.

2+2 − +1 =


2 +

1

2+ 1
+

1

2+ 2


−

 +

1

+ 1


= (2 − ) +

1

2+ 1
− 1

2+ 2

= 2 +
1

2+ 1
− 1

2+ 2
= 2+2

which is  (+ 1), and proves that 2 = 2 −  for all .
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(b) We know that 2 − ln(2) →  and  − ln →  as  → ∞. So

2 = 2 −  = [2 − ln(2)] − ( − ln) + [ln(2) − ln], and

lim
→∞

2 =  −  + lim
→∞

[ln(2)− ln] = lim
→∞

(ln 2 + ln− ln) = ln 2.

11.6 Absolute Convergence and the Ratio and Root Tests

1. (a) Since lim
→∞

+1



 = 8  1, part (b) of the Ratio Test tells us that the series


 is divergent.

(b) Since lim
→∞

+1



 = 08  1, part (a) of the Ratio Test tells us that the series


 is absolutely convergent (and

therefore convergent).

(c) Since lim
→∞

+1



 = 1, the Ratio Test fails and the series


 might converge or it might diverge.

2.  =
1√

 0 for  ≥ 1, {} is decreasing for  ≥ 1, and lim

→∞
 = 0, so

∞
=1

(−1)−1

√


converges by the Alternating

Series Test. To determine absolute convergence, note that
∞
=1

1√

diverges because it is a -series with  = 1

2
≤ 1. Thus, the

series
∞
=1

(−1)−1

√


is conditionally convergent.

3.  =
1

5+ 1
 0 for  ≥ 0, {} is decreasing for  ≥ 0, and lim

→∞
 = 0, so

∞
=0

(−1)

5+ 1
converges by the Alternating

Series Test. To determine absolute convergence, choose  =
1


to get

lim
→∞




= lim

→∞
1

1(5+ 1)
= lim

→∞
5+ 1


= 5  0, so

∞
=1

1

5+ 1
diverges by the Limit Comparison Test with the

harmonic series. Thus, the series
∞
=0

(−1)

5+ 1
is conditionally convergent.

4. 0 
1

3 + 1


1

3
for  ≥ 1 and

∞
=1

1

3
is a convergent -series ( = 3  1), so

∞
=1

1

3 + 1
converges by comparison and

the series
∞
=1

(−1)

3 + 1
is absolutely convergent.

5. 0 

 sin2

  1

2
for  ≥ 1 and

∞
=1

1

2
is a convergent geometric series ( = 1

2
 1), so

∞
=1

 sin2

 converges by
comparison and the series

∞
=1

sin

2
is absolutely convergent.

6.  =


2 + 4
 0 for  ≥ 1, {} is decreasing for  ≥ 2, and lim

→∞
 = 0, so

∞
=1

(−1)−1 

2 + 4
converges by the

Alternating Series Test. To determine absolute convergence, choose  =
1


to get
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lim
→∞




= lim

→∞
1

(2 + 4)
= lim

→∞
2 + 4

2
= lim

→∞
1 + 42

1
= 1  0, so

∞
=1



2 + 4
diverges by the Limit

Comparison Test with the harmonic series. Thus, the series
∞
=1

(−1)−1 

2 + 4
is conditionally convergent.

7. lim
→∞

+1



 = lim
→∞

+ 1

5+1
· 5



 = lim
→∞

15 · + 1



 =
1

5
lim
→∞

1 + 1

1
=

1

5
(1) =

1

5
 1, so the series

∞
=1



5
is

absolutely convergent by the Ratio Test.

8. lim
→∞

+1



 = lim
→∞

 (−2)+1

(+ 1)2
· 2

(−2)

 = lim
→∞

(−2)
2

(+ 1)2

 = 2 lim
→∞

1

(1 + 1)2
= 2(1) = 2  1, so the series

∞
=1

(−2)

2
is divergent by the Ratio Test.

9. lim
→∞

+1



 = lim
→∞

 (−1)3+1

2+1(+ 1)3
· 23

(−1)−13

 = lim
→∞

−3

2


3

(+ 1)3

 =
3

2
lim
→∞

1

(1 + 1)3
=

3

2
(1) =

3

2
 1,

so the series
∞
=1

(−1)−1 3

23
is divergent by the Ratio Test.

10. lim
→∞

+1



= lim
→∞

 (−3)+1

[2(+ 1) + 1]!
· (2+ 1)!

(−3)

 = lim
→∞

(−3)
1

(2+ 3)(2+ 2)

 = 3 lim
→∞

1

(2+ 3)(2+ 2)

= 3(0) = 0  1

so the series
∞
=0

(−3)

(2+ 1)!
is absolutely convergent by the Ratio Test.

11. lim
→∞

+1



 = lim
→∞

 1

( + 1)!
· !

1

 = lim
→∞

1

 + 1
= 0  1, so the series

∞
=1

1

!
is absolutely convergent by the Ratio Test.

Since the terms of this series are positive, absolute convergence is the same as convergence.

12. lim
→∞

+1



 = lim
→∞

 ( + 1)−(+1)

−

 = lim
→∞


 + 1


· −1


=

1


lim
→∞

1 + 1

1
=

1


(1) =

1


 1, so the series

∞
=1

− is absolutely convergent by the Ratio Test. Since the terms of this series are positive, absolute convergence is the

same as convergence.

13. lim
→∞

+1



 = lim
→∞


10+1

(+ 2) 42+3
· (+ 1) 42+1

10


= lim

→∞


10

42
· + 1

+ 2


=

5

8
 1, so the series

∞
=1

10

(+ 1)42+1

is absolutely convergent by the Ratio Test. Since the terms of this series are positive, absolute convergence is the same as

convergence.

14. lim
→∞

+1



 = lim
→∞


(+ 1)!

100+1
· 100

!


= lim

→∞
+ 1

100
=∞, so the series

∞
=1

!

100
diverges by the Ratio Test.

15. lim
→∞

+1



 = lim
→∞

 (+ 1)+1

(−3)
· (−3)−1



 = lim
→∞

 −3
· + 1



 =


3
lim
→∞

1 + 1

1
=



3
(1) =



3
 1, so the

series
∞
=1



(−3)−1
diverges by the Ratio Test. Or: Since lim

→∞
|| =∞, the series diverges by the Test for Divergence.
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16. lim
→∞

+1



 = lim
→∞

 (+ 1)10

(−10)+2
· (−10)+1

10

 = lim
→∞

 1

−10


+ 1



10
 =

1

10
lim
→∞


1 +

1



10

=
1

10
(1) =

1

10
 1,

so the series
∞
=1

10

(−10)+1
is absolutely convergent by the Ratio Test.

17. lim
→∞

+1



 = lim
→∞

cos[(+ 1)3]

(+ 1)!
· !

cos(3)

 = lim
→∞

 cos[(+ 1)3]

(+ 1) cos(3)

 = lim
→∞



+ 1
= 0  1 (where

0   ≤ 2 for all positive integers ), so the series
∞
=1

cos(3)

!
is absolutely convergent by the Ratio Test.

18. lim
→∞

+1



 = lim
→∞

 (+ 1)!

(+ 1)+1
· 



!

 = lim
→∞

(+ 1)

(+ 1)+1
= lim

→∞


(+ 1)
 = lim

→∞
1

(1 + 1)
 =

1


 1, so the

series
∞
=1

!


is absolutely convergent by the Ratio Test.

19. lim
→∞

+1



= lim
→∞

 (+ 1)100100+1

(+ 1)!
· !

100100

 = lim
→∞

100

+ 1


+ 1



100

= lim
→∞

100

+ 1


1 +

1



100

= 0 · 1 = 0  1

so the series
∞
=1

100100

!
is absolutely convergent by the Ratio Test.

20. lim
→∞

+1



 = lim
→∞

 [2(+ 1)]!

[(+ 1)!]2
· (!)2

(2)!

 = lim
→∞

(2+ 2)(2+ 1)

(+ 1)(+ 1)
= lim

→∞
(2 + 2)(2 + 1)

(1 + 1)(1 + 1)
=

2 · 2
1 · 1 = 4  1,

so the series
∞
=1

(2)!

(!)2
diverges by the Ratio Test.

21. lim
→∞

+1



= lim
→∞

 (−1)(+ 1)!

1 · 3 · 5 · · · · · (2− 1)(2+ 1)
· 1 · 3 · 5 · · · · · (2− 1)

(−1)−1!

 = lim
→∞

+ 1

2+ 1

= lim
→∞

1 + 1

2 + 1
=

1

2
 1

so the series 1− 2!

1 · 3 +
3!

1 · 3 · 5 −
4!

1 · 3 · 5 · 7 + · · ·+ (−1)−1 !

1 · 3 · 5 · · · · · (2− 1)
+ · · · is absolutely convergent by

the Ratio Test.

22.
2

3
+

2 · 5
3 · 5 +

2 · 5 · 8
3 · 5 · 7 +

2 · 5 · 8 · 11
3 · 5 · 7 · 9 + · · · =

∞
=1

2 · 5 · 8 · 11 · · · · · (3− 1)

3 · 5 · 7 · 9 · · · · · (2+ 1)
.

lim
→∞

+1



= lim
→∞

2 · 5 · 8 · · · · · (3− 1)(3+ 2)

3 · 5 · 7 · · · · · (2+ 1)(2+ 3)
· 3 · 5 · 7 · · · · · (2+ 1)

2 · 5 · 8 · · · · · (3− 1)


= lim

→∞
3+ 2

2+ 3
= lim

→∞
3 + 2

2 + 3
=

3

2
 1

so the given series diverges by the Ratio Test.

23. lim
→∞

+1



 = lim
→∞

2 · 4 · 6 · · · · · (2)(2+ 2)

(+ 1)!
· !

2 · 4 · 6 · · · · · (2)

 = lim
→∞

2+ 2

+ 1
= lim

→∞
2(+ 1)

+ 1
= 2  1, so

the series
∞
=1

2 · 4 · 6 · · · · · (2)

!
diverges by the Ratio Test.

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

FOR INSTRUCTOR USE ONLY



NOT FOR S
ALE

SECTION 11.6 ABSOLUTE CONVERGENCE AND THE RATIO AND ROOT TESTS ¤ 1013

24. lim
→∞

+1



 = lim
→∞

 2+1 (+ 1)!

5 · 8 · 11 · · · · · (3+ 2) (3+ 5)
· 5 · 8 · 11 · · · · · (3+ 2)

2!

 = lim
→∞

2(+ 1)

3+ 5
=

2

3
 1, so the

series
∞
=1

(−1)
2!

5 · 8 · 11 · · · · · (3+ 2)
is absolutely convergent by the Ratio Test.

25. lim
→∞



|| = lim

→∞
2 + 1

22 + 1
= lim

→∞
1 + 12

2 + 12
=

1

2
 1, so the series

∞
=1


2 + 1

22 + 1


is absolutely convergent by the

Root Test.

26. lim
→∞



|| = lim

→∞


 (−2)



 = lim
→∞

2


= 0  1, so the series

∞
=1

(−2)


is absolutely convergent by the Root Test.

27. lim
→∞



|| = lim

→∞


 (−1)−1

(ln)

 = lim
→∞

1

ln
= 0  1, so the series

∞
=2

(−1)−1

(ln)
is absolutely convergent by the Root

Test.

28. lim
→∞



||= lim

→∞



 −2

+ 1

5
 = lim

→∞
25 5

(+ 1)5
= 32 lim

→∞
1

+ 1



5
= 32 lim

→∞
1

(1 + 1)5

= 32(1) = 32  1,

so the series
∞
=1

 −2

+ 1

5

diverges by the Root Test.

29. lim
→∞



|| = lim

→∞



1 +

1



2
= lim

→∞


1 +

1




=   1 [by Equation 3.6.6], so the series

∞
=1


1 +

1



2
diverges by the Root Test.

30. lim
→∞



|| = lim

→∞


|(arctan)| = lim

→∞
arctan = 

2
 1, so the series

∞
=0

(arctan) diverges by the Root Test.

31.
∞
=2

(−1)

ln
converges by the Alternating Series Test since lim

→∞
1

ln
= 0 and


1

ln


is decreasing. Now ln  , so

1

ln


1


, and since

∞
=2

1


is the divergent (partial) harmonic series,

∞
=2

1

ln
diverges by the Comparison Test. Thus,

∞
=2

(−1)

ln
is conditionally convergent.

32. lim
→∞



|| = lim

→∞


 1− 

2 + 3

 = lim
→∞

− 1

3+ 2
= lim

→∞
1− 1

3 + 2
=

1

3
 1, so the series

∞
=1


1− 

2 + 3


is

absolutely convergent by the Root Test.

33. lim
→∞

+1



 = lim
→∞

 (−9)+1

(+ 1)10+2
· 10+1

(−9)

 = lim
→∞

 (−9)

10(+ 1)

 =
9

10
lim
→∞

1

1 + 1
=

9

10
(1) =

9

10
 1, so the

series
∞
=1

(−9)

10+1
is absolutely convergent by the Ratio Test.
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34. lim
→∞

+1



 = lim
→∞

 (+ 1)52+2

10+2
· 10+1

52

 = lim
→∞

52(+ 1)

10
=

5

2
lim
→∞


1 +

1




=

5

2
(1) =

5

2
 1, so the series

∞
=1

52

10+1
diverges by the Ratio Test. Or: Since lim

→∞
 =∞, the series diverges by the Test for Divergence.

35. lim
→∞



|| = lim

→∞


 

ln

 = lim
→∞



ln
= lim

→∞


ln

H
= lim

→∞
1

1
= lim

→∞
 =∞, so the series

∞
=2

 

ln


diverges by the Root Test.

36.

 sin(6)

1 + 
√


 ≤ 1

1 + 
√



1

32
, so the series

∞
=1

sin(6)

1 + 
√


converges by comparison with the convergent -series

∞
=1

1

32
( = 3

2
 1). It follows that the given series is absolutely convergent.

37.

 (−1) arctan

2

  2

2
, so since

∞
=1

2

2
=



2

∞
=1

1

2
converges ( = 2  1), the given series

∞
=1

(−1) arctan

2

converges absolutely by the Comparison Test.

38. The function () =
1

 ln
is continuous, positive, and decreasing on [2∞).

 ∞

2

1

 ln
 = lim

→∞

 

2

1

 ln
 = lim

→∞
[ln(ln)]



2 = lim
→∞

[(ln(ln )− ln(ln 2)] =∞, so the series
∞
=2

(−1)

 ln
diverges

by the Integral Test. Now {} =


1

 ln


with  ≥ 2 is a decreasing sequence of positive terms and lim

→∞
 = 0. Thus,

∞
=2

(−1)

 ln
converges by the Alternating Series Test. It follows that

∞
=2

(−1)

 ln
is conditionally convergent.

39. By the recursive definition, lim
→∞

+1



 = lim
→∞

5+ 1

4+ 3

 = 5

4
 1, so the series diverges by the Ratio Test.

40. By the recursive definition, lim
→∞

+1



 = lim
→∞

2 + cos√


 = 0  1, so the series converges absolutely by the Ratio Test.

41. The series
∞
=1

 cos


=

∞
=1

(−1)


, where   0 for  ≥ 1 and lim

→∞
 =

1

2
.

lim
→∞

+1



 = lim
→∞

 (−1)+1+1


+ 1
· 

(−1)

 = lim
→∞




+ 1
=

1

2
(1) =

1

2
 1, so the series

∞
=1

 cos


is

absolutely convergent by the Ratio Test.

42. lim
→∞

+1



= lim
→∞

 (−1)+1(+ 1)!

(+ 1)+112 · · · +1

· 
12 · · · 
(−1) !

 = lim
→∞

 (−1)(+ 1)

+1(+ 1)+1

 = lim
→∞



+1(+ 1)

= lim
→∞

1

+1




+ 1


= lim

→∞
1

+1


1

1 + 1


= lim

→∞
1

+1(1 + 1)
=

1
1
2


=
2


 1

so the series
∞
=1

(−1) !

123 · · ·  is absolutely convergent by the Ratio Test.
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43. (a) lim
→∞

1(+ 1)3

13

 = lim
→∞

3

(+ 1)
3

= lim
→∞

1

(1 + 1)
3

= 1. Inconclusive

(b) lim
→∞

 (+ 1)

2+1
· 2



 = lim
→∞

+ 1

2
= lim

→∞


1

2
+

1

2


=

1

2
. Conclusive (convergent)

(c) lim
→∞

 (−3)√
+ 1

·
√


(−3)−1

 = 3 lim
→∞




+ 1
= 3 lim

→∞


1

1 + 1
= 3. Conclusive (divergent)

(d) lim
→∞

 √
+ 1

1 + (+ 1)
2
· 1 + 2

√


 = lim
→∞


1 +

1


· 12 + 1

12 + (1 + 1)
2


= 1. Inconclusive

44. We use the Ratio Test:

lim
→∞

+1



 = lim
→∞

 [(+ 1)!]
2
/[(+ 1)]!

(!)
2
/()!

 = lim
→∞

 (+ 1)
2

[(+ 1)] [(+ 1)− 1] · · · [+ 1]


Now if  = 1, then this is equal to lim

→∞

 (+ 1)
2

(+ 1)

 = ∞, so the series diverges; if  = 2, the limit is

lim
→∞

 (+ 1)
2

(2+ 2)(2+ 1)

 =
1

4
 1, so the series converges, and if   2, then the highest power of  in the denominator is

larger than 2, and so the limit is 0, indicating convergence. So the series converges for  ≥ 2.

45. (a) lim
→∞

+1



 = lim
→∞

 +1

(+ 1)!
· !



 = lim
→∞

 

+ 1

 = || lim
→∞

1

+ 1
= || · 0 = 0  1, so by the Ratio Test the

series
∞
=0



!
converges for all .

(b) Since the series of part (a) always converges, we must have lim
→∞



!
= 0 by Theorem 11.2.6.

46. (a)  = +1 + +2 + +3 + +4 + · · · = +1


1 +

+2

+1

+
+3

+1

+
+4

+1

+ · · ·


= +1


1 +

+2

+1

+
+3

+2

+2

+1

+
+4

+3

+3

+2

+2

+1

+ · · ·


= +1(1 + +1 + +2+1 + +3+2+1 + · · · ) ()

≤ +1


1 + +1 + 2+1 + 3+1 + · · ·  [since {} is decreasing] =

+1

1− +1

(b) Note that since {} is increasing and  →  as →∞, we have    for all . So, starting with equation (),

 = +1(1 + +1 + +2+1 + +3+2+1 + · · · ) ≤ +1


1 + + 2 + 3 + · · ·  =

+1

1− 
.

47. (a) 5 =
5

=1

1

2
=

1

2
+

1

8
+

1

24
+

1

64
+

1

160
=

661

960
≈ 068854. Now the ratios

 =
+1


=

2

(+ 1)2+1
=



2(+ 1)
form an increasing sequence, since

+1 −  =
+ 1

2(+ 2)
− 

2(+ 1)
=

(+ 1)
2 − (+ 2)

2(+ 1)(+ 2)
=

1

2(+ 1)(+ 2)
 0. So by Exercise 46(b), the error

in using 5 is 5 ≤ 6

1− lim
→∞


=

1

6 · 26


1− 12

=
1

192
≈ 000521.

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

FOR INSTRUCTOR USE ONLY



NOT FOR S
ALE

1016 ¤ CHAPTER 11 INFINITE SEQUENCES AND SERIES

(b) The error in using  as an approximation to the sum is  =
+1

1− 1
2

=
2

(+ 1)2+1
. We want   000005 ⇔

1

(+ 1)2
 000005 ⇔ (+ 1)2  20,000. To find such an  we can use trial and error or a graph. We calculate

(11 + 1)211 = 24,576, so 11 =
11
=1

1

2
≈ 0693109 is within 000005 of the actual sum.

48. 10 =
10
=1



2
=

1

2
+

2

4
+

3

8
+ · · ·+ 10

1024
≈ 1988. The ratios  =

+1


=

+ 1

2+1
· 2


=

+ 1

2
=

1

2


1 +

1




form a

decreasing sequence, and 11 =
11 + 1

2(11)
=

12

22
=

6

11
 1, so by Exercise 46(a), the error in using 10 to approximate the sum

of the series
∞
=1



2
is 10 ≤ 11

1− 11
=

11
2048

1− 6
11

=
121

10,240
≈ 00118.

49. (i) Following the hint, we get that ||   for  ≥  , and so since the geometric series
∞

=1 
 converges [0    1],

the series
∞

= || converges as well by the Comparison Test, and hence so does
∞

=1 ||, so
∞

=1  is absolutely

convergent.

(ii) If lim
→∞



|| =   1, then there is an integer such that 


||  1 for all  ≥  , so ||  1 for  ≥  . Thus,

lim
→∞

 6= 0, so
∞

=1  diverges by the Test for Divergence.

(iii) Consider
∞
=1

1


[diverges] and

∞
=1

1

2
[converges]. For each sum, lim

→∞


|| = 1, so the Root Test is inconclusive.

50. (a) lim
→∞

+1



= lim
→∞

 [4(+ 1)]! [1103 + 26,390(+ 1)]

[(+ 1)!]4 3964(+1)
· (!)4 3964

(4)! (1103 + 26,390)


= lim

→∞
(4+ 4)(4+ 3)(4+ 2)(4+ 1)(26,390+ 27,493)

(+ 1)4 3964 (26,390+ 1103)
=

44

3964
=

1

994
 1,

so by the Ratio Test, the series
∞
=0

(4)! (1103 + 26,390)

(!)4 3964
converges.

(b)
1


=

2
√

2

9801

∞
=0

(4)! (1103 + 26,390)

(!)4 3964

With the first term ( = 0),
1


≈ 2

√
2

9801
· 1103

1
⇒  ≈ 3141 592 73, so we get 6 correct decimal places of ,

which is 3141 592 653 589 793 238 to 18 decimal places.

With the second term ( = 1),
1


≈ 2

√
2

9801


1103

1
+

4! (1103 + 26,390)
3964


⇒  ≈ 3141 592 653 589 793 878, so

we get 15 correct decimal places of .
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51. (a) Since


 is absolutely convergent, and since
+


 ≤ || and
−  ≤ || (because +

 and − each equal

either  or 0), we conclude by the Comparison Test that both


+
 and


− must be absolutely convergent.

Or: Use Theorem 11.2.8.

(b) We will show by contradiction that both


+
 and


− must diverge. For suppose that


+
 converged. Then so

would


+
 − 1

2


by Theorem 11.2.8. But


+
 − 1

2



=


1
2

( + ||)− 1
2



= 1
2

 ||, which

diverges because


 is only conditionally convergent. Hence,


+
 can’t converge. Similarly, neither can


− .

52. Let


 be the rearranged series constructed in the hint. [This series can be constructed by virtue of the result of

Exercise 51(b).] This series will have partial sums  that oscillate in value back and forth across . Since lim
→∞

 = 0

(by Theorem 11.2.6), and since the size of the oscillations | − | is always less than || because of the way


 was

constructed, we have that


 = lim
→∞

 = .

53. Suppose that


 is conditionally convergent.

(a)


2 is divergent: Suppose


2 converges. Then lim
→∞

2 = 0 by Theorem 6 in Section 11.2, so there is an

integer   0 such that    ⇒ 2 ||  1. For    , we have ||  1

2
, so




|| converges by

comparison with the convergent -series



1

2
. In other words,


 converges absolutely, contradicting the

assumption that


 is conditionally convergent. This contradiction shows that


2 diverges.

Remark: The same argument shows that


 diverges for any   1.

(b)
∞
=2

(−1)

 ln
is conditionally convergent. It converges by the Alternating Series Test, but does not converge absolutely


by the Integral Test, since the function () =

1

 ln
is continuous, positive, and decreasing on [2∞) and

 ∞

2



 ln
= lim

→∞

 

2



 ln
= lim

→∞


ln(ln)


2

=∞

. Setting  =

(−1)

 ln
for  ≥ 2, we find that

∞
=2

 =
∞
=2

(−1)

ln
converges by the Alternating Series Test.

It is easy to find conditionally convergent series


 such that


 diverges. Two examples are
∞
=1

(−1)−1


and

∞
=1

(−1)−1

√


, both of which converge by the Alternating Series Test and fail to converge absolutely because
 || is a

-series with  ≤ 1. In both cases,


 diverges by the Test for Divergence.
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11.7 Strategy for Testing Series

1. Use the Limit Comparison Test with  =
2 − 1

3 + 1
and  =

1


:

lim
→∞




= lim

→∞
(2 − 1)

3 + 1
= lim

→∞
3 − 

3 + 1
= lim

→∞
1− 12

1 + 1 /3
= 1  0. Since

∞
=1

1


is the divergent harmonic series, the

series
∞
=1

2 − 1

3 + 1
also diverges.

2.
− 1

3 + 1




3 + 1




3
=

1

2
for  ≥ 1, so

∞
=1

− 1

3 + 1
converges by comparison with

∞
=1

1

2
, which converges because it

is a p-series with  = 2  1.

3.
∞
=1

(−1)
2 − 1

3 + 1
=

∞
=1

(−1). Now  =
2 − 1

3 + 1
 0 for  ≥ 2, {} is decreasing for  ≥ 2, and lim

→∞
 = 0, so

the series
∞
=1

(−1)
2 − 1

3 + 1
converges by the Alternating Series Test. By Exercise 1,

∞
=1

2 − 1

3 + 1
diverges, so the series

∞
=1

(−1)
2 − 1

3 + 1
is conditionally convergent.

4. lim
→∞

|| = lim
→∞

(−1)
2 − 1

2 + 1

 = lim
→∞

1− 12

1 + 12
= 1 6= 0, so the series

∞
=1

(−1)
2 − 1

2 + 1
diverges by the Test for

Divergence.


Note that lim

→∞
(−1)

2 − 1

2 + 1
does not exist.



5. lim
→∞



2

H
= lim

→∞


2

H
= lim

→∞


2
=∞, so lim

→∞


2
=∞. Thus, the series

∞
=1



2
diverges by the Test for Divergence.

6. lim
→∞



|| = lim

→∞



2

(1 + )3
= lim

→∞
2

(1 + )3
= lim

→∞
1

(1+ 1)3
=

0

1
= 0  1, so the series

∞
=1

2

(1 + )3

converges by the Root Test.

7. Let () =
1


√

ln
. Then  is positive, continuous, and decreasing on [2∞), so we can apply the Integral Test.

Since


1


√

ln



 = ln,

 = 


=



−12

 = 2
12

+  = 2
√

ln + , we find

 ∞

2




√

ln
= lim

→∞

 

2




√

ln
= lim

→∞


2
√

ln

2

= lim
→∞


2
√

ln − 2
√

ln 2


=∞. Since the integral diverges, the

given series
∞
=2

1


√

ln
diverges.

8. lim
→∞

+1



 = lim
→∞

 (+ 1)4

4+1
· 4

4

 = lim
→∞

(+ 1)4

44
=

1

4
lim
→∞


1 +

1



4

=
1

4
(1) =

1

4
 1, so the series

∞
=1

(−1)−1
4

4
is absolutely convergent (and therefore convergent) by the Ratio Test.
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9. lim
→∞

+1



 = lim
→∞

 2+2

(2+ 2)!
· (2)!

2

 = lim
→∞

2

(2+ 2)(2+ 1)
= 0  1, so the series

∞
=0

(−1)
2

(2)!
is absolutely

convergent (and therefore convergent) by the Ratio Test.

10. Let () = 2−
3

. Then  is continuous and positive on [1∞), and  0() =
(2− 33)


3  0 for  ≥ 1, so  is

decreasing on [1∞) as well, and we can apply the Integral Test.
∞
1

2−
3

 = lim
→∞


− 1

3
−

3

1

= 1
3
, so the integral

converges, and hence, the series converges.

11.
∞
=1


1

3
+

1

3


=

∞
=1

1

3
+

∞
=1


1

3


. The first series converges since it is a -series with  = 3  1 and the second

series converges since it is geometric with || = 1
3
 1. The sum of two convergent series is convergent.

12.
1


√
2 + 1


1


√
2

=
1

2
, so

∞
=1

1


√
2 + 1

converges by comparison with the convergent -series
∞
=1

1

2

(  = 2  1).

13. lim
→∞

+1



 = lim
→∞

3+1 (+ 1)
2

(+ 1)!
· !

32

 = lim
→∞

3(+ 1)2

(+ 1)2
= 3 lim

→∞
+ 1

2
= 0  1, so the series

∞
=1

32

!

converges by the Ratio Test.

14.

 sin 2

1 + 2

 ≤ 1

1 + 2


1

2
=


1

2


, so the series

∞
=1

 sin 2

1 + 2

 converges by comparison with the geometric series
∞
=1


1

2


with || = 1

2
 1. Thus, the series

∞
=1

sin 2

1 + 2
converges absolutely, implying convergence.

15.  =
2−13+1


=

22−1331


=

3

2


2 · 3



. By the Root Test, lim

→∞



6




= lim

→∞
6


= 0  1, so the series

∞
=1


6




converges. It follows from Theorem 8(i) in Section 11.2 that the given series,

∞
=1

2−13+1


=

∞
=1

3

2


6




,

also converges.

16. Use the Limit Comparison Test with  =

√
4 + 1

3 + 
and  =

1


:

lim
→∞




= lim

→∞

√
4 + 1

(2 + 1)
= lim

→∞

√
4 + 12

(2 + 1)2
= lim

→∞


1 + 14

1 + 12
= 1  0. Since

∞
=1

1


is the divergent harmonic

series, the series
∞
=1

√
4 + 1

3 + 
also diverges.

17. lim
→∞

+1



= lim
→∞

1 · 3 · 5 · · · · · (2− 1)(2+ 1)

2 · 5 · 8 · · · · · (3− 1)(3+ 2)
· 2 · 5 · 8 · · · · · (3− 1)

1 · 3 · 5 · · · · · (2− 1)

 = lim
→∞

2+ 1

3+ 2

= lim
→∞

2 + 1

3 + 2
=

2

3
 1

so the series
∞
=1

1 · 3 · 5 · · · · · (2− 1)

2 · 5 · 8 · · · · · (3− 1)
converges by the Ratio Test.
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18.  =
1√
− 1

for  ≥ 2. {} is a decreasing sequence of positive numbers and lim
→∞

 = 0, so
∞
=2

(−1)
−1

√
− 1

converges by

the Alternating Series Test.

19. Let () =
ln√

. Then  0() =

2− ln

232
 0 when ln  2 or   2, so

ln√

is decreasing for   2.

By l’Hospital’s Rule, lim
→∞

ln√


= lim
→∞

1

1

2
√

 = lim

→∞
2√


= 0, so the series
∞
=1

(−1)
ln√

converges by the

Alternating Series Test.

20.  =
3
√
 − 1

(
√
 + 1)


3
√


(
√
 + 1)


3
√



√


=
13

32
=

1

76
, so the series

∞
=1

3
√
 − 1

(
√
 + 1)

converges by comparison with the

convergent -series
∞
=1

1

76


 = 7

6
 1


.

21. lim
→∞

|| = lim
→∞

(−1) cos(12)
 = lim

→∞

cos(12)
 = cos 0 = 1, so the series

∞
=1

(−1) cos(12) diverges by the

Test for Divergence.

22. lim
→∞

|| = lim
→∞

 1

2 + sin 

 = lim
→∞

1

2 + sin 
, which does not exist (the terms vary between 1

3
and 1). Thus, the series

∞
=1

1

2 + sin 
diverges by the Test for Divergence.

23. Using the Limit Comparison Test with  = tan


1




and  =

1


, we have

lim
→∞




= lim

→∞
tan(1)

1
= lim

→∞
tan(1)

1

H
= lim

→∞
sec2(1) · (−12)

−12
= lim

→∞
sec2(1) = 12 = 1  0. Since

∞
=1

 is the divergent harmonic series,
∞
=1

 is also divergent.

24. lim
→∞

 = lim
→∞


 sin

1




= lim

→∞
sin(1)

1
= lim

→0+

sin


= 1 6= 0, so the series

∞
=1

 sin(1) diverges by the

Test for Divergence.

25. Use the Ratio Test. lim
→∞

+1



 = lim
→∞

 (+ 1)!

(+1)2
· 

2

!

 = lim
→∞

(+ 1)! · 2


2+2+1!
= lim

→∞
+ 1

2+1
= 0  1, so

∞
=1

!


2

converges.

26. lim
→∞

+1



 = lim
→∞

+1


= lim

→∞


2 + 2+ 2

5+1
· 5

2 + 1


= lim

→∞


1 + 2+ 22

1 + 12
· 1

5


=

1

5
 1, so

∞
=1

2 + 1

5

converges by the Ratio Test.

27.

 ∞

2

ln

2
 = lim

→∞


− ln


− 1




1

[using integration by parts]
H
= 1. So

∞
=1

ln

2
converges by the Integral Test, and since

 ln 

( + 1)
3


 ln 

3
=

ln 

2
, the given series

∞
=1

 ln 

( + 1)
3
converges by the Comparison Test.
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28. Since


1




is a decreasing sequence, 1 ≤ 11 =  for all  ≥ 1, and

∞
=1



2
converges ( = 2  1), so

∞
=1

1

2

converges by the Comparison Test. (Or use the Integral Test.)

29.
∞
=1

 =
∞
=1

(−1)
1

cosh
=

∞
=1

(−1) . Now  =
1

cosh
 0, {} is decreasing, and lim

→∞
 = 0, so the series

converges by the Alternating Series Test.

Or: Write
1

cosh
=

2

 + −


2


and

∞
=1

1


is a convergent geometric series, so

∞
=1

1

cosh
is convergent by the

Comparison Test. So
∞
=1

(−1)
1

cosh
is absolutely convergent and therefore convergent.

30. Let () =

√


+ 5
. Then () is continuous and positive on [1∞), and since  0() =

5− 

2
√
 (+ 5)

2
 0 for   5, () is

eventually decreasing, so we can use the Alternating Series Test. lim
→∞

√


+ 5
= lim

→∞
1

12 + 5−12
= 0, so the series

∞
=1

(−1) 
√


 + 5
converges.

31. lim
→∞

 = lim
→∞

5

3 + 4
= [divide by 4] lim

→∞
(54)

(34) + 1
=∞ since lim

→∞


3

4


= 0 and lim

→∞


5

4


=∞.

Thus,
∞
=1

5

3 + 4
diverges by the Test for Divergence.

32. lim
→∞



||= lim

→∞


 (!)

4

 = lim
→∞

!

4
= lim

→∞





· − 1


· − 2


· − 3


· (− 4)!



= lim
→∞


1− 1




1− 2




1− 3




(− 4)!


=∞,

so the series
∞
=1

(!)

4
diverges by the Root Test.

33. lim
→∞



|| = lim

→∞




+ 1

2
= lim

→∞
1

[(+ 1) ]
 =

1

lim
→∞

(1 + 1)
 =

1


 1, so the series

∞
=1




+ 1

2
converges by the Root Test.

34. 0 ≤  cos2  ≤ , so
1

+  cos2 
≥ 1

+ 
=

1

2
. Thus,

∞
=1

1

+  cos2 
diverges by comparison with

∞
=1

1

2
, which is

a constant multiple of the (divergent) harmonic series.

35.  =
1

1+1
=

1

 · 1
, so let  =

1


and use the Limit Comparison Test. lim

→∞



= lim

→∞
1

1
= 1  0

[see Exercise 4.4.63], so the series
∞
=1

1

1+1
diverges by comparison with the divergent harmonic series.

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

FOR INSTRUCTOR USE ONLY



NOT FOR S
ALE

1022 ¤ CHAPTER 11 INFINITE SEQUENCES AND SERIES

36. Note that (ln)
ln

=

ln ln

ln
=

ln

ln ln
= ln ln and ln ln→∞ as →∞, so ln ln  2 for sufficiently

large . For these  we have (ln)
ln

 2, so
1

(ln)
ln


1

2
. Since

∞
=2

1

2
converges [ = 2  1], so does

∞
=2

1

(ln)
ln

by the Comparison Test.

37. lim
→∞



|| = lim

→∞
(21 − 1) = 1− 1 = 0  1, so the series

∞
=1



√

2− 1


converges by the Root Test.

38. Use the Limit Comparison Test with  =

√

2− 1 and  = 1. Then

lim
→∞




= lim

→∞
21 − 1

1
= lim

→∞
21 − 1

1

H
= lim

→∞
21 · ln 2 · (−12)

−12
= lim

→∞
(21 · ln 2) = 1 · ln 2 = ln 2  0.

So since
∞
=1

 diverges (harmonic series), so does
∞
=1



√

2− 1

.

Alternate solution: 
√

2− 1 =
1

2(−1) + 2(−2) + 2(−3) + · · ·+ 21 + 1
[rationalize the numerator] ≥ 1

2
,

and since
∞
=1

1

2
=

1

2

∞
=1

1


diverges (harmonic series), so does

∞
=1



√

2− 1

by the Comparison Test.

11.8 Power Series

1. A power series is a series of the form
∞

=0 
 = 0 + 1+ 2

2 + 3
3 + · · · , where  is a variable and the ’s are

constants called the coefficients of the series.

More generally, a series of the form
∞

=0 (− ) = 0 + 1(− ) + 2(− )2 + · · · is called a power series in
(− ) or a power series centered at  or a power series about , where  is a constant.

2. (a) Given the power series
∞

=0 (− ), the radius of convergence is:

(i) 0 if the series converges only when  = 

(ii) ∞ if the series converges for all , or

(iii) a positive number  such that the series converges if |− |   and diverges if |− |  .

In most cases,  can be found by using the Ratio Test.

(b) The interval of convergence of a power series is the interval that consists of all values of  for which the series converges.

Corresponding to the cases in part (a), the interval of convergence is: (i) the single point {}, (ii) all real numbers; that is,
the real number line (−∞∞), or (iii) an interval with endpoints − and + which can contain neither, either, or

both of the endpoints. In this case, we must test the series for convergence at each endpoint to determine the interval of

convergence.

3. If  = (−1), then

lim
→∞

+1



 = lim
→∞

 (−1)+1(+ 1)+1

(−1) 

 = lim
→∞

(−1)
+ 1




 = lim
→∞


1 +

1




||


= ||. By the Ratio Test, the

series
∞
=1

(−1) converges when ||  1, so the radius of convergence  = 1. Now we’ll check the endpoints, that is,
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 = ±1. Both series
∞
=1

(−1)(±1) =
∞
=1

(∓1) diverge by the Test for Divergence since lim
→∞

|(∓1)| =∞. Thus,

the interval of convergence is  = (−1 1).

4. If  =
(−1)

3
√


, then

lim
→∞

+1



 = lim
→∞

 (−1)+1+1

3
√
+ 1

·
3
√


(−1)

 = lim
→∞

 (−1) 3
√


3
√
+ 1

 = lim
→∞

3


1

1 + 1
|| = ||. By the Ratio Test,

the series
∞
=1

(−1)

3
√


converges when ||  1, so  = 1. When  = 1, the series
∞
=1

(−1)

3
√


converges by the Alternating

Series Test. When  = −1, the series
∞
=1

1
3
√

diverges since it is a -series


 = 1

3
≤ 1


. Thus, the interval of convergence

is (−1 1].

5. If  =


2− 1
, then lim

→∞

+1



 = lim
→∞

 +1

2+ 1
· 2− 1



 = lim
→∞


2− 1

2+ 1
||


= lim
→∞


2− 1

2 + 1
||


= ||. By

the Ratio Test, the series
∞
=1



2− 1
converges when ||  1, so  = 1. When  = 1, the series

∞
=1

1

2− 1
diverges by

comparison with
∞
=1

1

2
since

1

2− 1


1

2
and

1

2

∞
=1

1


diverges since it is a constant multiple of the harmonic series.

When  = −1, the series
∞
=1

(−1)

2− 1
converges by the Alternating Series Test. Thus, the interval of convergence is [−1 1).

6. If  =
(−1)

2
, then

lim
→∞

+1



 = lim
→∞

 (−1)+1+1

(+ 1)2
· 2

(−1)

 = lim
→∞

 (−1)2

(+ 1)2

 = lim
→∞




+ 1

2

||


= 12 · || = ||.

By the Ratio Test, the series
∞
=1

(−1)

2
converges when ||  1, so  = 1. When  = 1, the series

∞
=1

(−1)

2
converges

by the Alternating Series Test. When  = −1, the series
∞
=1

1

2
converges since it is a -series with  = 2  1. Thus, the

interval of convergence is [−1 1].

7. If  =


!
, then lim

→∞

+1



 = lim
→∞

 +1

(+ 1)!
· !



 = lim
→∞

 

+ 1

 = || lim
→∞

1

+ 1
= || · 0 = 0  1 for all real .

So, by the Ratio Test,  =∞ and  = (−∞∞).

8. Here the Root Test is easier. If  = , then lim
→∞



|| = lim

→∞
 || =∞ if  6= 0, so  = 0 and  = {0}.

9. If  =


4 4
, then

lim
→∞

+1



 = lim
→∞

 +1

(+ 1)4 4+1
· 

4 4



 = lim
→∞

 4

(+ 1)4
· 
4

 = lim
→∞




+ 1

4 ||
4

= 14 · ||
4

=
||
4
. By the

Ratio Test, the series
∞
=1



4 4
converges when

||
4

 1 ⇔ ||  4 , so  = 4. When  = 4, the series
∞
=1

1

4
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converges since it is a p-series ( = 4  1). When  = −4, the series
∞
=1

(−1)

4
converges by the Alternating Series Test.

Thus, the interval of convergence is [−4 4].

10. If  = 22, then lim
→∞

+1



 = lim
→∞

2+1(+ 1)2+1

22

 = lim
→∞

2


+ 1



2

|| = 2 ||. By the Ratio Test,

the series
∞
=1

22 converges when 2 ||  1 ⇔ ||  1
2
, so  = 1

2
. When  = ± 1

2
, both series

∞
=1

22
± 1

2


=

∞
=1

(±1)2 diverge by the Test for Divergence since lim
→∞

(±1)2
 = ∞. Thus, the interval of

convergence is
− 1

2
 1

2


.

11. If  =
(−1) 4√


, then lim

→∞

+1



 = lim
→∞

 (−1)+1 4+1 +1

√
+ 1

·
√


(−1) 4 

 = lim
→∞




+ 1
· 4 || = 4 ||.

By the Ratio Test, the series
∞
=1

(−1) 4√


 converges when 4 ||  1 ⇔ ||  1
4
, so  = 1

4
. When  = 1

4
, the series

∞
=1

(−1)√


converges by the Alternating Series Test. When  = − 1
4
, the series

∞
=1

1√

diverges since it is a p-series


 = 1

2
≤ 1


. Thus, the interval of convergence is

− 1
4
 1

4


.

12. If  =
∞
=1

(−1)−1

5
, then lim

→∞

+1



 = lim
→∞

 (−1)+1

(+ 1) 5+1
· 5

(−1)−1

 = lim
→∞




+ 1

 ||
5

= 1 · ||
5

=
||
5
.

By the Ratio Test, the series
∞
=1

(−1)−1

5
 converges when

||
5

 1 ⇔ ||  5, so  = 5. When  = 5, the series

∞
=1

(−1)−1


converges by the Alternating Series Test. When  = −5, the series

∞
=1

−1


diverges since it is a constant

multiple of the harmonic series. Thus, the interval of convergence is (−5 5].

13. If  =


2(2 + 1)
, then

lim
→∞

+1



= lim
→∞

 (+ 1)+1

2+1(2 + 2+ 2)
· 2(2 + 1)



 = lim
→∞

3 + 2 + + 1

3 + 22 + 2
· ||

2

= lim
→∞

1 + 1+ 12 + 13

1 + 2+ 22
· ||

2
=
||
2

By the Ratio Test, the series
∞
=1



2(2 + 1)
 converges when

||
2

 1 ⇔ ||  2, so  = 2. When  = 2 the series

∞
=1



2 + 1
diverges by the Limit Comparison Test with  =

1


. When  = −2, the series

∞
=1

(−1)

2 + 1
converges by the

Alternating Series Test. Thus, the interval of convergence is [−2 2).

14. If  =
2

!
, then lim

→∞

+1



 = lim
→∞

 2+2

(+ 1)!
· !

2

 = lim
→∞

2


+ 1
= 0  1 for all real  So, by the Ratio Test,

 =∞ and  = (−∞∞).
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15. If  =
(− 2)

2 + 1
, then lim

→∞

+1



 = lim
→∞

 (− 2)+1

(+ 1)2 + 1
· 2 + 1

(− 2)

 = |− 2| lim
→∞

2 + 1

(+ 1)2 + 1
= |− 2|. By the

Ratio Test, the series
∞
=0

(− 2)

2 + 1
converges when |− 2|  1 [ = 1] ⇔ −1  − 2  1 ⇔ 1    3. When

 = 1, the series
∞
=0

(−1)
1

2 + 1
converges by the Alternating Series Test; when  = 3, the series

∞
=0

1

2 + 1
converges by

comparison with the p-series
∞
=1

1

2
[ = 2  1]. Thus, the interval of convergence is  = [1 3].

16. If  =
(−1)

(2− 1)2
(− 1), then

lim
→∞

+1



 = lim
→∞

 (−1)+1(− 1)+1

(2+ 1) 2+1
· (2− 1) 2

(−1)(− 1)

 = lim
→∞

2− 1

2+ 1
· |− 1|

2
=
|− 1|

2
. By the Ratio Test, the

series
∞
=1

(−1)

(2− 1) 2
(− 1) converges when

|− 1|
2

 1 ⇔ |− 1|  2 [ = 2] ⇔ −2  − 1  2 ⇔

−1    3. When  = 3, the series
∞
=1

(−1)

2− 1
converges by the Alternating Series Test. When  = −1, the series

∞
=1

1

2− 1
diverges by the Limit Comparison Test with  =

1


. Thus, the interval of convergence is (−1 3].

17. If  =
(+ 2)

2 ln
, then lim

→∞

 (+ 2)+1

2+1 ln(+ 1)
· 2 ln

(+ 2)

 = lim
→∞

ln

ln(+ 1)
· | + 2|

2
=
|+ 2|

2
since

lim
→∞

ln

ln(+ 1)
= lim

→∞
ln

ln(+ 1)

H
= lim

→∞
1

1(+ 1)
= lim

→∞
 + 1


= lim

→∞


1 +

1




= 1. By the Ratio Test, the series

∞
=2

(+ 2)

2 ln
converges when

| + 2|
2

 1 ⇔ | + 2|  2 [ = 2] ⇔ −2  + 2  2 ⇔ −4    0.

When  = −4, the series
∞
=2

(−1)

ln
converges by the Alternating Series Test. When  = 0, the series

∞
=2

1

ln
diverges by

the Limit Comparison Test with  =
1


(or by comparison with the harmonic series). Thus, the interval of convergence is

[−4 0).

18. If  =

√


8
(+ 6), then

lim
→∞

+1



= lim
→∞

√+ 1 ( + 6)+1

8+1
· 8√

(+ 6)

 = lim
→∞


+ 1


· |+ 6|

8

= lim
→∞


1 +

1


· |+ 6|

8
=
| + 6|

8

By the Ratio Test, the series
∞
=1

√


8
( + 6) converges when

|+ 6|
8

 1 ⇔ |+ 6|  8 [ = 8] ⇔

−8   + 6  8 ⇔ −14    2. When  = 2, the series
∞
=1

√
 diverges by the Test for Divergence since

lim
→∞

|| = lim
→∞

√
 = ∞  0. Similarly, when  = −14, the series

∞
=1

(−1)
√
 diverges. Thus, the interval of

convergence is (−14 2).

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

FOR INSTRUCTOR USE ONLY



NOT FOR S
ALE

1026 ¤ CHAPTER 11 INFINITE SEQUENCES AND SERIES

19. If  =
(− 2)




, then lim

→∞


|| = lim

→∞
|− 2|


= 0, so the series converges for all  (by the Root Test).

 =∞ and  = (−∞∞).

20. If  =
(2− 1)

5
√


, then

lim
→∞

+1



 = lim
→∞

 (2− 1)+1

5+1
√
+ 1

· 5
√


(2− 1)

 = lim
→∞

|2− 1|
5




+ 1
= lim

→∞
|2− 1|

5


1

1 + 1
=
|2− 1|

5
.

By the Ratio Test, the series
∞
=1

(2− 1)

5
√


converges when
|2− 1|

5
 1 ⇔ |2− 1|  5 ⇔

− 1
2

  5
2
⇔

− 5
2
 − 1

2
 5

2
⇔ −2    3, so  = 5

2
. When  = 3, the series

∞
=1

1√

is a divergent -series


 = 1

2
≤ 1


.

When  = −2, the series
∞
=1

(−1)√


converges by the Alternating Series Test. Thus, the interval of convergence

is  = [−2 3).

21.  =



(− ), where   0.

lim
→∞

+1



 = lim
→∞

(+ 1) |− |+1

+1
· 

 |− | = lim
→∞


1 +

1



 |− |


=
|− |


.

By the Ratio Test, the series converges when
|− |


 1 ⇔ |− |   [so  = ] ⇔ −  −    ⇔

−     + . When |− | = , lim
→∞

|| = lim
→∞

 =∞, so the series diverges. Thus,  = (−   + ).

22.  =


ln
(− ), where   0.

lim
→∞

+1



 = lim
→∞

+1(− )+1

ln(+ 1)
· ln

(− )

 = lim
→∞

ln

ln(+ 1)
·  |− | =  |− | since

lim
→∞

ln

ln(+ 1)
= lim

→∞
ln

ln(+ 1)

H
= lim

→∞
1

1( + 1)
= lim

→∞
 + 1



H
= lim

→∞
1

1
= 1. By the Ratio Test, the series

∞
=2



ln
(− ) converges when  |− |  1 ⇔ |− |  1


⇔ −1


 −  

1


⇔ − 1


   +

1


,

so  =
1


. When  = +

1


, the series

∞
=2

1

ln
diverges by comparison with the divergent -series

∞
=2

1


since

1

ln


1



for  ≥ 2. When  = − 1


, the series

∞
=2

(−1)

ln
converges by the Alternating Series Test. Thus, the interval of

convergence is  =


− 1


 +

1




.

23. If  = ! (2− 1), then lim
→∞

+1



 = lim
→∞

 (+ 1)! (2− 1)+1

!(2− 1)

 = lim
→∞

(+ 1) |2− 1|→∞ as →∞

for all  6= 1
2
. Since the series diverges for all  6= 1

2
,  = 0 and  =


1
2


.
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24.  =
2

2 · 4 · 6 · · · · · (2)
=

2

2!
=



2(− 1)!
, so

lim
→∞

+1



 = lim
→∞

(+ 1) ||+1

2+1!
· 2(− 1)!

 || = lim
→∞

+ 1

2

||
2

= 0. Thus, by the Ratio Test, the series converges for

all real  and we have  =∞ and  = (−∞∞).

25. If  =
(5− 4)

3
, then

lim
→∞

+1



= lim
→∞

 (5− 4)+1

(+ 1)3
· 3

(5− 4)

 = lim
→∞

|5− 4|




+ 1

3

= lim
→∞

|5− 4|


1

1 + 1

3

= |5− 4| · 1 = |5− 4|

By the Ratio Test,
∞
=1

(5− 4)

3
converges when |5− 4|  1 ⇔

− 4
5

  1
5
⇔ −1

5
 − 4

5
 1

5
⇔

3
5
   1, so  = 1

5
. When  = 1, the series

∞
=1

1

3
is a convergent -series ( = 3  1). When  = 3

5
, the series

∞
=1

(−1)

3
converges by the Alternating Series Test. Thus, the interval of convergence is  =


3
5
 1

.

26. If  =
2

 (ln)2
, then lim

→∞

+1



 = lim
→∞

 2+2

(+ 1)[ln(+ 1)]2
·  (ln)2

2

 =
2
 lim
→∞

 (ln)2

(+ 1)[ln(+ 1)]2
= 2.

By the Ratio Test, the series
∞
=2

2

 (ln)2
converges when 2  1 ⇔ ||  1, so  = 1. When  = ±1, 2 = 1, the

series
∞
=2

1

 (ln)2
converges by the Integral Test (see Exercise 11.3.22). Thus, the interval of convergence is  = [−1 1].

27. If  =


1 · 3 · 5 · · · · · (2− 1)
, then

lim
→∞

+1



 = lim
→∞

 +1

1 · 3 · 5 · · · · · (2− 1)(2+ 1)
· 1 · 3 · 5 · · · · · (2− 1)



 = lim
→∞

||
2+ 1

= 0  1. Thus, by

the Ratio Test, the series
∞
=1



1 · 3 · 5 · · · · · (2− 1)
converges for all real  and we have  =∞ and  = (−∞∞).

28. If  =
!

1 · 3 · 5 · · · · · (2− 1)
, then

lim
→∞

+1



 = lim
→∞

 (+ 1)!+1

1 · 3 · 5 · · · · · (2− 1)(2+ 1)
· 1 · 3 · 5 · · · · · (2− 1)

!

 = lim
→∞

(+ 1) ||
2+ 1

= 1
2
||.

By the Ratio Test, the series
∞
=1

 converges when 1
2
||  1 ⇒ ||  2 so  = 2. When  = ±2,

|| = ! 2

1 · 3 · 5 · · · · · (2− 1)
=

[1 · 2 · 3 · · · · · ] 2

[1 · 3 · 5 · · · · · (2− 1)]
=

2 · 4 · 6 · · · · · 2
1 · 3 · 5 · · · · · (2− 1)

 1, so both endpoint series

diverge by the Test for Divergence. Thus, the interval of convergence is  = (−2 2).

29. (a) We are given that the power series
∞

=0 
 is convergent for  = 4. So by Theorem 4, it must converge for at least

−4   ≤ 4. In particular, it converges when  = −2; that is,
∞

=0
(−2) is convergent.
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(b) It does not follow that
∞

=0 (−4) is necessarily convergent. [See the comments after Theorem 4 about convergence at

the endpoint of an interval. An example is  = (−1)(4).]

30. We are given that the power series
∞

=0


 is convergent for  = −4 and divergent when  = 6. So by Theorem 4 it

converges for at least−4 ≤   4 and diverges for at least  ≥ 6 and   −6. Therefore:

(a) It converges when  = 1; that is,


 is convergent.

(b) It diverges when  = 8; that is,


8 is divergent.

(c) It converges when  = −3; that is,


(−3) is convergent.

(d) It diverges when  = −9; that is,


(−9) =


(−1)9 is divergent.

31. If  =
(!)



()!
, then

lim
→∞

+1



= lim
→∞

[(+ 1)!]

()!

(!)

[(+ 1)]!

|| = lim
→∞

(+ 1)


(+ )(+  − 1) · · · (+ 2)(+ 1)
||

= lim
→∞


(+ 1)

(+ 1)

(+ 1)

(+ 2)
· · · (+ 1)

(+ )


||

= lim
→∞


+ 1

+ 1


lim
→∞


+ 1

+ 2


· · · lim

→∞


+ 1

+ 


||

=


1




||  1 ⇔ ||   for convergence, and the radius of convergence is  = 

32. (a) Note that the four intervals in parts (a)–(d) have midpoint = 1
2
(+ ) and radius of convergence  = 1

2
(− ). We also

know that the power series
∞
=0

 has interval of convergence (−1 1). To change the radius of convergence to , we can

change  to




. To shift the midpoint of the interval of convergence, we can replace  with −. Thus, a power

series whose interval of convergence is ( ) is
∞
=0

−




, where = 1

2
(+ ) and  = 1

2
( − ).

(b) Similar to Example 2, we know that
∞
=1




has interval of convergence [−1 1). By introducing the factor (−1)

in , the interval of convergence changes to (−1 1]. Now change the midpoint and radius as in part (a) to get

∞
=1

(−1)
1



−




as a power series whose interval of convergence is ( ].

(c) As in part (b),
∞
=1

1



−




is a power series whose interval of convergence is [ ).

(d) If we increase the exponent on  (to say,  = 2), in the power series in part (c), then when  = , the power series

∞
=1

1

2

−




will converge by comparison to the p-series with  = 2  1, and the interval of convergence will

be [ ].

33. No. If a power series is centered at , its interval of convergence is symmetric about . If a power series has an infinite radius

of convergence, then its interval of convergence must be (−∞∞), not [0∞).
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34. The partial sums of the series
∞

=0 
 definitely do not converge

to () = 1(1− ) for  ≥ 1, since  is undefined at  = 1 and

negative on (1∞), while all the partial sums are positive on this

interval. The partial sums also fail to converge to  for  ≤ −1,

since 0  ()  1 on this interval, while the partial sums are

either larger than 1 or less than 0. The partial sums seem to

converge to  on (−1 1). This graphical evidence is consistent

with what we know about geometric series: convergence for

||  1, divergence for || ≥ 1 (see Examples 2 and 7 in Section 11.2).

35. (a) If  =
(−1)


2+1

!(+ 1)! 22+1
, then

lim
→∞

+1



 = lim
→∞

 2+3

(+ 1)!(+ 2)! 22+3
· !(+ 1)! 22+1

2+1

 =


2

2

lim
→∞

1

(+ 1)(+ 2)
= 0 for all .

So 1() converges for all  and its domain is (−∞∞).

(b), (c) The initial terms of 1() up to  = 5 are 0 =


2
,

1 = −3

16
, 2 =

5

384
, 3 = − 7

18,432
, 4 =

9

1,474,560
,

and 5 = − 11

176,947,200
. The partial sums seem to

approximate 1() well near the origin, but as || increases,
we need to take a large number of terms to get a good

approximation.

36. (a) () = 1 +
∞
=1

, where  =
3

2 · 3 · 5 · 6 · · · · · (3− 1)(3)
, so lim

→∞

+1



 = ||3 lim
→∞

1

(3+ 2)(3+ 3)
= 0

for all , so the domain is R.

(b), (c) 0 = 1 has been omitted from the graph. The

partial sums seem to approximate () well

near the origin, but as || increases, we need to
take a large number of terms to get a good

approximation.

To plot , we must first define () for the CAS. Note that for  ≥ 1, the denominator of  is
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2 · 3 · 5 · 6 · · · · · (3− 1) · 3 =
(3)!

1 · 4 · 7 · · · · · (3− 2)
=

(3)!

=1
(3 − 2)

, so  =



=1
(3 − 2)

(3)!
3 and thus

() = 1 +
∞
=1



=1(3 − 2)

(3)!
3. Both Maple and Mathematica are able to plot  if we define it this way, and Derive

is able to produce a similar graph using a suitable partial sum of ().

Derive, Maple and Mathematica all have two initially known Airy functions, called AI·SERIES(z,m) and

BI·SERIES(z,m) from BESSEL.MTH in Derive and AiryAi and AiryBi in Maple and Mathematica (just Ai and

Bi in older versions of Maple). However, it is very difficult to solve for  in terms of the CAS’s Airy functions, although

in fact () =

√
3AiryAi() + AiryBi()√
3AiryAi(0) + AiryBi(0)

.

37. 2−1 = 1 + 2+ 2 + 23 + 4 + 25 + · · ·+ 2−2 + 22−1

= 1(1 + 2) + 2(1 + 2) + 4(1 + 2) + · · ·+ 2−2(1 + 2) = (1 + 2)(1 + 2 + 4 + · · ·+ 2−2)

= (1 + 2)
1− 2

1− 2
[by (11.2.3) with  = 2] → 1 + 2

1− 2
as →∞ by (11.2.4), when ||  1.

Also 2 = 2−1 + 2 → 1 + 2

1− 2
since 2 → 0 for ||  1. Therefore,  → 1 + 2

1− 2
since 2 and 2−1 both

approach
1 + 2

1− 2
as →∞. Thus, the interval of convergence is (−1 1) and () =

1 + 2

1− 2
.

38. 4−1 = 0 + 1 + 2
2 + 3

3 + 0
4 + 1

5 + 2
6 + 3

7 + · · ·+ 3
4−1

=

0 + 1+ 2

2 + 3
3
 

1 + 4 + 8 + · · ·+ 4−4
→ 0 + 1+ 2

2 + 3
3

1− 4
as →∞

[by (11.2.4) with  = 4] for
4
  1 ⇔ ||  1. Also 4, 4+1, 4+2 have the same limits (for example,

4 = 4−1 + 0
4and 4 → 0 for ||  1). So if at least one of 0, 1, 2, and 3 is nonzero, then the interval of

convergence is (−1 1) and () =
0 + 1+ 2

2 + 3
3

1− 4
.

39. We use the Root Test on the series



. We need lim

→∞


|| = || lim

→∞


|| =  ||  1 for convergence, or

||  1, so  = 1.

40. Suppose  6= 0. Applying the Ratio Test to the series


(− ), we find that

 = lim
→∞

+1



 = lim
→∞

+1(− )+1

(− )

 = lim
→∞

|− |
|+1| (∗) =

|− |
lim
→∞

|+1| (if lim
→∞

|+1| 6= 0), so the

series converges when
|− |

lim
→∞

|+1|  1 ⇔ |− |  lim
→∞

 

+1

. Thus,  = lim
→∞

 

+1

. If lim
→∞

 

+1

 = 0

and |− | 6= 0, then (∗) shows that  = ∞ and so the series diverges, and hence,  = 0. Thus, in all cases,

 = lim
→∞

 

+1

.
41. For 2    3,




 diverges and



 converges. By Exercise 11.2.85,


( + ) diverges. Since both series

converge for ||  2, the radius of convergence of


( + ) is 2.
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42. Since



 converges whenever ||  ,




2 =




2


converges whenever
2
   ⇔ || 

√
, so the

second series has radius of convergence
√
.

11.9 Representations of Functions as Power Series

1. If () =
∞
=0


 has radius of convergence 10, then  0() =

∞
=1


−1 also has radius of convergence 10 by

Theorem 2.

2. If () =
∞
=0


 converges on (−2 2), then


()  =  +

∞
=0



+ 1
+1 has the same radius of convergence

(by Theorem 2), but may not have the same interval of convergence—it may happen that the integrated series converges at an

endpoint (or both endpoints).

3. Our goal is to write the function in the form
1

1− 
, and then use Equation (1) to represent the function as a sum of a power

series. () =
1

1 + 
=

1

1− (−)
=

∞
=0

(−) =
∞
=0

(−1) with |−|  1 ⇔ ||  1, so  = 1 and  = (−1 1).

4. () =
5

1− 42
= 5


1

1− 42


= 5

∞
=0

(42) = 5
∞
=0

42. The series converges when
42

  1 ⇔

||2  1
4
⇔ ||  1

2
, so  = 1

2
and  =

− 1
2
 1

2


.

5. () =
2

3− 
=

2

3


1

1− 3


=

2

3

∞
=0


3


or, equivalently, 2

∞
=0

1

3+1
. The series converges when


3

  1,

that is, when ||  3, so  = 3 and  = (−3 3).

6. () =
4

2+ 3
=

4

3


1

1 + 23


=

4

3


1

1− (−23)


=

4

3

∞
=0


−2

3


or, equivalently,

∞
=0

(−1)
2+2

3+1
.

The series converges when

−2

3

  1, that is, when ||  3
2
, so  = 3

2
and  =

− 3
2
 3

2


.

7. () =
2

4 + 16
=

2

16


1

1 + 416


=

2

16


1

1− [−(2)]4


=

2

16

∞
=0


−


2

4
or, equivalently,

∞
=0

(−1) 4+2

24+4
.

The series converges when

−24
  1 ⇒


2

  1 ⇒ ||  2, so  = 2 and  = (−2 2).

8. () =


22 + 1
= 


1

1− (−22)


= 

∞
=0

(−22) or, equivalently,
∞
=0

(−1)22+1. The series converges when

−22
  1 ⇒

2
  1

2
⇒ ||  1√

2
, so  =

1√
2
and  =


− 1√

2


1√
2


.
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9. () =
− 1

+ 2
=

 + 2− 3

+ 2
= 1− 3

+ 2
= 1− 32

2 + 1
= 1− 3

2
· 1

1− (−2)

= 1− 3

2

∞
=0


−

2


= 1− 3

2
− 3

2

∞
=1


−

2


= −1

2
−

∞
=1

(−1) 3

2+1
.

The geometric series
∞
=0


−

2


converges when

−

2

  1 ⇔ ||  2, so  = 2 and  = (−2 2).

Alternatively, you could write () = 1− 3


1

 + 2


and use the series for

1

+ 2
found in Example 2.

10. () =


2 + 2
[  0] =



2


1

1− (−22)


=

1



∞
=0


−2

2


=

∞
=0

(−1)2

2+1
. The geometric series

∞
=0


−2

2


converges when

−2

2

  1 ⇔ ||  , so  =  and  = (− ).

11. () =
2− 4

2 − 4+ 3
=

2− 4

(− 1)(− 3)
=



− 1
+



− 3
⇒ 2− 4 = (− 3) +(− 1). Let  = 1 to get

−2 = −2 ⇔  = 1 and  = 3 to get 2 = 2 ⇔  = 1. Thus,

2− 4

2 − 4+ 3
=

1

− 1
+

1

− 3
=

−1

1− 
+

1

−3


1

1− (3)


= −

∞
=0

 − 1

3

∞
=0


3


=

∞
=0


−1− 1

3+1


.

We represented  as the sum of two geometric series; the first converges for  ∈ (−1 1) and the second converges for

 ∈ (−3 3). Thus, the sum converges for  ∈ (−1 1) = 

12. () =
2+ 3

2 + 3+ 2
=

2+ 3

(+ 1)( + 2)
=



+ 1
+



+ 2
⇒ 2+ 3 = (+ 2) +(+ 1). Let  = −1 to get 1 = 

and  = −2 to get −1 = − ⇔  = 1. Thus,

2+ 3

2 + 3+ 2
=

1

 + 1
+

1

+ 2
=

1

1− (−)
+

1

2


1

1− (−2)


=
∞
=0

(−) +
1

2

∞
=0


−

2


=

∞
=0


(−1)


1 +

1

2+1




We represented  as the sum of two geometric series; the first converges for  ∈ (−1 1) and the second converges for

 ∈ (−2 2). Thus, the sum converges for  ∈ (−1 1) = 

13. (a) () =
1

(1 + )
2

=




 −1

1 + 


= − 



 ∞
=0

(−1) 


[from Exercise 3]

=
∞
=1

(−1)+1−1 [from Theorem 2(i)] =
∞
=0

(−1)(+ 1) with  = 1.

In the last step, note that we decreased the initial value of the summation variable  by 1, and then increased each

occurrence of  in the term by 1 [also note that (−1)+2 = (−1)].

(b) () =
1

(1 + )
3

= −1

2






1

(1 + )
2


= −1

2





 ∞
=0

(−1)(+ 1)


[from part (a)]

= − 1
2

∞
=1

(−1)(+ 1)−1 = 1
2

∞
=0

(−1)(+ 2)(+ 1) with  = 1.

(c) () =
2

(1 + )3
= 2 · 1

(1 + )3
= 2 · 1

2

∞
=0

(−1)(+ 2)(+ 1) [from part (b)]

=
1

2

∞
=0

(−1)(+ 2)(+ 1)+2 [continued]
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To write the power series with  rather than +2, we will decrease each occurrence of  in the term by 2 and increase

the initial value of the summation variable by 2. This gives us
1

2

∞
=2

(−1)()(− 1) with  = 1.

14. (a)


1

1− 
 = − ln(1 − ) +  and


1

1− 
 =


(1 + + 

2
+ · · · )  =


+

2

2
+

3

3
+ · · ·


+  =

∞
=1




+  for ||  1.

So − ln(1− ) =
∞
=1




+ and letting  = 0 gives 0 = . Thus, () = ln(1− ) = −

∞
=1




with  = 1.

(b) () =  ln(1− ) = −
∞
=1




= −

∞
=1

+1


.

(c) Letting  =
1

2
gives ln

1

2
= −

∞
=1

(12)


⇒ ln 1− ln 2 = −

∞
=1

1

2
⇒ ln 2 =

∞
=1

1

2
.

15. () = ln(5− ) = −




5− 
= −1

5




1− 5
= −1

5

  ∞
=0


5


 =  − 1

5

∞
=0

+1

5(+ 1)
=  −

∞
=1



5

Putting  = 0, we get  = ln 5. The series converges for |5|  1 ⇔ ||  5, so  = 5.

16. () = 2 tan−1(3) = 2
∞
=0

(−1)
(3)2+1

2+ 1
[by Example 7] =

∞
=0

(−1)
6+3+2

2+ 1
=

∞
=0

(−1)
6+5

2+ 1
for

3
  1 ⇔ ||  1, so  = 1.

17. We know that
1

1 + 4
=

1

1− (−4)
=

∞
=0

(−4). Differentiating, we get

−4

(1 + 4)2
=

∞
=1

(−4)−1 =
∞
=0

(−4)+1(+ 1), so

() =


(1 + 4)2
=
−
4
· −4

(1 + 4)2
=
−
4

∞
=0

(−4)+1(+ 1) =
∞
=0

(−1)4(+ 1)+1

for |−4|  1 ⇔ ||  1
4
, so  = 1

4
.

18.
1

2− 
=

1

2(1− 2)
=

1

2

∞
=0


2


=

∞
=0

1

2+1
. Now






1

2− 


=





 ∞
=0

1

2+1



⇒

1

(2− )2
=

∞
=1

1

2+1
−1 and






1

(2− )2


=





 ∞
=1

1

2+1
−1


⇒

2

(2− )3
=

∞
=2

1

2+1
(− 1)−2 =

∞
=0

(+ 2)(+ 1)

2+3
.

Thus, () =




2− 

3

=
3

(2− )3
=

3

2
· 2

(2− )3
=

3

2

∞
=0

(+ 2)(+ 1)

2+3
 =

∞
=0

(+ 2)(+ 1)

2+4
+3

for

2

  1 ⇔ ||  2, so  = 2.
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19. By Example 5,
1

(1− )2
=

∞
=0

(+ 1). Thus,

() =
1 + 

(1− )2
=

1

(1− )2
+



(1− )2
=

∞
=0

(+ 1) +
∞
=0

(+ 1)+1

=
∞
=0

(+ 1) +
∞
=1

 [make the starting values equal]

= 1 +
∞
=1

[(+ 1) + ] = 1 +
∞
=1

(2+ 1) =
∞
=0

(2+ 1) with  = 1.

20. By Example 5,
1

(1− )2
=

∞
=0

( + 1), so






1

(1− )2


=





 ∞
=0

(+ 1)


⇒ 2

(1− )3
=

∞
=1

(+ 1)−1. Thus,

() =
2 + 

(1− )3
=

2

(1− )3
+



(1− )3
=

2

2
· 2

(1− )3
+



2
· 2

(1− )3

=
2

2

∞
=1

(+ 1)−1 +


2

∞
=1

(+ 1)−1 =
∞
=1

(+ 1)

2
+1 +

∞
=1

(+ 1)

2


=
∞
=2

(− 1)

2
 +

∞
=1

(+ 1)

2
 [make the exponents on  equal by changing an index]

=
∞
=2

2 − 

2
 + +

∞
=2

2 + 

2
 [make the starting values equal]

= +
∞
=2

2 =
∞
=1

2 with  = 1

21. () =
2

2 + 1
= 2


1

1− (−2)


= 2

∞
=0

(−2) =
∞
=0

(−1) 2+2. This series converges when
−2

  1 ⇔

2  1 ⇔ ||  1, so  = 1. The partial sums are 1 = 2,

2 = 1 − 4, 3 = 2 + 6, 4 = 3 − 8, 5 = 4 + 10,    .

Note that 1 corresponds to the first term of the infinite sum,

regardless of the value of the summation variable and the value of the

exponent. As  increases, () approximates  better on the

interval of convergence, which is (−1 1).

22. From Example 6, we have ln(1 + ) =
∞
=1

(−1)−1 



with ||  1, so() = ln(1 + 4) =

∞
=1

(−1)−1 
4


with4

  1 ⇔ ||  1 [ = 1]. The partial sums are 1 = 4, 2 = 1 − 1
2
8, 3 = 2 + 1

3
12, 4 = 3 − 1

4
16,

5 = 4 + 1
5
20,    . Note that 1 corresponds to the first term of

the infinite sum, regardless of the value of the summation variable

and the value of the exponent. As increases, () approximates

 better on the interval of convergence, which is [−1 1]. (When

 = ±1, the series is the convergent alternating harmonic series.)
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23. () = ln


1 + 

1− 


= ln(1 + )− ln(1− ) =




1 + 
+




1− 
=




1− (−)
+




1− 

=

  ∞
=0

(−1)




+
∞
=0





 =


[(1− + 

2 − 
3
+ 

4 − · · · ) + (1 + + 
2
+ 

3
+ 

4
+ · · · )] 

=


(2 + 2

2
+ 2

4
+ · · · )  =

 ∞
=0

2
2

 =  +
∞
=0

22+1

2+ 1

But (0) = ln 1
1

= 0, so  = 0 and we have () =
∞
=0

22+1

2+ 1
with  = 1. If  = ±1, then () = ±2

∞
=0

1

2+ 1
,

which both diverge by the Limit Comparison Test with  =
1


.

The partial sums are 1 =
2

1
, 2 = 1 +

23

3
, 3 = 2 +

25

5
,    .

As  increases, () approximates  better on the interval of

convergence, which is (−1 1).

24. () = tan−1(2) = 2




1 + 42
= 2

 ∞
=0

(−1)


4

2


 = 2

 ∞
=0

(−1)

4



2


=  + 2
∞
=0

(−1)42+1

2+ 1
=

∞
=0

(−1)22+12+1

2+ 1
[(0) = tan−1 0 = 0, so  = 0]

The series converges when
42

  1 ⇔ ||  1
2
, so  = 1

2
. If  = ± 1

2
, then () =

∞
=0

(−1)
1

2+ 1
and

() =
∞
=0

(−1)+1 1

2+ 1
, respectively. Both series converge by the Alternating Series Test. The partial sums are

1 =
2

1
, 2 = 1 − 233

3
, 3 = 2 +

255

5
,    .

As  increases, () approximates  better on the interval of convergence, which is
− 1

2
 1

2


.

25.


1− 8
=  · 1

1− 8
= 

∞
=0

(8) =
∞
=0

8+1 ⇒




1− 8
 =  +

∞
=0

8+2

8+ 2
. The series for

1

1− 8
converges

when
8  1 ⇔ ||  1, so  = 1 for that series and also the series for (1− 8). By Theorem 2, the series for


1− 8
 also has  = 1.
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26.


1 + 3
=  · 1

1− (−3) = 
∞
=0

(−3) =
∞
=0

(−1)3+1 ⇒




1 + 3
 =  +

∞
=0

(−1)
 3+2

3+ 2
. The series for

1

1 + 3
converges when

−3  1 ⇔ ||  1, so  = 1 for that series and also for the series


1 + 3
. By Theorem 2, the

series for




1 + 3
 also has  = 1.

27. From Example 6, ln(1 + ) =
∞
=1

(−1)−1 



for ||  1, so 2 ln(1 + ) =

∞
=1

(−1)−1 
+2


and




2
ln(1 + )  =  +

∞
=1

(−1)
−1 +3

(+ 3)
.  = 1 for the series for ln(1 + ), so  = 1 for the series representing

2 ln(1 + ) as well. By Theorem 2, the series for



2
ln(1 + )  also has  = 1.

28. From Example 7, tan−1  =
∞
=0

(−1)
2+1

2+ 1
for ||  1, so

tan−1 


=

∞
=0

(−1)
2

2+ 1
and


tan−1 


 =  +

∞
=0

(−1)
 2+1

(2+ 1)2
.  = 1 for the series for tan−1 , so  = 1 for the series representing

tan−1 


as well. By Theorem 2, the series for


tan−1 


 also has  = 1.

29.


1 + 3
= 


1

1− (−3)


= 

∞
=0

(−3) =
∞
=0

(−1)3+1 ⇒




1 + 3
 =

 ∞
=0

(−1)



3+1
 =  +

∞
=0

(−1)
 3+2

3+ 2
. Thus,

 =

 03

0



1 + 3
 =


2

2
− 5

5
+

8

8
− 11

11
+ · · ·

03
0

=
(03)2

2
− (03)5

5
+

(03)8

8
− (03)11

11
+ · · · .

The series is alternating, so if we use the first three terms, the error is at most (03)1111 ≈ 16× 10−7. So

 ≈ (03)22− (03)55 + (03)88 ≈ 0044 522 to six decimal places.

30. We substitute 2 for  in Example 7, and find that
arctan(2) =

 ∞
=0

(−1)
 (2)2+1

2+ 1
 =

 ∞
=0

(−1)
 2+1

22+1(2+ 1)


=  +
∞
=0

(−1)
2+2

22+1(2+ 1)(2+ 2)

Thus,

 =

 12

0

arctan(2) =


2

2(1)(2)
− 4

23(3)(4)
+

6

25(5)(6)
− 8

27(7)(8)
+

10

29(9)(10)
− · · ·

12
0

=
1

23(1)(2)
− 1

27(3)(4)
+

1

211(5)(6)
− 1

215(7)(8)
+

1

219(9)(10)
− · · ·

[continued]
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The series is alternating, so if we use four terms, the error is at most 1(219 · 90) ≈ 21× 10−8. So

 ≈ 1

16
− 1

1536
+

1

61,440
− 1

1,835,008
≈ 0061 865 to six decimal places.

Remark: The sum of the first three terms gives us the same answer to six decimal places, but the error is at most

11,835,008 ≈ 55× 10−7, slightly too large to guarantee the desired accuracy.

31. We substitute 2 for  in Example 6, and find that
 ln(1 + 

2
)  =



∞
=1

(−1)
−1 (2)


 =

 ∞
=1

(−1)
−1 

2+1


 =  +

∞
=1

(−1)
−1 2+2

(2+ 2)

Thus,

 ≈
 02

0

 ln(1 + 
2
)  =


4

1(4)
− 6

2(6)
+

8

3(8)
− 10

4(10)
+ · · ·

02
0

=
(02)4

4
− (02)6

12
+

(02)8

24
− (02)10

40
+ · · ·

The series is alternating, so if we use two terms, the error is at most (02)824 ≈ 11× 10−7. So

 ≈ (02)4

4
− (02)6

12
≈ 0000 395 to six decimal places.

32.
 03

0

2

1 + 4
 =

 03

0


2
∞
=0

(−1)



4
 =

∞
=0


(−1)4+3

4+ 3

03
0

=
∞
=0

(−1)


34+3

(4+ 3)104+3

=
33

3× 103
− 37

7× 107
+

311

11× 1011
− · · ·

The series is alternating, so if we use only two terms, the error is at most
311

11× 1011
≈ 0000 000 16. So, to six decimal

places,
 03

0

2

1 + 4
 ≈ 33

3× 103
− 37

7× 107
≈ 0008 969.

33. By Example 7, arctan = − 3

3
+

5

5
− 7

7
+ · · · , so arctan 02 = 02− (02)3

3
+

(02)5

5
− (02)7

7
+ · · · .

The series is alternating, so if we use three terms, the error is at most
(02)7

7
≈ 0000 002.

Thus, to five decimal places, arctan 02 ≈ 02− (02)3

3
+

(02)5

5
≈ 0197 40.

34. () =
∞
=0

(−1)2

(2)!
⇒  0() =

∞
=1

(−1)22−1

(2)!
[the first term disappears], so

 00() =
∞
=1

(−1)(2)(2− 1)2−2

(2)!
=

∞
=1

(−1)2(−1)

[2(− 1)]!
=

∞
=0

(−1)+12

(2)!
[substituting + 1 for ]

= −
∞
=0

(−1)2

(2)!
= −() ⇒  00() + () = 0.
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35. (a) 0() =
∞
=0

(−1)

2

22(!)2
  00() =

∞
=1

(−1)


22−1

22(!)2
, and  000 () =

∞
=1

(−1)


2(2− 1)2−2

22(!)2
, so

2 000 () +  00() + 20() =
∞
=1

(−1)


2(2− 1)2

22(!)2
+

∞
=1

(−1)


22

22(!)2
+

∞
=0

(−1)

2+2

22(!)2

=
∞
=1

(−1)


2(2− 1)2

22(!)2
+

∞
=1

(−1)


22

22(!)2
+

∞
=1

(−1)
−1

2

22−2 [(− 1)!]
2

=
∞
=1

(−1)


2(2− 1)2

22(!)2
+

∞
=1

(−1)


22

22(!)2
+

∞
=1

(−1)(−1)−12222

22(!)2

=
∞
=1

(−1)

2(2− 1) + 2− 222

22(!)2


2

=
∞
=1

(−1)

42 − 2+ 2− 42

22(!)2


2 = 0

(b)
 1

0

0()  =

 1

0

 ∞
=0

(−1)

2

22(!)2


 =

 1

0


1− 2

4
+

4

64
− 6

2304
+ · · ·




=


− 3

3 · 4 +
5

5 · 64 −
7

7 · 2304 + · · ·
1
0

= 1− 1

12
+

1

320
− 1

16,128
+ · · ·

Since 1
16,128 ≈ 0000062, it follows from The Alternating Series Estimation Theorem that, correct to three decimal places, 1

0
0()  ≈ 1− 1

12
+ 1

320
≈ 0920.

36. (a) 1() =
∞
=0

(−1)2+1

! (+ 1)! 22+1
,  01 () =

∞
=0

(−1)


(2+ 1)2

! (+ 1)! 22+1
, and  001 () =

∞
=1

(−1)


(2+ 1) (2)2−1

! (+ 1)! 22+1
.

2 001 () +  01() +

2 − 1


1()

=
∞
=1

(−1)


(2+ 1)(2)2+1

! (+ 1)! 22+1
+

∞
=0

(−1)


(2+ 1)2+1

! (+ 1)! 22+1

+
∞
=0

(−1)

2+3

! (+ 1)! 22+1
−

∞
=0

(−1)

2+1

! (+ 1)! 22+1

=
∞
=1

(−1)


(2+ 1)(2)2+1

! (+ 1)! 22+1
+

∞
=0

(−1)


(2+ 1)2+1

! (+ 1)! 22+1

−
∞
=1

(−1)

2+1

(− 1)!! 22−1
−

∞
=0

(−1)

2+1

! (+ 1)! 22+1


Replace  with − 1

in the third term



=


2
− 

2
+

∞
=1

(−1)



(2+ 1)(2) + (2+ 1)− ()(+ 1)22 − 1

! (+ 1)! 22+1


2+1 = 0

(b) 0() =
∞
=0

(−1)

2

22 (!)
2

⇒

 00() =
∞
=1

(−1)


(2)2−1

22 (!)
2

=
∞
=0

(−1)
+1

2(+ 1)2+1

22+2 [(+ 1)!]
2

[Replace  with + 1]

= −
∞
=0

(−1)

2+1

22+1(+ 1)!!
[cancel 2 and + 1; take−1 outside sum] = −1()
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37. (a) () =
∞
=0



!
⇒  0() =

∞
=1

−1

!
=

∞
=1

−1

(− 1)!
=

∞
=0



!
= ()

(b) By Theorem 9.4.2, the only solution to the differential equation () = () is () = , but (0) = 1,

so = 1 and () = .

Or: We could solve the equation () = () as a separable differential equation.

38.
|sin|
2

≤ 1

2
, so

∞
=1

sin

2
converges by the Comparison Test.






sin

2


=

cos


, so when  = 2

[ an integer],
∞
=1

 0() =
∞
=1

cos(2)


=

∞
=1

1


, which diverges [harmonic series].  00 () = − sin, so

∞
=1

 00 () = −
∞
=1

sin, which converges only if sin = 0, or  =  [ an integer].

39. If  =


2
, then by the Ratio Test, lim

→∞

+1



 = lim
→∞

 +1

(+ 1)2
· 

2



 = || lim
→∞




+ 1

2

= ||  1 for

convergence, so  = 1. When  = ±1,
∞
=1

2

 =
∞
=1

1

2
which is a convergent -series ( = 2  1), so the interval of

convergence for  is [−1 1]. By Theorem 2, the radii of convergence of  0 and  00 are both 1, so we need only check the

endpoints. () =
∞
=1



2
⇒  0() =

∞
=1

−1

2
=

∞
=0



+ 1
, and this series diverges for  = 1 (harmonic series)

and converges for  = −1 (Alternating Series Test), so the interval of convergence is [−1 1).  00() =
∞
=1

−1

+ 1
diverges

at both 1 and −1 (Test for Divergence) since lim
→∞



+ 1
= 1 6= 0, so its interval of convergence is (−1 1).

40. (a)
∞
=1

−1 =
∞
=0




 =





 ∞
=0




=





1

1− 


= − 1

(1− )2
(−1) =

1

(1− )2
, ||  1.

(b) (i)
∞
=1

 = 
∞
=1

−1 = 


1

(1− )2


[from part (a)] =



(1− )2
for ||  1.

(ii) Put  = 1
2
in (i):

∞
=1



2
=

∞
=1




1
2


=

12

(1− 12)2
= 2.

(c) (i)
∞
=2

(− 1) = 2
∞
=2

(− 1)−2 = 2 



 ∞
=1

−1


= 2 



1

(1− )2

= 2 2

(1− )3
=

22

(1− )3
for ||  1.

(ii) Put  = 1
2
in (i):

∞
=2

2 − 

2
=

∞
=2

(− 1)


1
2


=

2(12)2

(1− 12)3
= 4.

(iii) From (b)(ii) and (c)(ii), we have
∞
=1

2

2
=

∞
=1

2 − 

2
+

∞
=1



2
= 4 + 2 = 6.
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41. By Example 7, tan−1  =
∞
=0

(−1)
2+1

2+ 1
for ||  1. In particular, for  =

1√
3
, we

have


6
= tan−1


1√
3


=

∞
=0

(−1)

1
√

3
2+1

2+ 1
=

∞
=0

(−1)


1

3


1√
3

1

2+ 1
, so

 =
6√
3

∞
=0

(−1)

(2+ 1)3
= 2
√

3
∞
=0

(−1)

(2+ 1)3
.

42. (a)
 12

0



2 − + 1
=

 12

0



(− 12)2 + 34


− 1

2
=

√
3

2
,  =

2√
3


− 1

2


,  =

√
3

2




=

 0

−1
√

3

√
32



(34)(2 + 1)
=

2
√

3

3


tan

−1

0
−1

√
3

=
2√
3


0−


−

6


=



3
√

3

(b)
1

3 + 1
=

1

(+ 1)(2 − + 1)
⇒

1

2 − + 1
= (+ 1)


1

1 + 3


= (+ 1)

1

1− (−3)
= (+ 1)

∞
=0

(−1)3

=
∞
=0

(−1)3+1 +
∞
=0

(−1)3 for ||  1 ⇒




2 − + 1
=  +

∞
=0

(−1)
 3+2

3+ 2
+

∞
=0

(−1)
 3+1

3+ 1
for ||  1 ⇒

 12

0



2 − + 1
=

∞
=0

(−1)



1

4 · 8(3+ 2)
+

1

2 · 8(3+ 1)


=

1

4

∞
=0

(−1)

8


2

3+ 1
+

1

3+ 2


.

By part (a), this equals


3
√

3
, so  =

3
√

3

4

∞
=0

(−1)

8


2

3+ 1
+

1

3+ 2


.

11.10 Taylor and Maclaurin Series

1. Using Theorem 5 with
∞
=0

(− 5),  =
 ()()

!
, so 8 =

 (8)(5)

8!
.

2. (a) Using Equation 6, a power series expansion of  at 1 must have the form (1) +  0(1)(− 1) + · · · . Comparing to the
given series, 16− 08(− 1) + · · · , we must have  0(1) = −08. But from the graph,  0(1) is positive. Hence, the given

series is not the Taylor series of  centered at 1.

(b) A power series expansion of  at 2 must have the form (2) +  0(2)(− 2) + 1
2
 00(2)(− 2)2 + · · · . Comparing to the

given series, 28 + 05(− 2) + 15(− 2)2 − 01(− 2)3 + · · · , we must have 1
2
 00(2) = 15; that is,  00(2) is positive.

But from the graph,  is concave downward near  = 2, so  00(2) must be negative. Hence, the given series is not the

Taylor series of  centered at 2.

3. Since  ()(0) = (+ 1)!, Equation 7 gives the Maclaurin series

∞
=0

 ()(0)

!
 =

∞
=0

(+ 1)!

!
 =

∞
=0

(+ 1). Applying the Ratio Test with  = (+ 1) gives us
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lim
→∞

+1



 = lim
→∞

 (+ 2)+1

(+ 1)

 = || lim
→∞

+ 2

+ 1
= || · 1 = ||. For convergence, we must have ||  1, so the

radius of convergence  = 1.

4. Since  ()(4) =
(−1) !

3(+ 1)
, Equation 6 gives the Taylor series

∞
=0

 ()(4)

!
(− 4) =

∞
=0

(−1) !

3(+ 1)!
(− 4) =

∞
=0

(−1)

3(+ 1)
(− 4), which is the Taylor series for 

centered at 4. Apply the Ratio Test to find the radius of convergence .

lim
→∞

+1



= lim
→∞

 (−1)+1(− 4)+1

3+1(+ 2)
· 3(+ 1)

(−1)(− 4)

 = lim
→∞

 (−1)(− 4)(+ 1)

3(+ 2)


=

1

3
|− 4| lim

→∞
+ 1

+ 2
=

1

3
|− 4|

For convergence, 1
3
|− 4|  1 ⇔ |− 4|  3, so  = 3.

5.
  ()()  ()(0)

0  0

1 (+ 1) 1

2 (+ 2) 2

3 (+ 3) 3

4 (+ 4) 4

Using Equation 6 with  = 0 to 4 and  = 0, we get

4
=0

 ()(0)

!
(− 0) =

0

0!
0 +

1

1!
1 +

2

2!
2 +

3

3!
3 +

4

4!
4

= + 2 + 1
2
3 + 1

6
4

6.
  ()()  ()(2)

0
1

1 + 
1
3

1 − 1

(1 + )2
− 1

9

2
2

(1 + )3
2
27

3 − 6

(1 + )4
− 6

81

3
=0

 ()(2)

!
(− 2) =

1
3

0!
(− 2)0 −

1
9

1!
(− 2)1

+
2
27

2!
(− 2)2 −

6
81

3!
(− 2)3

= 1
3
− 1

9
(− 2) + 1

27
(− 2)2 − 1

81
(− 2)3

7.
  ()()  ()(8)

0 3
√
 2

1
1

323

1
12

2 − 2

953
− 2

288

3
10

2783

10
6912

3
=0

 ()(8)

!
(− 8) =

2

0!
(− 8)0 +

1
12

1!
(− 8)1

−
2

288

2!
(− 8)2 +

10
6912

3!
(− 8)3

= 2 + 1
12

(− 8)− 1
288

(− 8)2 + 5
20,736 (− 8)3
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8.
  ()()  ()(1)

0 ln 0

1 1 1

2 −12 −1

3 23 2

4 −64 −6

4
=0

 ()(1)

!
(− 1) =

0

0!
(− 1)0 +

1

1!
(− 1)1 − 1

2!
(− 1)2

+
2

3!
(− 1)3 − 6

4!
(− 1)4

= (− 1)− 1
2
(− 1)2 + 1

3
(− 1)3 − 1

4
(− 1)4

9.
  ()()  ()(6)

0 sin 12

1 cos
√

32

2 − sin −12

3 − cos −√32

3
=0

 ()(6)

!


− 

6


=

12

0!


− 

6

0
+

√
32

1!


− 

6

1
− 12

2!


− 

6

2
−
√

32

3!


− 

6

3
=

1

2
+

√
3

2


− 

6


− 1

4


− 

6

2
−
√

3

12


− 

6

3

10.
  ()()  ()(0)

0 cos2  1

1 −2 cos sin = − sin 2 0

2 −2 cos 2 −2

3 4 sin 2 0

4 8 cos 2 8

5 −16 sin 2 0

6 −32 cos 2 −32

6
=0

 ()(0)

!
(− 0) =

1

0!
0 − 2

2!
2 +

8

4!
4 − 32

6!
6

= 1− 2 + 1
3
4 − 2

45
6

11.
  ()()  ()(0)

0 (1− )−2 1

1 2(1− )−3 2

2 6(1− )−4 6

3 24(1− )−5 24

4 120(1− )−6 120

...
...

...

(1− )−2 = (0) +  0(0)+
 00(0)

2!
2 +

 000(0)
3!

3 +
 (4)(0)

4!
4 + · · ·

= 1 + 2+ 6
2
2 + 24

6
3 + 120

24
4 + · · ·

= 1 + 2+ 32 + 43 + 54 + · · · =
∞
=0

(+ 1)

lim
→∞

+1



 = lim
→∞

 (+ 2)+1

(+ 1)

 = || lim
→∞

+ 2

+ 1
= || (1) = ||  1

for convergence, so  = 1.
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12.
  ()()  ()(0)

0 ln(1 + ) 0

1 (1 + )
−1

1

2 − (1 + )
−2 −1

3 2(1 + )−3 2

4 −6(1 + )−4 −6

5 24(1 + )−5 24

...
...

...

ln(1 + ) = (0) +  0(0)+
 00(0)

2!
2

+
 000(0)

3!
3 +

 (4)(0)

4!
4 +

 (5)(0)

5!
5 + · · ·

= 0 + − 1
2
2 + 2

6
3 − 6

24
4 + 24

120
5 − · · ·

= − 2

2
+

3

3
− 4

4
+

5

5
− · · · =

∞
=1

(−1)
−1




lim
→∞

+1



 = lim
→∞

 +1

+ 1
· 



 = lim
→∞

||
1 + 1

= ||  1 for convergence,

so  = 1.

Notice that the answer agrees with the entry for ln(1 + ) in Table 1, but we obtained it by a different method. (Compare with

Example 11.9.6.)

13.
  ()()  ()(0)

0 cos 1

1 − sin 0

2 − cos −1

3 sin 0

4 cos 1

...
...

...

cos= (0) +  0(0) +
 00(0)

2!
2 +

 000(0)
3!

3 +
 (4)(0)

4!
4 + · · ·

= 1− 1

2!
2 +

1

4!
4 − · · ·

=
∞
=0

(−1)
2

(2)!
[Equal to (16).]

lim
→∞

+1



 = lim
→∞

 2+2

(2+ 2)!
· (2)!

2

 = lim
→∞

2

(2+ 2)(2+ 1)
= 0  1

for all , so  =∞.

14.
  ()()  ()(0)

0 −2 1

1 −2−2 −2

2 4−2 4

3 −8−2 −8

4 16−2 16

...
...

...

−2 =
∞
=0

 ()(0)

!
 =

∞
=0

(−2)

!
.

lim
→∞

+1



= lim
→∞

 (−2)+1+1

(+ 1)!
· !

(−2)

 = lim
→∞

2 ||
+ 1

= 0  1 for all , so  =∞

15.
  ()()  ()(0)

0 2 1

1 2(ln 2) ln 2

2 2(ln 2)2 (ln 2)2

3 2(ln 2)3 (ln 2)3

4 2(ln 2)4 (ln 2)4

...
...

...

2 =
∞
=0

 ()(0)

!
 =

∞
=0

(ln 2)

!
.

lim
→∞

+1



= lim
→∞

 (ln 2)+1+1

(+ 1)!
· !

(ln 2)


= lim

→∞
(ln 2) ||
+ 1

= 0  1 for all , so  =∞.
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16.
  ()()  ()(0)

0  cos 0

1 − sin+ cos 1

2 − cos− 2 sin 0

3  sin− 3 cos −3

4  cos+ 4 sin 0

5 − sin+ 5 cos 5

6 − cos− 6 sin 0

7  sin− 7 cos −7

...
...

...

 cos = (0) +  0(0)+
 00(0)

2!
2 +

 000(0)
3!

3 +
 (4)(0)

4!
4 + · · ·

= 0 + 1+ 0− 3

3!
3 + 0 +

5

5!
5 + 0− 7

7!
7 + · · ·

= − 1

2!
3 +

1

4!
5 − 1

6!
7 + · · ·

=
∞
=0

(−1)
 1

(2)!
2+1

lim
→∞

+1



= lim
→∞

 (−1)+12+3

(2+ 2)!
· (2)!

(−1)2+1


= lim

→∞
2

(2+ 2)(2+ 1)
= 0  1 for all , so  =∞.

17.
  ()()  ()(0)

0 sinh 0

1 cosh 1

2 sinh 0

3 cosh 1

4 sinh 0

...
...

...

 ()(0) =


0 if  is even

1 if  is odd
so sinh =

∞
=0

2+1

(2+ 1)!
.

Use the Ratio Test to find . If  =
2+1

(2+ 1)!
, then

lim
→∞

+1



= lim
→∞

 2+3

(2+ 3)!
· (2+ 1)!

2+1

 = 2 · lim
→∞

1

(2+ 3)(2+ 2)

= 0  1 for all , so  =∞.

18.
  ()()  ()(0)

0 cosh 1

1 sinh 0

2 cosh 1

3 sinh 0

...
...

...

 ()(0) =


1 if  is even

0 if  is odd
so cosh =

∞
=0

2

(2)!
.

Use the Ratio Test to find . If  =
2

(2)!
, then

lim
→∞

+1



= lim
→∞

 2+2

(2+ 2)!
· (2)!

2

 = 2 · lim
→∞

1

(2+ 2)(2+ 1)

= 0  1 for all , so  =∞

19.
  ()()  ()(2)

0 5 + 23 +  50

1 54 + 62 + 1 105

2 203 + 12 184

3 602 + 12 252

4 120 240

5 120 120

6 0 0

7 0 0

...
...

...

 ()() = 0 for  ≥ 6, so  has a finite expansion about  = 2.

() = 5 + 23 +  =
5

=0

 ()(2)

!
(− 2)

=
50

0!
(− 2)0 +

105

1!
(− 2)1 +

184

2!
(− 2)2 +

252

3!
(− 2)3

+
240

4!
(− 2)4 +

120

5!
(− 2)5

= 50 + 105(− 2) + 92(− 2)2 + 42(− 2)3

+ 10(− 2)4 + (− 2)5

A finite series converges for all  so  =∞
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20.
  ()()  ()(−2)

0 6 − 4 + 2 50

1 65 − 43 −160

2 304 − 122 432

3 1203 − 24 −912

4 3602 − 24 1416

5 720 −1440

6 720 720

7 0 0

8 0 0

...
...

...

 ()() = 0 for  ≥ 7, so  has a finite expansion about  = −2.

() = 6 − 4 + 2 =
6

=0

 ()(−2)

!
( + 2)

=
50

0!
(+ 2)0 − 160

1!
(+ 2)1 +

432

2!
(+ 2)2 − 912

3!
(+ 2)3

+
1416

4!
(+ 2)4 − 1440

5!
(+ 2)5 +

720

6!
(+ 2)6

= 50− 160( + 2) + 216(+ 2)2 − 152(+ 2)3 + 59( + 2)4 − 12(+ 2)5 + (+ 2)6

A finite series converges for all  so  =∞.

21.
  ()()  ()(2)

0 ln ln 2

1 1 12

2 −12 −122

3 23 223

4 −64 −624

5 245 2425

...
...

...

() = ln =
∞
=0

 ()(2)

!
(− 2)

=
ln 2

0!
(− 2)0 +

1

1! 21
(− 2)1 +

−1

2! 22
(− 2)2 +

2

3! 23
(− 2)3

+
−6

4! 24
(− 2)4 +

24

5! 25
(− 2)5 + · · ·

= ln2 +
∞
=1

(−1)+1 (− 1)!

! 2
(− 2)

= ln2 +
∞
=1

(−1)+1 1

 2
(− 2)

lim
→∞

+1



= lim
→∞

 (−1)+2(− 2)+1

(+ 1) 2+1
·  2

(−1)+1(− 2)

 = lim
→∞

 (−1)(− 2)

(+ 1)2

 = lim
→∞




+ 1

 |− 2|
2

=
|− 2|

2
 1 for convergence, so |− 2|  2 and  = 2.
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22.
  ()()  ()(−3)

0 1 −13

1 −12 −132

2 23 −233

3 −64 −634

4 245 −2435

...
...

...

() =
1


=

∞
=0

 ()(−3)

!
(+ 3)

=
−13

0!
(+ 3)0 +

−132

1!
( + 3)1 +

−233

2!
(+ 3)2

+
−634

3!
(+ 3)3 +

−2435

4!
(+ 3)4 + · · ·

=
∞
=0

−!3+1

!
(+ 3) = −

∞
=0

(+ 3)

3+1

lim
→∞

+1



 = lim
→∞

 (+ 3)+1

3+2
· 3+1

(+ 3)

 = lim
→∞

| + 3|
3

=
|+ 3|

3
 1 for convergence,

so |+ 3|  3 and  = 3.

23.
  ()()  ()(3)

0 2 6

1 22 26

2 222 46

3 232 86

4 242 166

...
...

...

() = 2 =
∞
=0

 ()(3)

!
(− 3)

=
6

0!
(− 3)0 +

26

1!
(− 3)1 +

46

2!
(− 3)2

+
86

3!
(− 3)3 +

166

4!
(− 3)4 + · · ·

=
∞
=0

26

!
(− 3)

lim
→∞

+1



 = lim
→∞

2+16(− 3)+1

(+ 1)!
· !

26(− 3)

 = lim
→∞

2 |− 3|
+ 1

= 0  1 for all , so  =∞.

24.
  ()()  ()(2)

0 cos 0

1 − sin −1

2 − cos 0

3 sin 1

4 cos 0

5 − sin −1

6 − cos 0

7 sin 1

...
...

...

() = cos =
∞
=0

 ()(2)

!


− 

2


=
−1

1!


− 

2

1
+

1

3!


− 

2

3
+
−1

5!


− 

2

5
+

1

7!


− 

2

7
+ · · ·

=
∞
=0

(−1)+1

(2+ 1)!


− 

2

2+1

lim
→∞

+1



= lim
→∞


(−1)+2


− 

2

2+3

(2+ 3)!
· (2+ 1)!

(−1)+1


− 

2

2+1


= lim

→∞


− 

2

2
(2+ 3)(2+ 2)

= 0  1 for all , so  =∞.
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25.
  ()()  ()()

0 sin 0

1 cos −1

2 − sin 0

3 − cos 1

4 sin 0

5 cos −1

6 − sin 0

7 − cos 1

...
...

...

() = sin =
∞
=0

 ()()

!
(− )

=
−1

1!
(− )1 +

1

3!
(− )3 +

−1

5!
(− )5 +

1

7!
(− )7 + · · ·

=
∞
=0

(−1)+1

(2+ 1)!
(− )2+1

lim
→∞

+1



= lim
→∞

 (−1)+2 (− )2+3

(2+ 3)!
· (2+ 1)!

(−1)+1 (− )2+1


= lim

→∞
(− )2

(2+ 3)(2+ 2)
= 0  1 for all , so  =∞.

26.
  ()()  ()(16)

0
√
 4

1 1
2
−12 1

2
· 1

4

2 − 1
4
−32 −1

4
· 1

43

3 3
8
−52 3

8
· 1

45

4 − 15
16
−72 −15

16
· 1

47

...
...

...

() =
√
 =

∞
=0

 ()(16)

!
(− 16)

=
4

0!
(− 16)0 +

1

2
· 1

4
· 1

1!
(− 16)1 − 1

4
· 1

43
· 1

2!
(− 16)2

+
3

8
· 1

45
· 1

3!
(− 16)3 − 15

16
· 1

47
· 1

4!
(− 16)4 + · · ·

= 4 +
1

8
(− 16) +

∞
=2

(−1)−1 1 · 3 · 5 · · · · · (2− 3)

242−1 !
(− 16)

= 4 +
1

8
(− 16) +

∞
=2

(−1)−1 1 · 3 · 5 · · · · · (2− 3)

25−2 !
(− 16)

lim
→∞

+1



= lim
→∞

 (−1) 1 · 3 · 5 · · · · · (2− 1)(− 16)+1

25+3(+ 1)!
· 25−2!

(−1)−1 1 · 3 · 5 · · · · · (2− 3)(− 16)


= lim

→∞
(2− 1) |− 16|

25(+ 1)
=
|− 16|

32
lim
→∞

2− 1

1 + 1
=
|− 16|

32
· 2

=
|− 16|

16
 1 for convergence, so |− 16|  16 and  = 16.

27. If () = cos, then  (+1)() = ± sin or ± cos. In each case,
 (+1)()

 ≤ 1, so by Formula 9 with  = 0 and

 = 1, |()| ≤ 1

(+ 1)!
||+1. Thus, |()|→ 0 as →∞ by Equation 10. So lim

→∞
() = 0 and, by Theorem

8, the series in Exercise 13 represents cos for all 

28. If () = sin, then  (+1)() = ± sin or ± cos. In each case,
 (+1)()

 ≤ 1, so by Formula 9 with  = 0 and

 = 1, |()| ≤ 1

(+ 1)!
|− |+1. Thus, |()|→ 0 as →∞ by Equation 10. So lim

→∞
() → 0 and, by

Theorem 8, the series in Exercise 25 represents sin for all 
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29. If () = sinh, then for all ,  (+1)() = cosh or sinh. Since |sinh|  |cosh| = cosh for all , we have (+1)()
 ≤ cosh for all . If  is any positive number and || ≤ , then

 (+1)()
 ≤ cosh ≤ cosh , so by

Formula 9 with  = 0 and = cosh , we have |()| ≤ cosh 

(+ 1)!
||+1. It follows that |()|→ 0 as →∞ for

|| ≤  (by Equation 10). But  was an arbitrary positive number. So by Theorem 8, the series represents sinh for all .

30. If () = cosh, then for all ,  (+1)() = cosh or sinh. Since |sinh|  |cosh| = cosh for all , we have (+1)()
 ≤ cosh for all . If  is any positive number and || ≤ , then

 (+1)()
 ≤ cosh ≤ cosh , so by

Formula 9 with  = 0 and = cosh , we have |()| ≤ cosh 

(+ 1)!
||+1. It follows that |()|→ 0 as →∞ for

|| ≤  (by Equation 10). But  was an arbitrary positive number. So by Theorem 8, the series represents cosh for all .

31. 4
√

1− = [1 + (−)]14 =
∞
=0


14




(−) = 1 + 1

4
(−) +

1
4

−3
4


2!

(−)2 +
1
4

−3
4

 − 7
4


3!

(−)3 + · · ·

= 1− 1

4
+

∞
=2

(−1)−1(−1) · [3 · 7 · · · · · (4− 5)]

4 · !


= 1− 1

4
−

∞
=2

3 · 7 · · · · · (4− 5)

4 · !


and |−|  1 ⇔ ||  1, so  = 1.

32. 3
√

8 + = 3


8

1 +



8


= 2


1 +



8

13
= 2

∞
=0


13




8



= 2


1 +

1

3


8


+

1
3

−2
3


2!


8

2
+

1
3

− 2
3

− 5
3


3!


8

3
+ · · ·



= 2


1 +

1

24
+

∞
=2

(−1)−1 · [2 · 5 · · · · · (3− 4)]

3 · 8 · !



= 2 +
1

12
 + 2

∞
=2

(−1)−1[2 · 5 · · · · · (3− 4)]

24 · !


and

8

  1 ⇔ ||  8, so  = 8.

33.
1

(2 + )
3

=
1

[2(1 + 2)]
3

=
1

8


1 +



2

−3

=
1

8

∞
=0


−3




2


. The binomial coefficient is


−3




=

(−3)(−4)(−5) · · · · · (−3− + 1)

!
=

(−3)(−4)(−5) · · · · · [−(+ 2)]

!

=
(−1)

 · 2 · 3 · 4 · 5 · · · · · (+ 1)(+ 2)

2 · !
=

(−1)(+ 1)(+ 2)

2

Thus,
1

(2 + )
3

=
1

8

∞
=0

(−1)(+ 1)(+ 2)

2



2
=

∞
=0

(−1)(+ 1)(+ 2)

2+4
for

2

  1 ⇔ ||  2, so  = 2.
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34. (1 + )34 =
∞
=0


3
4




 = 1 +

3

4
+

3
4

− 1
4


2!

2 +
3
4

− 1
4

−5
4


3!

3 + · · ·

= 1 +
3

4
+

∞
=2

(−1)−1 · 3 · [1 · 5 · 9 · · · · · (4− 7)]

4 · !


for ||  1, so  = 1.

35. arctan =
∞
=0

(−1)
2+1

2+ 1
, so () = arctan(2) =

∞
=0

(−1)

2
2+1

2+ 1
=

∞
=0

(−1)
1

2+ 1
4+2,  = 1.

36. sin =
∞
=0

(−1)
2+1

(2+ 1)!
, so () = sin


4



=
∞
=0

(−1)


4

2+1

(2+ 1)!
=

∞
=0

(−1)
2+1

42+1(2+ 1)!
2+1,  =∞.

37. cos =
∞
=0

(−1)
2

(2)!
⇒ cos 2 =

∞
=0

(−1)
(2)2

(2)!
=

∞
=0

(−1)
222

(2)!
, so

() =  cos 2 =
∞
=0

(−1)
22

(2)!
2+1,  =∞.

38.  =
∞
=0



!
, so () = 3 − 2 =

∞
=0

(3)

!
−

∞
=0

(2)

!
=

∞
=0

3

!
−

∞
=0

2

!
=

∞
=0

3 − 2

!
,  =∞.

39. cos =
∞
=0

(−1)
2

(2)!
⇒ cos


1
2
2


=
∞
=0

(−1)


1
2
2
2

(2)!
=

∞
=0

(−1)
4

22 (2)!
, so

() =  cos


1
2
2


=
∞
=0

(−1)
1

22(2)!
4+1,  =∞.

40. ln(1 + ) =
∞
=1

(−1)−1 



⇒ ln(1 + 3) =

∞
=1

(−1)−1 
3


, so () = 2 ln(1 + 3) =

∞
=1

(−1)−1 
3+2


,

 = 1.

41. We must write the binomial in the form (1+ expression), so we’ll factor out a 4.

√
4 + 2

=


4(1 + 24)
=



2


1 + 24
=



2


1 +

2

4

−12

=


2

∞
=0


− 1

2




2

4



=


2


1 +

− 1
2

2

4
+

− 1
2

−3
2


2!


2

4

2

+

− 1
2

−3
2

−5
2


3!


2

4

3

+ · · ·


=


2
+



2

∞
=1

(−1)
1 · 3 · 5 · · · · · (2− 1)

2 · 4 · !
2

=


2
+

∞
=1

(−1)
1 · 3 · 5 · · · · · (2− 1)

! 23+1
2+1 and

2

4
 1 ⇔ ||

2
 1 ⇔ ||  2, so  = 2.
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42.
2

√
2 + 

=
2

2 (1 + 2)
=

2

√
2


1 +



2

−12

=
2

√
2

∞
=0


− 1

2




2



=
2

√
2


1 +

− 1
2


2


+

− 1
2

−3
2


2!


2

2

+

− 1
2

−3
2

−5
2


3!


2

3

+ · · ·


=
2

√
2

+
2

√
2

∞
=1

(−1)
1 · 3 · 5 · · · · · (2− 1)

! 22


=
2

√
2

+
∞
=1

(−1)
1 · 3 · 5 · · · · · (2− 1)

! 22+12
+2 and


2

  1 ⇔ ||  2, so  = 2.

43. sin2  =
1

2
(1− cos 2) =

1

2


1−

∞
=0

(−1)(2)2

(2)!


=

1

2


1− 1−

∞
=1

(−1)(2)2

(2)!


=

∞
=1

(−1)+122−12

(2)!
,

 =∞

44.
− sin

3
=

1

3


−

∞
=0

(−1)2+1

(2+ 1)!


=

1

3


− −

∞
=1

(−1)2+1

(2+ 1)!


=

1

3


−

∞
=0

(−1)+12+3

(2+ 3)!



=
1

3

∞
=0

(−1)2+3

(2+ 3)!
=

∞
=0

(−1)2

(2+ 3)!

and this series also gives the required value at  = 0 (namely 16);  =∞.

45. cos
(16)
=

∞
=0

(−1)
2

(2)!
⇒

() = cos(2) =
∞
=0

(−1)


(2)2

(2)!
=

∞
=0

(−1)4

(2)!

= 1− 1
2
4 + 1

24
8 − 1

720
12 + · · ·

The series for cos converges for all , so the same is true of the series for

(), that is,  =∞. Notice that, as  increases, () becomes a better

approximation to ().

46. ln(1 + ) =
∞
=1

(−1)−1 



⇒

() = ln(1 + 2) =
∞
=1

(−1)−1(2)


=

∞
=1

(−1)−12



= 2 − 1
2
4 + 1

3
6 − 1

4
8 + · · ·

The series for ln(1 + ) has  = 1 and
2
  1 ⇔ ||  1,

so the series for () also has  = 1. From the graphs of  and

the first few Taylor polynomials, we see that () provides a

closer fit to () near 0 as  increases.
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47. 
(11)
=

∞
=0



!
, so − =

∞
=0

(−)

!
=

∞
=0

(−1)


!
, so

() = − =
∞
=0

(−1)
1

!
+1

= − 2 + 1
2
3 − 1

6
4 + 1

24
5 − 1

120
6 + · · ·

=
∞
=1

(−1)−1 

(− 1)!

The series for  converges for all , so the same is true of the series

for (); that is,  =∞. From the graphs of  and the first few Taylor

polynomials, we see that () provides a closer fit to () near 0 as  increases.

48. From Table 1, tan−1  =
∞
=0

(−1)
2+1

2+ 1
, so

() = tan−1(3) =
∞
=0

(−1)
(3)2+1

2+ 1
=

∞
=0

(−1)
6+3

2+ 1

= 3 − 1
3
9 + 1

5
15 − 1

7
21 + · · ·

The series for tan−1  has  = 1 and
3
  1 ⇔ ||  1,

so the series for () also has  = 1. From the graphs of  and

the first few Taylor polynomials, we see that () provides a

closer fit to () near 0 as  increases.

49. 5◦ = 5◦
 

180◦


=



36
radians and cos =

∞
=0

(−1)
2

(2)!
= 1 − 2

2!
+

4

4!
− 6

6!
+ · · · , so

cos


36
= 1− (36)2

2!
+

(36)4

4!
− (36)6

6!
+ · · · . Now 1− (36)2

2!
≈ 099619 and adding

(36)4

4!
≈ 24× 10−6

does not affect the fifth decimal place, so cos 5◦ ≈ 099619 by the Alternating Series Estimation Theorem.

50. 110
√
 = −110 and  =

∞
=0



!
= 1 +  +

2

2!
+

3

3!
+ · · · , so

−110 = 1 − 1

10
+

(110)2

2!
− (110)3

3!
+

(110)4

4!
− (110)5

5!
+ · · · . Now

1− 1

10
+

(110)2

2!
− (110)3

3!
+

(110)4

4!
≈ 090484 and subtracting

(110)5

5!
≈ 83× 10−8 does not affect the fifth

decimal place, so −110 ≈ 090484 by the Alternating Series Estimation Theorem.

51. (a) 1
√

1− 2 =

1 +

−2
−12

= 1 +
− 1

2

−2


+

−1
2

−3
2


2!

−2
2

+

− 1
2

− 3
2

− 5
2


3!

−2
3

+ · · ·

= 1 +
∞
=1

1 · 3 · 5 · · · · · (2− 1)

2 · !
2

(b) sin−1  =


1√

1− 2
 =  + +

∞
=1

1 · 3 · 5 · · · · · (2− 1)

(2+ 1)2 · !


2+1

= +
∞
=1

1 · 3 · 5 · · · · · (2− 1)

(2+ 1)2 · !
2+1 since 0 = sin−1 0 = .
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52. (a) 1 4
√

1 +  = (1 + )−14 =
∞
=0


− 1

4




 = 1− 1

4
+

− 1
4

−5
4


2!

2 +

− 1
4

−5
4

 − 9
4


3!

3 + · · ·

= 1− 1

4
 +

∞
=2

(−1)
1 · 5 · 9 · · · · · (4− 3)

4 · !


(b) 1 4
√

1 +  = 1− 1
4
+ 5

32
2 − 15

128
3 + 195

2048
4 − · · · . 1 4

√
11 = 1 4

√
1 + 01, so let  = 01. The sum of the first four

terms is then 1− 1
4
(01) + 5

32
(01)2 − 15

128
(01)3 ≈ 0976. The fifth term is 195

2048
(01)4 ≈ 0000 009 5, which does not

affect the third decimal place of the sum, so we have 1
4
√

11 ≈ 0976. (Note that the third decimal place of the sum of the

first three terms is affected by the fourth term, so we need to use more than three terms for the sum.)

53.
√

1 + 3 = (1 + 3)12 =
∞
=0


1
2




(3) =

∞
=0


1
2




3 ⇒

 
1 + 3  =  +

∞
=0


1
2




3+1

3+ 1
,

with  = 1.

54. sin =
∞
=0

(−1)
2+1

(2+ 1)!
⇒ sin(2) =

∞
=0

(−1)
(2)2+1

(2+ 1)!
=

∞
=0

(−1)
4+2

(2+ 1)!
⇒

2 sin(2) =
∞
=0

(−1)
4+4

(2+ 1)!
⇒




2
sin(

2
)  =  +

∞
=0

(−1)
 4+5

(2+ 1)!(4+ 5)
, with  =∞.

55. cos
(16)
=

∞
=0

(−1)
2

(2)!
⇒ cos− 1 =

∞
=1

(−1)
2

(2)!
⇒ cos− 1


=

∞
=1

(−1)
2−1

(2)!
⇒


cos− 1


 =  +

∞
=1

(−1)
 2

2 · (2)!
, with  =∞.

56. arctan =
∞
=0

(−1)
2+1

2+ 1
⇒ arctan(2) =

∞
=0

(−1)
(2)2+1

2+ 1
=

∞
=0

(−1)
4+2

2+ 1
⇒


arctan(

2
)  =  +

∞
=0

(−1)
 4+3

(2+ 1)(4+ 3)
, with  = 1.

57. arctan =
∞
=0

(−1)
2+1

2+ 1
for ||  1, so 3 arctan =

∞
=0

(−1)
2+4

2+ 1
for ||  1 and




3
arctan =  +

∞
=0

(−1)
 2+5

(2+ 1)(2+ 5)
. Since 1

2
 1, we have

 12

0


3
arctan =

∞
=0

(−1)
 (12)2+5

(2+ 1)(2+ 5)
=

(12)5

1 · 5 − (12)7

3 · 7 +
(12)9

5 · 9 − (12)11

7 · 11 + · · · . Now

(12)5

1 · 5 − (12)7

3 · 7 +
(12)9

5 · 9 ≈ 00059 and subtracting
(12)11

7 · 11 ≈ 63× 10−6 does not affect the fourth decimal place,

so
 12

0
3 arctan ≈ 00059 by the Alternating Series Estimation Theorem.

58. sin =
∞
=0

(−1)
2+1

(2+ 1)!
for all , so sin(4) =

∞
=0

(−1)
8+4

(2+ 1)!
for all  and


sin(

4
)  =  +

∞
=0

(−1)
 8+5

(2+ 1)! (8+ 5)
. Thus,
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0

sin(
4
)  =

∞
=0

(−1)
 1

(2+ 1)! (8+ 5)
=

1

1! · 5 −
1

3! · 13 +
1

5! · 21 −
1

7! · 29 + · · · . Now

1

1! · 5 −
1

3! · 13 +
1

5! · 21 ≈ 01876 and subtracting
1

7! · 29 ≈ 684× 10−6 does not affect the fourth decimal place, so

 1

0
sin(4)  ≈ 01876 by the Alternating Series Estimation Theorem.

59.
√

1 + 4 = (1 + 4)12 =
∞
=0


1
2




(4), so

 
1 + 4  =  +

∞
=0


1
2




4+1

4+ 1
and hence, since 04  1,

we have

 =

 04

0


1 + 4  =

∞
=0


1
2




(04)4+1

4+ 1

= (1)
(04)1

0!
+

1
2

1!

(04)5

5
+

1
2

− 1
2


2!

(04)9

9
+

1
2

− 1
2

−3
2


3!

(04)13

13
+

1
2

− 1
2

− 3
2

− 5
2


4!

(04)17

17
+ · · ·

= 04 +
(04)5

10
− (04)9

72
+

(04)13

208
− 5(04)17

2176
+ · · ·

Now
(04)9

72
≈ 36× 10−6  5× 10−6, so by the Alternating Series Estimation Theorem,  ≈ 04 +

(04)5

10
≈ 040102

(correct to five decimal places).

60.
 05

0


2

−2

 =

 05

0

∞
=0

(−1)

2+2

!
 =

∞
=0


(−1)


2+3

!(2+ 3)

12
0

=
∞
=0

(−1)


!(2+ 3)22+3
and since the term

with  = 2 is
1

1792
 0001, we use

1
=0

(−1)


!(2+ 3)22+3
=

1

24
− 1

160
≈ 00354.

61. lim
→0

− ln(1 + )

2
= lim

→0

− (− 1
2
2 + 1

3
3 − 1

4
4 + 1

5
5 − · · · )

2
= lim

→0

1
2
2 − 1

3
3 + 1

4
4 − 1

5
5 + · · ·

2

= lim
→0

( 1
2
− 1

3
+ 1

4
2 − 1

5
3 + · · · ) = 1

2

since power series are continuous functions.

62. lim
→0

1− cos

1 + − 
= lim

→0

1− 1− 1
2!
2 + 1

4!
4 − 1

6!
6 + · · · 

1 + − 1 + + 1
2!
2 + 1

3!
3 + 1

4!
4 + 1

5!
5 + 1

6!
6 + · · · 

= lim
→0

1
2!
2 − 1

4!
4 + 1

6!
6 − · · ·

− 1
2!
2 − 1

3!
3 − 1

4!
4 − 1

5!
5 − 1

6!
6 − · · ·

= lim
→0

1
2!
− 1

4!
2 + 1

6!
4 − · · ·

− 1
2!
− 1

3!
− 1

4!
2 − 1

5!
3 − 1

6!
4 − · · · =

1
2
− 0

− 1
2
− 0

= −1

since power series are continuous functions.

63. lim
→0

sin− + 1
6
3

5
= lim

→0


− 1

3!
3 + 1

5!
5 − 1

7!
7 + · · · −  + 1

6
3

5

= lim
→0

1
5!
5 − 1

7!
7 + · · ·

5
= lim

→0


1

5!
− 2

7!
+

4

9!
− · · ·


=

1

5!
=

1

120

since power series are continuous functions.
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64. lim
→0

√
1 + − 1− 1

2


2
= lim

→0


1 + 1

2
− 1

8
2 + 1

16
3 − · · · − 1− 1

2


2
= lim

→0

− 1
8
2 + 1

16
3 − · · ·

2

= lim
→0

− 1
8

+ 1
16
− · · ·  = − 1

8
since power series are continuous functions.

65. lim
→0

3 − 3+ 3 tan−1 

5
= lim

→0

3 − 3+ 3

− 1

3
3 + 1

5
5 − 1

7
7 + · · · 

5

= lim
→0

3 − 3+ 3− 3 + 3
5
5 − 3

7
7 + · · ·

5
= lim

→0

3
5
5 − 3

7
7 + · · ·

5

= lim
→0


3
5
− 3

7
2 + · · ·  = 3

5
since power series are continuous functions.

66. lim
→0

tan− 

3
= lim

→0


+ 1

3
3 + 2

15
5 + · · · − 

3
= lim

→0

1
3
3 + 2

15
5 + · · ·

3
= lim

→0


1
3

+ 2
15
2 + · · ·  = 1

3

since power series are continuous functions.

67. From Equation 11, we have −
2

= 1− 2

1!
+

4

2!
− 6

3!
+ · · · and we know that cos = 1− 2

2!
+

4

4!
− · · · from

Equation 16. Therefore, −
2

cos =

1− 2 + 1

2
4 − · · · 1− 1

2
2 + 1

24
4 − · · · . Writing only the terms with

degree ≤ 4, we get −
2

cos = 1− 1
2
2 + 1

24
4 − 2 + 1

2
4 + 1

2
4 + · · · = 1− 3

2
2 + 25

24
4 + · · · .

68. sec =
1

cos

(16)
=

1

1− 1
2
2 + 1

24
4 − · · · .

1 + 1
2
2 + 5

24
4 + · · ·

1− 1
2
2 + 1

24
4 − · · · 1

1− 1
2
2 + 1

24
4 − · · ·

1
2
2 − 1

24
4 + · · ·

1
2
2 − 1

4
4 + · · ·

5
24
4 + · · ·

5
24
4 + · · ·

· · ·
From the long division above, sec = 1 + 1

2
2 + 5

24
4 + · · · .

69.


sin

(15)
=



− 1
6
3 + 1

120
5 − · · · .

1 + 1
6
2 + 7

360
4 + · · ·

− 1
6
3 + 1

120
5 − · · · 

− 1
6
3 + 1

120
5 − · · ·

1
6
3 − 1

120
5 + · · ·

1
6
3 − 1

36
5 + · · ·

7
360

5 + · · ·
7

360
5 + · · ·

· · ·
From the long division above,



sin
= 1 + 1

6
2 + 7

360
4 + · · · .
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70. From Table 1, we have  = 1 +


1!
+

2

2!
+

3

3!
+ · · · and that ln(1 + ) = − 2

2
+

3

3
− 4

4
+ · · · . Therefore,

 =  ln(1 + ) =


1 +



1!
+

2

2!
+

3

3!
+ · · ·


− 2

2
+

3

3
− 4

4
+ · · ·


. Writing only terms with degree ≤ 3,

we get  ln(1 + ) = − 1
2
2 + 1

3
3 + 2 − 1

2
3 + 1

2
3 + · · · = + 1

2
2 + 1

3
3 + · · · .

71.  = (arctan)2 =

− 1

3
3 + 1

5
5 − 1

7
7 + · · ·  − 1

3
3 + 1

5
5 − 1

7
7 + · · · . Writing only the terms with

degree ≤ 6, we get (arctan)2 = 2 − 1
3
4 + 1

5
6 − 1

3
4 + 1

9
6 + 1

5
6 + · · · = 2 − 2

3
4 + 23

45
6 + · · · .

72.  =  sin2  = ( sin) sin =

+ 2 + 1

3
3 + · · ·  − 1

6
3 + · · ·  [from Example 13]. Writing only the terms

with degree ≤ 4, we get  sin2  = 2 − 1
6
4 + 3 + 1

3
4 + · · · = 2 + 3 + 1

6
4 + · · · .

73.
∞
=0

(−1)
4

!
=

∞
=0

−4


!
= −

4

, by (11).

74.
∞
=0

(−1)

2

62(2)!
=

∞
=0

(−1)


6

2
(2)!

= cos 
6

=
√

3
2
, by (16).

75.
∞
=1

(−1)−1 3

5
=

∞
=1

(−1)−1 (35)


= ln


1 +

3

5


[from Table 1] = ln

8

5

76.
∞
=0

3

5 !
=

∞
=0

(35)


!
= 35, by (11).

77.
∞
=0

(−1)

2+1

42+1(2+ 1)!
=

∞
=0

(−1)



4

2+1

(2+ 1)!
= sin 

4
= 1√

2
, by (15).

78. 1− ln 2 +
(ln 2)

2

2!
− (ln 2)

3

3!
+ · · · =

∞
=0

(− ln 2)


!
= − ln 2 =


ln 2

−1
= 2−1 = 1

2
, by (11).

79. 3 +
9

2!
+

27

3!
+

81

4!
+ · · · = 31

1!
+

32

2!
+

33

3!
+

34

4!
+ · · · =

∞
=1

3

!
=

∞
=0

3

!
− 1 = 3 − 1, by (11).

80.
1

1 · 2 −
1

3 · 23
+

1

5 · 25
− 1

7 · 27
+ · · · =

∞
=0

(−1)
1

(2+ 1)22+1
=

∞
=0

(−1)
(12)2+1

2+ 1
= tan−1


1

2


[from Table 1]

81. If  is an th-degree polynomial, then ()() = 0 for   , so its Taylor series at  is () =

=0

()()

!
(− ).

Put −  = 1, so that  = + 1. Then (+ 1) =

=0

()()

!
.

This is true for any , so replace  by : (+ 1) =

=0

()()

!

82. The coefficient of 58 in the Maclaurin series of () = (1 + 3)30 is
 (58)(0)

58!
. But the binomial series for () is

(1 + 3)30 =
∞
=0


30




3, so it involves only powers of  that are multiples of 3 and therefore the coefficient of 58 is 0.

So  (58)(0) = 0.
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83. Assume that | 000()| ≤  , so  000() ≤  for  ≤  ≤  + . Now
 

 000()  ≤  


  ⇒

 00()−  00() ≤(− ) ⇒  00() ≤  00() +(− ). Thus,
 

 00()  ≤  


[ 00() +(− )]  ⇒

 0()−  0() ≤  00()(− ) + 1
2
(− )2 ⇒  0() ≤  0() +  00()(− ) + 1

2
(− )2 ⇒ 


 0()  ≤  




 0() +  00()(− ) + 1

2
(− )2


 ⇒

() − () ≤  0()( − ) + 1
2
 00()( − )2 + 1

6
( − )3. So

() − () −  0()( − ) − 1
2
 00()( − )2 ≤ 1

6
( − )3. But

2() = ()− 2() = ()− ()−  0()(− )− 1
2
 00()(− )2, so 2() ≤ 1

6
(− )3.

A similar argument using  000() ≥ − shows that 2() ≥ − 1
6
(− )3. So |2(2)| ≤ 1

6
 |− |3.

Although we have assumed that   , a similar calculation shows that this inequality is also true if   .

84. (a) () =


−12 if  6= 0

0 if  = 0
so  0(0) = lim

→0

()− (0)

− 0
= lim

→0

−12


= lim

→0

1

1
2 = lim

→0



21
2 = 0

(using l’Hospital’s Rule and simplifying in the penultimate step). Similarly, we can use the definition of the derivative and

l’Hospital’s Rule to show that  00(0) = 0,  (3)(0) = 0,   ,  ()(0) = 0, so that the Maclaurin series for  consists

entirely of zero terms. But since () 6= 0 except for  = 0, we see that  cannot equal its Maclaurin series except

at  = 0.

(b) From the graph, it seems that the function is extremely flat at the origin.

In fact, it could be said to be “infinitely flat” at  = 0, since all of its

derivatives are 0 there.

85. (a) () =
∞
=0







 ⇒ 0() =

∞
=1







−1, so

(1 + )0() = (1 + )
∞
=1







−1 =

∞
=1







−1 +

∞
=1









=
∞
=0




+ 1


(+ 1) +

∞
=0










Replace  with + 1

in the first series



=
∞
=0

(+ 1)
( − 1)( − 2) · · · ( − + 1)( − )

(+ 1)!
 +

∞
=0


()

( − 1)( − 2) · · · ( − + 1)

!




=
∞
=0

(+ 1)( − 1)( − 2) · · · ( − + 1)

(+ 1)!
[( − ) + ]

= 
∞
=0

( − 1)( − 2) · · · ( − + 1)

!
 = 

∞
=0







 = ()

Thus, 0() =
()

1 + 
.
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(b) () = (1 + )
−

() ⇒
0() = −(1 + )−−1() + (1 + )

−
0() [Product Rule]

= −(1 + )−−1() + (1 + )
− ()

1 + 
[from part (a)]

= −(1 + )−−1() + (1 + )−−1() = 0

(c) From part (b) we see that () must be constant for  ∈ (−1 1), so () = (0) = 1 for  ∈ (−1 1).

Thus, () = 1 = (1 + )
−

() ⇔ () = (1 + )
 for  ∈ (−1 1).

86. Using the binomial series to expand
√

1 +  as a power series as in Example 9, we get

√
1 +  = (1 + )12 = 1 +



2
+

∞
=2

(−1)−11 · 3 · 5 · · · · · (2− 3)

2 · !
, so


1− 2

12
= 1− 1

2
2 −

∞
=2

1 · 3 · 5 · · · · · (2− 3)

2 · !
2 and


1− 2 sin2  = 1− 1

2
2 sin2  −

∞
=2

1 · 3 · 5 · · · · · (2− 3)

2 · !
2 sin2 . Thus,

 = 4

 2

0


1− 2 sin2   = 4

 2

0


1− 1

2

2
sin

2
 −

∞
=2

1 · 3 · 5 · · · · · (2− 3)

2 · !

2

sin
2






= 4




2
− 2

2
1 −

∞
=2

1 · 3 · 5 · · · · · (2− 3)

!


2

2






where  =

 2

0

sin
2

  =
1 · 3 · 5 · · · · · (2− 1)

2 · 4 · 6 · · · · · 2


2
by Exercise 7.1.50.

= 4


2


1− 2

2
· 1

2
−

∞
=2

1 · 3 · 5 · · · · · (2− 3)

!


2

2


1 · 3 · 5 · · · · · (2− 1)

2 · 4 · 6 · · · · · 2


= 2


1− 2

4
−

∞
=2

2

2
· 12 · 32 · 52 · · · · · (2− 3)2(2− 1)

! · 2 · !



= 2


1− 2

4
−

∞
=2

2

4


1 · 3 · · · · · (2− 3)

!

2

(2− 1)



= 2


1− 2

4
− 34

64
− 56

256
− · · ·


=



128
(256− 642 − 124 − 56 − · · · )

LABORATORY PROJECT An Elusive Limit

1. () =
()

()
=

sin(tan)− tan(sin)

arcsin(arctan)− arctan(arcsin)

The table of function values were obtained using Maple with 10 digits of

precision. The results of this project will vary depending on the CAS and

precision level. It appears that as → 0+, ()→ 10
3
. Since  is an even

function, we have ()→ 10
3
as → 0.

 ()

1 11838

01 09821

001 20000

0001 33333

00001 33333

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

FOR INSTRUCTOR USE ONLY



NOT FOR S
ALE

1058 ¤ CHAPTER 11 INFINITE SEQUENCES AND SERIES

2. The graph is inconclusive about the limit of  as → 0.

3. The limit has the indeterminate form 0
0
. Applying l’Hospital’s Rule, we obtain the form 0

0
six times. Finally, on the seventh

application we obtain lim
→0

(7)()

(7)()
=
−168

−168
= 1.

4. lim
→0

() = lim
→0

()

()

CAS
= lim

→0

− 1
30
7 − 29

756
9 + · · ·

− 1
30
7 + 13

756
9 + · · ·

= lim
→0

− 1
30
7 − 29

756
9 + · · · 7− 1

30
7 + 13

756
9 + · · · 7

= lim
→0

− 1
30
− 29

756
2 + · · ·

− 1
30

+ 13
756

2 + · · · =
− 1

30

− 1
30

= 1

Note that (7)() = (7)() = − 7!
30

= − 5040
30

= −168, which agrees with the result in Problem 3.

5. The limit command gives the result that lim
→0

() = 1.

6. The strange results (with only 10 digits of precision) must be due to the fact that the terms being subtracted in the numerator

and denominator are very close in value when || is small. Thus, the differences are imprecise (have few correct digits).

11.11 Applications of Taylor Polynomials

1. (a)
  ()()  ()(0) ()

0 sin 0 0

1 cos 1 

2 − sin 0 

3 − cos −1 − 1
6
3

4 sin 0 − 1
6
3

5 cos 1 − 1
6
3 + 1

120
5

Note: () =


=0

 ()(0)

!


(b)
  0() 1() = 2() 3() = 4() 5()


4

07071 0 07854 07047 07071


2

1 0 15708 09248 10045

 0 0 31416 −20261 05240

(c) As  increases, () is a good approximation to () on a larger and larger interval.
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2. (a)
  ()()  ()(0) ()

0 tan 0 0

1 sec2  1 

2 2 sec2  tan 0 

3 4 sec2  tan2 + 2 sec4  2 + 1
3
3

Note: () =


=0

 ()(0)

!
(b)

  0() 1() = 2() 3()


6

05774 0 05236 05714


4

1 0 07854 09469


3

17321 0 10472 14300

(c) As  increases, () is a good approximation to () on a larger and larger interval. Because the Taylor polynomials

are continuous, they cannot approximate the infinite discontinuities at  = ±2. They can only approximate tan

on (−2 2).

3.
  ()()  ()(1)

0  

1  

2  

3  

3() =
3

=0

 ()(1)

!
(− 1)

=


0!
(− 1)0 +



1!
(− 1)1 +



2!
(− 1)2 +



3!
(− 1)3

= + (− 1) + 1
2
(− 1)2 + 1

6
(− 1)3

4.
  ()()  ()(6)

0 sin 12

1 cos
√

32

2 − sin −12

3 − cos −√32

3() =
3

=0

 ()(6)

!


− 

6


=

12

0!


− 

6

0
+

√
32

1!


− 

6

1
− 12

2!


− 

6

2
+

√
32

3!


− 

6

3
=

1

2
+

√
3

2


− 

6


− 1

4


− 

6

2
−
√

3

12


− 

6

3
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5.
  ()()  ()(2)

0 cos 0

1 − sin −1

2 − cos 0

3 sin 1

3() =
3

=0

 ()(2)

!


− 

2


= −− 

2


+ 1

6


− 

2

3
6.

  ()()  ()(0)

0 − sin 0

1 −(cos− sin) 1

2 −2− cos −2

3 2−(cos+ sin) 2

3() =
3

=0

 ()(0)

!
 = − 2 + 1

3
3

7.
  ()()  ()(1)

0 ln 0

1 1 1

2 −12 −1

3 23 2

3() =
3

=0

 ()(1)

!
(− 1)

= 0 +
1

1!
(− 1) +

−1

2!
(− 1)2 +

2

3!
(− 1)3

= (− 1)− 1
2
(− 1)2 + 1

3
(− 1)3

8.
  ()()  ()(0)

0  cos 0

1 − sin + cos 1

2 − cos− 2 sin 0

3  sin− 3 cos −3

3() =
3

=0

 ()(0)

!


= 0 +
1

1!
+ 0 +

−3

3!
3 = − 1

2
3
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9.
  ()()  ()(0)

0 −2 0

1 (1− 2)−2 1

2 4(− 1)−2 −4

3 4(3− 2)−2 12

3() =
3

=0

 ()(0)

!
 = 0

1
· 1 + 1

1
1 + −4

2
2 + 12

6
3 = − 22 + 23

10.
  ()()  ()(1)

0 tan−1  
4

1
1

1 + 2

1
2

2
−2

(1 + 2)2
− 1

2

3
62 − 2

(1 + 2)3
1
2

3() =
3

=0

 ()(1)

!
(− 1) =



4
+

12

1
(− 1)1 +

−12

2
(− 1)2 +

12

6
(− 1)3

= 
4

+ 1
2
(− 1)− 1

4
(− 1)2 + 1

12
(− 1)3

11. You may be able to simply find the Taylor polynomials for

() = cot using your CAS. We will list the values of  ()(4)

for  = 0 to  = 5.

 0 1 2 3 4 5

 ()(4) 1 −2 4 −16 80 −512

5() =
5

=0

 ()(4)

!


− 

4


= 1− 2


− 

4


+ 2

− 

4

2 − 8
3


− 

4

3
+ 10

3


− 

4

4 − 64
15


− 

4

5
For  = 2 to  = 5, () is the polynomial consisting of all the terms up to and including the


− 

4


term

12. You may be able to simply find the Taylor polynomials for

() = 3
√

1 + 2 using your CAS. We will list the values of  ()(0)

for  = 0 to  = 5.

 0 1 2 3 4 5

 ()(0) 1 0 2
3

0 − 8
3

0

5() =
5

=0

 ()(0)

!
 = 1 + 1

3
2 − 1

9
4

For  = 2 to  = 5, () is the polynomial consisting of all the terms up to and including the  term.

Note that 2 = 3 and 4 = 5.
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13. (a)
  ()()  ()(1)

0 1 1

1 −12 −1

2 23 2

3 −64

() = 1 ≈ 2()

=
1

0!
(− 1)0 − 1

1!
(− 1)1 +

2

2!
(− 1)2

= 1− (− 1) + (− 1)2

(b) |2()| ≤ 

3!
|− 1|3, where |  000()| ≤ . Now 07 ≤  ≤ 13 ⇒ |− 1| ≤ 03 ⇒ |− 1|3 ≤ 0027.

Since |  000()| is decreasing on [07 13], we can take = |  000(07)| = 6(07)4, so

|2()| ≤ 6(07)4

6
(0027) = 0112 453 1.

(c) From the graph of |2()| =
 1 − 2()

, it seems that the error is less than
0038 571 on [07 13].

14. (a)
  ()()  ()(4)

0 −12 1
2

1 − 1
2
−32 − 1

16

2 3
4
−52 3

128

3 − 15
8
−72

() = −12 ≈ 2()

=
12

0!
(− 4)0 − 116

1!
(− 4)1 +

3128

2!
(− 4)2

= 1
2
− 1

16
(− 4) + 3

256
(− 4)2

(b) |2()| ≤ 

3!
|− 4|3, where |  000()| ≤ . Now 35 ≤  ≤ 45 ⇒ |− 4| ≤ 05 ⇒ |− 4|3 ≤ 0125.

Since |  000()| is decreasing on [35 45], we can take = |  000(35)| =
15

8(35)72
, so

|2()| ≤ 15

6 · 8(35)72 (0125) ≈ 0000 487.

(c) From the graph of |2()| =
−12 − 2()

, it seems that the error is less
than 0000 343 on [35 45].
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15.
  ()()  ()(1)

0 23 1

1 2
3
−13 2

3

2 − 2
9
−43 − 2

9

3 8
27
−73 8

27

4 − 56
81
−103

(a) () = 23 ≈ 3() = 1 + 2
3
(− 1)− 29

2!
(− 1)2 +

827

3!
(− 1)3

= 1 + 2
3
(− 1)− 1

9
(− 1)2 + 4

81
(− 1)3

(b) |3()| ≤ 

4!
|− 1|4, where

  (4)()
 ≤ . Now 08 ≤  ≤ 12 ⇒

|− 1| ≤ 02 ⇒ |− 1|4 ≤ 00016. Since
 (4)()

 is decreasing
on [08 12], we can take =

  (4)(08)
 = 56

81
(08)−103, so

|3()| ≤
56
81

(08)−103

24
(00016) ≈ 0000 096 97.

(c)

From the graph of |3()| =
23 − 3()

, it seems that the
error is less than 0000 053 3 on [08 12].

16.
  ()()  ()(6)

0 sin 12

1 cos
√

32

2 − sin −12

3 − cos −√32

4 sin 12

5 cos

(a) () = sin ≈ 4()

= 1
2

+
√

3
2


− 

6

− 1
4


− 

6

2 − √
3

12


− 

6

3
+ 1

48


− 

6

4

(b) |4()| ≤ 

5!

− 
6

5, where   (5)()
 ≤ . Now 0 ≤  ≤ 

3
⇒ −

6
≤ − 

6
≤ 

6
⇒

− 
6

 ≤ 
6
⇒− 

6

5 ≤ 
6

5
. Since

 (5)()
 is decreasing on 0 3 , we can take =

  (5)(0)
 = cos 0 = 1, so

|4()| ≤ 1

5!


6

5
≈ 0000 328.

(c)

From the graph of |4()| = |sin− 4()|, it seems that the

error is less than 0000 297 on

0 

3


.

17.
  ()()  ()(0)

0 sec 1

1 sec tan 0

2 sec (2 sec2 − 1) 1

3 sec tan (6 sec2 − 1)

(a) () = sec ≈ 2() = 1 + 1
2
2
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(b) |2()| ≤ 

3!
||3, where

  (3)()
 ≤ . Now −02 ≤  ≤ 02 ⇒ || ≤ 02 ⇒ ||3 ≤ (02)3.

 (3)() is an odd function and it is increasing on [0 02] since sec and tan are increasing on [0 02],

so
  (3)()

 ≤  (3)(02) ≈ 1085 158 892. Thus, |2()| ≤  (3)(02)

3!
(02)3 ≈ 0001 447.

(c)

From the graph of |2()| = |sec− 2()|, it seems that the

error is less than 0000 339 on [−02 02].

18.
  ()()  ()(1)

0 ln(1 + 2) ln 3

1 2(1 + 2) 2
3

2 −4(1 + 2)2 − 4
9

3 16(1 + 2)3 16
27

4 −96(1 + 2)4

(a) () = ln(1 + 2)≈ 3()

= ln 3 + 2
3
(− 1)− 49

2!
(− 1)2 +

1627

3!
(− 1)3

(b) |3()| ≤ 

4!
|− 1|4, where

 (4)()
 ≤ . Now 05 ≤  ≤ 15 ⇒

−05 ≤ − 1 ≤ 05 ⇒ |− 1| ≤ 05 ⇒ |− 1|4 ≤ 1
16
, and

letting  = 05 gives = 6, so |3()| ≤ 6

4!
· 1

16
=

1

64
= 0015 625.

(c)

From the graph of |3()| = |ln(1 + 2)− 3()|, it seems that the
error is less than 0005 on [05 15].

19.
  ()()  ()(0)

0 
2

1

1 
2

(2) 0

2 
2

(2 + 42) 2

3 
2

(12+ 83) 0

4 
2

(12 + 482 + 164)

(a) () = 
2 ≈ 3() = 1 +

2

2!
2 = 1 + 2

(b) |3()| ≤ 

4!
||4, where

 (4)()
 ≤ . Now 0 ≤  ≤ 01 ⇒

4 ≤ (01)
4, and letting  = 01 gives

|3()| ≤ 001 (12 + 048 + 00016)

24
(01)4 ≈ 000006.

(c)

From the graph of |3()| =
2 − 3()

, it appears that the
error is less than 0000 051 on [0 01].
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20.
  ()()  ()(1)

0  ln 0

1 ln + 1 1

2 1 1

3 −12 −1

4 23

(a) () =  ln ≈ 3() = (− 1) + 1
2
(− 1)2 − 1

6
(− 1)3

(b) |3()| ≤ 

4!
|− 1|4, where

  (4)()
 ≤ . Now 05 ≤  ≤ 15 ⇒

|− 1| ≤ 1
2
⇒ |− 1|4 ≤ 1

16
. Since

  (4)()
 is decreasing on

[05 15], we can take =
  (4)(05)

 = 2(05)3 = 16, so

|3()| ≤ 16
24

(116) = 1
24

= 00416.

(c)

From the graph of |3()| = | ln− 3()|, it seems that the error
is less than 00076 on [05 15].

21.
  ()()  ()(0)

0  sin 0

1 sin+  cos 0

2 2 cos−  sin 2

3 −3 sin−  cos 0

4 −4 cos+  sin −4

5 5 sin+  cos

(a) () =  sin ≈ 4() =
2

2!
(− 0)2 +

−4

4!
(− 0)4 = 2 − 1

6
4

(b) |4()| ≤ 

5!
||5, where

  (5)()
 ≤ . Now−1 ≤  ≤ 1 ⇒

|| ≤ 1, and a graph of  (5)() shows that
  (5)()

 ≤ 5 for −1 ≤  ≤ 1.

Thus, we can take = 5 and get |4()| ≤ 5

5!
· 15 =

1

24
= 00416.

(c)

From the graph of |4()| = | sin− 4()|, it seems that the
error is less than 00082 on [−1 1].

22.
  ()()  ()(0)

0 sinh 2 0

1 2 cosh 2 2

2 4 sinh 2 0

3 8 cosh 2 8

4 16 sinh 2 0

5 32 cosh 2 32

6 64 sinh 2

(a) () = sinh 2 ≈ 5() = 2+ 8
3!
3 + 32

5!
5 = 2+ 4

3
3 + 4

15
5

(b) |5()| ≤ 
6!
||6, where

  (6)()
 ≤ . For  in [−1 1], we have

|| ≤ 1. Since  (6)() is an increasing odd function on [−1 1], we see

that
  (6)()

 ≤  (6)(1) = 64 sinh 2 = 32(2 − −2) ≈ 232119,

so we can take = 23212 and get |5()| ≤ 23212
720

· 16 ≈ 03224.
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(c)

From the graph of |5()| = |sinh 2− 5()|, it seems that the
error is less than 0027 on [−1 1].

23. From Exercise 5, cos = − − 
2


+ 1

6


− 

2

3
+ 3(), where |3()| ≤ 

4!

− 
2

4 with (4)()
 = |cos| ≤  = 1. Now  = 80◦ = (90◦ − 10◦) =



2
− 

18


= 4

9
radians, so the error is3


4
9

 ≤ 1
24



18

4 ≈ 0000 039, which means our estimate would not be accurate to five decimal places. However,

3 = 4, so we can use
4


4
9

 ≤ 1
120



18

5 ≈ 0000 001. Therefore, to five decimal places,

cos 80◦ ≈ − − 
18


+ 1

6

− 
18

3 ≈ 017365.

24. From Exercise 16, sin = 1
2

+
√

3
2


− 

6

− 1
4


− 

6

2 − √
3

12


− 

6

3
+ 1

48


− 

6

4
+ 4(), where

|4()| ≤ 

5!

− 
6

5 with  (5)()
 = |cos| ≤ = 1. Now  = 38◦ = (30◦ + 8◦) =



6

+ 2
45


radians,

so the error is
4


38
180

 ≤ 1
120


2
45

5 ≈ 0000 000 44, which means our estimate will be accurate to five decimal places.

Therefore, to five decimal places, sin 38◦ = 1
2

+
√

3
2


2
45

− 1
4


2
45

2 − √
3

12


2
45

3
+ 1

48


2
45

4 ≈ 061566.

25. All derivatives of  are , so |()| ≤ 

(+ 1)!
||+1, where 0    01. Letting  = 01,

(01) ≤ 01

(+ 1)!
(01)+1  000001, and by trial and error we find that  = 3 satisfies this inequality since

3(01)  00000046. Thus, by adding the four terms of the Maclaurin series for  corresponding to  = 0, 1, 2, and 3,

we can estimate 01 to within 000001. (In fact, this sum is 110516 and 01 ≈ 110517.)

26. From Table 1 in Section 11.10, ln(1 + ) =
∞
=1

(−1)−1 



for ||  1. Thus, ln 14 = ln(1 + 04) =

∞
=1

(−1)−1 (04)


.

Since this is an alternating series, the error is less than the first neglected term by the Alternating Series Estimation Theorem,

and we find that |6| = (04)66 ≈ 00007  0001. So we need the first five (nonzero) terms of the Maclaurin series for the

desired accuracy. (In fact, this sum is approximately 033698 and ln 14 ≈ 033647.)

27. sin = − 1

3!
3 +

1

5!
5 − · · · . By the Alternating Series

Estimation Theorem, the error in the approximation

sin = − 1

3!
3 is less than

 15!5

  001 ⇔
5
  120(001) ⇔ ||  (12)

15 ≈ 1037. The curves

 = − 1
6
3 and  = sin− 001 intersect at  ≈ 1043, so

the graph confirms our estimate. Since both the sine function
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and the given approximation are odd functions, we need to check the estimate only for   0. Thus, the desired range of

values for  is −1037    1037.

28. cos = 1− 1

2!
2 +

1

4!
4 − 1

6!
6 + · · · . By the Alternating Series

Estimation Theorem, the error is less than

− 1

6!
6

  0005 ⇔

6  720(0005) ⇔ ||  (36)
16 ≈ 1238. The curves

 = 1− 1
2
2 + 1

24
4 and  = cos + 0005 intersect at  ≈ 1244,

so the graph confirms our estimate. Since both the cosine function

and the given approximation are even functions, we need to check

the estimate only for   0. Thus, the desired range of values for  is −1238    1238.

29. arctan = − 3

3
+

5

5
− 7

7
+ · · · . By the Alternating Series

Estimation Theorem, the error is less than
− 1

7
7
  005 ⇔7

  035 ⇔ ||  (035)17 ≈ 08607. The curves

 = − 1
3
3 + 1

5
5 and  = arctan+ 005 intersect at

 ≈ 09245, so the graph confirms our estimate. Since both the

arctangent function and the given approximation are odd functions,

we need to check the estimate only for   0. Thus, the desired

range of values for  is −086    086.

30. () =
∞
=0

 ()(4)

!
(− 4) =

∞
=0

(−1) !

3(+ 1)!
(− 4) =

∞
=0

(−1)

3(+ 1)
(− 4). Now

(5) =
∞
=0

(−1)

3(+ 1)
=

∞
=0

(−1) is the sum of an alternating series that satisfies (i) +1 ≤  and

(ii) lim
→∞

 = 0, so by the Alternating Series Estimation Theorem, |5(5)| = |(5)− 5(5)| ≤ 6, and

6 =
1

36(7)
=

1

5103
≈ 0000196  00002 ; that is, the fifth-degree Taylor polynomial approximates (5) with error less

than 00002.

31. Let () be the position function of the car, and for convenience set (0) = 0. The velocity of the car is () = 0() and the

acceleration is () = 00(), so the second degree Taylor polynomial is 2() = (0) + (0)+
(0)

2
2 = 20 + 2. We

estimate the distance traveled during the next second to be (1) ≈ 2(1) = 20 + 1 = 21 m. The function 2() would not be

accurate over a full minute, since the car could not possibly maintain an acceleration of 2 ms2 for that long (if it did, its final

speed would be 140 ms ≈ 313 mih!).
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32. (a)
 ()() ()(20)

0 20
(−20) 20

1 20
(−20) 20

2 220
(−20) 220

The linear approximation is

1() = (20) + 0(20)(− 20) = 20[1 + (− 20)]

The quadratic approximation is

2() = (20) + 0(20)(− 20) +
00(20)

2
(− 20)2

= 20


1 + (− 20) + 1

2
2(− 20)2


(b) (c)

From the graph, it seems that 1() is within 1% of (), that

is, 099() ≤ 1() ≤ 101(), for −14◦C ≤  ≤ 58◦C.

33.  =


2
− 

( + )2
=



2
− 

2(1 + )2
=



2


1−


1 +





−2

.

We use the Binomial Series to expand (1 + )−2:

 =


2


1−


1− 2







+

2 · 3
2!






2

− 2 · 3 · 4
3!






3

+ · · ·


=


2


2







− 3






2

+ 4






3

− · · ·


≈ 

2
· 2






= 2 · 1

3

when is much larger than ; that is, when  is far away from the dipole.

34. (a)
1


+

2


=

1




2


− 1




[Equation 1] where

 =

2 + ( +)2 − 2( +) cos and  =


2 + ( −)2 + 2( −) cos (2)

Using cos ≈ 1 gives

 =


2 + ( +)2 − 2( +) =


2 + 2 + 2 +2 − 2 − 22 =


2 = 

and similarly,  = . Thus, Equation 1 becomes
1


+

2


=

1




2


− 1




⇒ 1


+

2


=

2 − 1


.

(b) Using cos ≈ 1− 1
2
2 in (2) gives us

 =

2 + ( +)2 − 2( +)


1− 1

2
2


=

2 + 2 + 2 +2 − 2 +

2 − 22 +22 =

2 +

2 +22
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Anticipating that we will use the binomial series expansion (1 + ) ≈ 1 + , we can write the last expression for  as




1 + 2





+

2

2


and similarly,  = 


1− 2





− 2

2


. Thus, from Equation 1,

1


+

2


=

1




2


− 1




⇔ 1

−1
 + 2

−1
 =

2


· 

− 1


· 


⇔

1




1 + 2





+

2

2

−12

+
2




1− 2





− 2

2

−12

=
2




1− 2





− 2

2

−12

− 1




1 + 2





+

2

2

−12

Approximating the expressions for −1
 and −1

 by the first two terms in their binomial series, we get

1




1− 1

2
2





+

2

2


+

2




1 + 1

2
2





− 2

2



=
2




1 + 1

2
2





− 2

2


− 1




1− 1

2
2





+

2

2


⇔

1


− 1

2

2





+

2

2


+

2


+

2
2

2





− 2

2


=

2


+

2
2

2





− 2

2


− 1


+

1
2

2





+

2

2


⇔

1


+

2


=

2


− 1


+

1
2

2





+

2

2


+

1
2

2





+

2

2


+

2
2

2





− 2

2


− 2

2

2





− 2

2



=
2 − 1


+

1
2

2





+

2

2


1


+

1




+

2
2

2





− 2

2


1


− 1





=
2 − 1


+

1
22

2


1


+

1




1


+

1




+

2
22

2


1


− 1




1


− 1





=
2 − 1


+ 22


1

2


1


+

1



2

+
2

2


1


− 1



2


From Figure 8, we see that sin = . So if we approximate sin with , we get  =  and 2 = 22 and hence,

Equation 4, as desired.

35. (a) If the water is deep, then 2 is large, and we know that tanh→ 1 as →∞. So we can approximate

tanh(2) ≈ 1, and so 2 ≈ (2) ⇔  ≈

(2).

(b) From the table, the first term in the Maclaurin series of

tanh is , so if the water is shallow, we can approximate

tanh
2


≈ 2


, and so 2 ≈ 

2
· 2


⇔  ≈ √.

  ()()  ()(0)

0 tanh 0

1 sech2  1

2 −2 sech2  tanh 0

3 2 sech2  (3 tanh2 − 1) −2
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(c) Since tanh is an odd function, its Maclaurin series is alternating, so the error in the approximation

tanh
2


≈ 2


is less than the first neglected term, which is

| 000(0)|
3!


2



3

=
1

3


2



3

.

If   10, then
1

3


2



3


1

3


2 · 1

10

3

=
3

375
, so the error in the approximation 2 =  is less

than


2
· 3

375
≈ 00132.

36. First note that

2
√

2 +2 − 


= 2


√
2


1 +

2

2
− 



≈ 2





1 +

2

2
· 1

2
+ · · ·


− 

 
use the binomial series 1 + 1

2
+ · · · for√1 + 


= 2


+

2

2
+ · · ·


− 


≈ 2



since for large  the other terms are comparatively small. Now  = 2
√

2 +2 − 
 ≈ 

2


by the preceding

approximation.

37. (a)  is the length of the arc subtended by the angle , so  =  ⇒

 = . Now sec  = (+ ) ⇒  sec  = +  ⇒

 =  sec  − =  sec()−.

(b) First we’ll find a Taylor polynomial 4() for () = sec at  = 0.

  ()()  ()(0)

0 sec 1

1 sec tan 0

2 sec(2 tan2+ 1) 1

3 sec tan(6 tan2+ 5) 0

4 sec(24 tan4+ 28 tan2+ 5) 5

Thus, () = sec ≈ 4() = 1 + 1
2!

(− 0)2 + 5
4!

(− 0)4 = 1 + 1
2
2 + 5

24
4. By part (a),

 ≈ 


1 +

1

2






2

+
5

24






4

− =  +

1

2
 · 

2

2
+

5

24
 · 

4

4
− =

2

2
+

54

243
.

(c) Taking  = 100 km and  = 6370 km, the formula in part (a) says that

 =  sec()− = 6370 sec(1006370)− 6370 ≈ 0785 009 965 44 km.

The formula in part (b) says that  ≈ 2

2
+

54

243
=

1002

2 · 6370 +
5 · 1004

24 · 63703
≈ 0785 009 957 36 km.

The difference between these two results is only 0000 000 008 08 km, or 0000 008 08 m!
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38. (a) 4






 2

0


1− 2 sin2 

= 4






 2

0


1 +

−2
sin

2

−12



= 4






 2

0


1− 1

2

−2
sin

2



+
1
2
· 3

2

2!

−2
sin

2

2 − 1

2
· 3

2
· 5

2

3!

−2
sin

2

3

+ · · ·



= 4






 2

0


1 +


1

2




2
sin

2
+


1 · 3
2 · 4




4
sin

4
 +


1 · 3 · 5
2 · 4 · 6




6
sin

6
+ · · ·




= 4









2
+


1

2


1

2
· 

2


2 +


1 · 3
2 · 4


1 · 3
2 · 4 ·



2


4 +


1 · 3 · 5
2 · 4 · 6


1 · 3 · 5
2 · 4 · 6 ·



2


6 + · · ·


[split up the integral and use the result from Exercise 7.1.50]

= 2







1 +

12

22
2 +

12 · 32

22 · 42
4 +

12 · 32 · 52

22 · 42 · 62
6 + · · ·


(b) The first of the two inequalities is true because all of the terms in the series are positive. For the second,

 = 2







1 +

12

22
2 +

12 · 32

22 · 42
4 +

12 · 32 · 52

22 · 42 · 62
6 +

12 · 32 · 52 · 72

22 · 42 · 62 · 82
8 + · · ·



≤ 2







1 + 1

4
2 + 1

4
4 + 1

4
6 + 1

4
8 + · · · 

The terms in brackets (after the first) form a geometric series with  = 1
4
2 and  = 2 = sin2


1
2
0


 1.

So  ≤ 2







1 +

24

1− 2


= 2






4− 32

4− 42
.

(c) We substitute  = 1,  = 98, and  = sin(10◦2) ≈ 008716, and the inequality from part (b) becomes

201090 ≤  ≤ 201093, so  ≈ 20109. The estimate  ≈ 2

 ≈ 20071 differs by about 02%.

If 0 = 42◦, then  ≈ 035837 and the inequality becomes 207153 ≤  ≤ 208103, so  ≈ 20763.

The one-term estimate is the same, and the discrepancy between the two estimates increases to about 34%.

39. Using () = () +() with  = 1 and  = , we have () = 1() +1(), where 1 is the first-degree Taylor

polynomial of  at . Because  = , () = () +  0()( − ) +1(). But  is a root of  , so () = 0

and we have 0 = () +  0()( − ) +1(). Taking the first two terms to the left side gives us

 0()( − )− () = 1(). Dividing by  0(), we get  −  − ()

 0()
=

1()

 0()
. By the formula for Newton’s

method, the left side of the preceding equation is +1 − , so |+1 − | =
 1()

 0()

. Taylor’s Inequality gives us
|1()| ≤ | 00()|

2!
| − |2. Combining this inequality with the facts | 00()| ≤ and | 0()| ≥  gives us

|+1 − | ≤ 

2
| − |2.
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1. If we write () =
8−5

( ) − 1
=

−5

( ) − 1
, then as → 0+, it is of the form∞∞, and as →∞ it is of the form

00, so in either case we can use l’Hospital’s Rule. First of all,

lim
→∞

 ()
H
= lim

→∞

−5−6


− 

( )2
( )

= 5



lim
→∞

2−6

( )
= 5




lim
→∞

−4

( )
= 0

Also, lim
→0+

()
H
= 5




lim
→0+

−4

( )

H
= 5




lim
→0+

−4−5

− 

( )2
( )

= 20


2

2

lim
→0+

−3

( )

This is still indeterminate, but note that each time we use l’Hospital’s Rule, we gain a factor of  in the numerator, as well as a

constant factor, and the denominator is unchanged. So if we use l’Hospital’s Rule three more times, the exponent of  in the

numerator will become 0. That is, for some {}, all constant,

lim
→0+

()
H
= 1 lim

→0+

−3

( )

H
= 2 lim

→0+

−2

( )

H
= 3 lim

→0+

−1

( )

H
= 4 lim

→0+

1

( )
= 0

2. We expand the denominator of Planck’s Law using the Taylor series  = 1 +  +
2

2!
+

3

3!
+ · · · with  =




, and use

the fact that if  is large, then all subsequent terms in the Taylor expansion are very small compared to the first one, so we can

approximate using the Taylor polynomial 1:

() =
8−5

( ) − 1
=

8−5
1 +




+

1

2!






2

+
1

3!






3

+ · · ·

− 1

≈ 8−5
1 +






− 1

=
8

4

which is the Rayleigh-Jeans Law.

3. To convert to m, we substitute 106 for  in both laws. The first figure shows that the two laws are similar for large . The

second figure shows that the two laws are very different for short wavelengths (Planck’s Law gives a maximum at

 ≈ 051 m; the Rayleigh-Jeans Law gives no minimum or maximum.).

4. From the graph in Problem 3, () has a maximum under Planck’s Law at  ≈ 051m.
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5.

As  gets larger, the total area under the curve increases, as we would expect: the hotter the star, the more energy it emits.

Also, as  increases, the -value of the maximum decreases, so the higher the temperature, the shorter the peak wavelength

(and consequently the average wavelength) of light emitted. This is why Sirius is a blue star and Betelgeuse is a red star: most

of Sirius’s light is of a fairly short wavelength; that is, a higher frequency, toward the blue end of the spectrum, whereas most

of Betelgeuse’s light is of a lower frequency, toward the red end of the spectrum.

11 Review

1. False. See Note 2 after Theorem 11.2.6.

2. False. The series
∞
=1

− sin 1 =
∞
=1

1

sin 1
is a -series with  = sin 1 ≈ 084 ≤ 1, so the series diverges.

3. True. If lim
→∞

 = , then as →∞, 2+ 1→∞, so 2+1 → .

4. True by Theorem 11.8.4.

Or: Use the Comparison Test to show that


(−2) converges absolutely.

5. False. For example, take  = (−1)

(6).

6. True by Theorem 11.8.4.

7. False, since lim
→∞

+1



 = lim
→∞

 1

(+ 1)
3
· 

3

1

 = lim
→∞

 3

(+ 1)
3
· 13

13

 = lim
→∞

1

(1 + 1)
3

= 1.

8. True, since lim
→∞

+1



 = lim
→∞

 1

(+ 1)!
· !

1

 = lim
→∞

1

+ 1
= 0  1.

9. False. See the note after Example 11.4.2.

10. True, since
1


= −1and  =

∞
=0



!
, so −1 =

∞
=0

(−1)


!
.

11. True. See (9) in Section 11.1.

12. True, because if
 || is convergent, then so is


 by Theorem 11.6.3.

13. True. By Theorem 11.10.5 the coefficient of 3 is
 000(0)

3!
=

1

3
⇒  000(0) = 2.

Or: Use Theorem 11.9.2 to differentiate  three times.
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14. False. Let  =  and  = −. Then {} and {} are divergent, but  +  = 0, so { + } is convergent.

15. False. For example, let  =  = (−1)
. Then {} and {} are divergent, but  = 1, so {} is convergent.

16. True by the Monotonic Sequence Theorem, since {} is decreasing and 0   ≤ 1 for all  ⇒ {} is bounded.

17. True by Theorem 11.6.3. [


(−1)

 is absolutely convergent and hence convergent.]

18. True. lim
→∞

+1


 1 ⇒ 

 converges (Ratio Test) ⇒ lim
→∞

 = 0 [Theorem 11.2.6].

19. True. 099999    = 09 + 09(01)1 + 09(01)2 + 09(01)3 + · · · =
∞
=1

(09)(01)−1 =
09

1− 01
= 1 by the formula

for the sum of a geometric series [ = 1(1− )] with ratio  satisfying ||  1.

20. True. Since lim
→∞

 = 2, we know that lim
→∞

+3 = 2. Thus, lim
→∞

(+3 − ) = lim
→∞

+3 − lim
→∞

 = 2− 2 = 0.

21. True. A finite number of terms doesn’t affect convergence or divergence of a series.

22. False. Let  = (01) and  = (02). Then
∞
=1

 =
∞
=1

(01) =
01

1− 01
=

1

9
= ,

∞
=1

 =
∞
=1

(02) =
02

1− 02
=

1

4
= , and

∞
=1

 =
∞
=1

(002) =
002

1− 002
=

1

49
, but

 = 1
9
· 1

4
= 1

36
.

1.


2 + 3

1 + 23


converges since lim

→∞
2 + 3

1 + 23
= lim

→∞
23 + 1

13 + 2
=

1

2
.

2.  =
9+1

10
= 9 ·  9

10


, so lim

→∞
 = 9 lim

→∞


9
10


= 9 · 0 = 0 by (11.1.9).

3. lim
→∞

 = lim
→∞

3

1 + 2
= lim

→∞


12 + 1
=∞, so the sequence diverges.

4.  = cos(2), so  = 0 if  is odd and  = ±1 if  is even. As  increases,  keeps cycling through the values

0, 1, 0, −1, so the sequence {} is divergent.

5. || =
 sin

2 + 1

 ≤ 

2 + 1


1


, so ||→ 0 as →∞. Thus, lim

→∞
 = 0. The sequence {} is convergent.

6.  =
ln√

. Let () =

ln√

for   0. Then lim

→∞
() = lim

→∞
ln√


H
= lim

→∞
1

1(2
√
 )

= lim
→∞

2√


= 0.

Thus, by Theorem 11.1.3, {} converges and lim
→∞

 = 0.
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7.


1 +

3



4

is convergent. Let  =


1 +

3



4

. Then

lim
→∞

ln  = lim
→∞

4 ln(1 + 3) = lim
→∞

ln(1 + 3)

1(4)

H
= lim

→∞

1

1 + 3


− 3

2


−1(42)

= lim
→∞

12

1 + 3
= 12, so

lim
→∞

 = lim
→∞


1 +

3



4

= 12.

8.


(−10)

!


converges, since

10

!
=

10 · 10 · 10 · · · · · 10
1 · 2 · 3 · · · · · 10 · 10 · 10 · · · · · 10

11 · 12 · · · · ·  ≤ 1010


10

11

−10

→ 0 as →∞, so

lim
→∞

(−10)

!
= 0 [Squeeze Theorem]. Or: Use (11.10.10).

9. We use induction, hypothesizing that −1    2. Note first that 1  2 = 1
3

(1 + 4) = 5
3
 2, so the hypothesis holds

for  = 2. Now assume that −1    2. Then  = 1
3
(−1 + 4)  1

3
( + 4)  1

3
(2 + 4) = 2. So   +1  2,

and the induction is complete. To find the limit of the sequence, we note that  = lim
→∞

 = lim
→∞

+1 ⇒

 = 1
3
(+ 4) ⇒  = 2.

10. lim
→∞

4


H
= lim

→∞
43


H
= lim

→∞
122


H
= lim

→∞
24


H
= lim

→∞
24


= 0

Then we conclude from Theorem 11.1.3 that lim
→∞

4− = 0.

From the graph, it seems that 124−12  01, but 4−  01

whenever   12. So the smallest value of  corresponding to

 = 01 in the definition of the limit is = 12.

11.


3 + 1




3
=

1

2
, so

∞
=1



3 + 1
converges by the Comparison Test with the convergent -series

∞
=1

1

2
[  = 2  1].

12. Let  =
2 + 1

3 + 1
and  =

1


, so lim

→∞



= lim

→∞
3 + 

3 + 1
= lim

→∞
1 + 12

1 + 13
= 1  0.

Since
∞
=1

 is the divergent harmonic series,
∞
=1

 also diverges by the Limit Comparison Test.

13. lim
→∞

+1



 = lim
→∞


(+ 1)3

5+1
· 5

3


= lim

→∞


1 +

1



3

· 1

5
=

1

5
 1, so

∞
=1

3

5
converges by the Ratio Test.

14. Let  =
1√
+ 1

. Then  is positive for  ≥ 1, the sequence {} is decreasing, and lim
→∞

 = 0, so the series

∞
=1

(−1)


√
+ 1

converges by the Alternating Series Test.
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15. Let () =
1


√

ln
. Then  is continuous, positive, and decreasing on [2∞), so the Integral Test applies.

 ∞

2

() = lim
→∞

 

2

1


√

ln



 = ln,  =

1





= lim

→∞

 ln 

ln 2


−12

 = lim
→∞


2
√

ln 
ln 2

= lim
→∞


2
√

ln − 2
√

ln 2


=∞

so the series
∞
=2

1


√

ln
diverges.

16. lim
→∞



3+ 1
=

1

3
, so lim

→∞
ln




3+ 1


= ln 1

3
6= 0. Thus, the series

∞
=1

ln




3+ 1


diverges by the Test for

Divergence.

17. || =
 cos 3

1 + (12)

 ≤ 1

1 + (12)


1

(12)
=


5

6


, so

∞
=1

|| converges by comparison with the convergent geometric

series
∞
=1


5
6

 
 = 5

6
 1


. It follows that

∞
=1

 converges (by Theorem 11.6.3).

18. lim
→∞



|| = lim

→∞


 2

(1 + 22)

 = lim
→∞

2

1 + 22
= lim

→∞
1

12 + 2
=

1

2
 1, so

∞
=1

2

(1 + 22)
converges by the

Root Test.

19. lim
→∞

+1



 = lim
→∞

1 · 3 · 5 · · · · · (2− 1)(2+ 1)

5+1 (+ 1)!
· 5 !

1 · 3 · 5 · · · · · (2− 1)
= lim

→∞
2+ 1

5(+ 1)
=

2

5
 1, so the series

converges by the Ratio Test.

20.
∞
=1

(−5)
2

2 9
=

∞
=1

1

2


25

9


. Now lim

→∞

+1



 = lim
→∞

25+1

(+ 1)
2 · 9+1

· 
2 · 9
25

= lim
→∞

252

9(+ 1)2
=

25

9
 1,

so the series diverges by the Ratio Test.

21.  =

√


+ 1
 0, {} is decreasing, and lim

→∞
 = 0, so the series

∞
=1

(−1)−1

√


+ 1
converges by the Alternating

Series Test.

22. Use the Limit Comparison Test with  =

√
+ 1−√− 1


=

2


√

+ 1 +
√
− 1

 (rationalizing the numerator) and
 =

1

32
. lim
→∞




= lim

→∞
2
√
√

+ 1 +
√
− 1

= 1, so since
∞
=1

 converges

 = 3

2
 1


,
∞
=1

 converges also.

23. Consider the series of absolute values:
∞
=1

−13 is a p-series with  = 1
3
≤ 1 and is therefore divergent. But if we apply the

Alternating Series Test, we see that  =
1
3
√

 0, {} is decreasing, and lim

→∞
 = 0, so the series

∞
=1

(−1)−1 −13

converges. Thus,
∞
=1

(−1)−1 −13 is conditionally convergent.
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24.
∞
=1

(−1)
−1

−3
 =

∞
=1

−3 is a convergent p-series [ = 3  1]. Therefore,
∞
=1

(−1)
−1

−3 is absolutely convergent.

25.

+1



 =  (−1)+1(+ 2)3+1

22+3
· 22+1

(−1)(+ 1)3

 =
+ 2

+ 1
· 3

4
=

1 + (2)

1 + (1)
· 3

4
→ 3

4
 1 as →∞, so by the Ratio

Test,
∞
=1

(−1)(+ 1)3

22+1
is absolutely convergent.

26. lim
→∞

√


ln

H
= lim

→∞
1(2

√
 )

1
= lim

→∞

√


2
=∞. Therefore, lim

→∞
(−1)

√


ln
6= 0, so the given series is divergent by the

Test for Divergence.

27.
∞
=1

(−3)−1

23
=

∞
=1

(−3)−1

(23)
=

∞
=1

(−3)−1

8
=

1

8

∞
=1

(−3)−1

8−1
=

1

8

∞
=1


−3

8

−1

=
1

8


1

1− (−38)


=

1

8
· 8

11
=

1

11

28.
∞
=1

1

(+ 3)
=

∞
=1


1

3
− 1

3(+ 3)


[partial fractions].

 =

=1


1

3
− 1

3(+ 3)


=

1

3
+

1

6
+

1

9
− 1

3(+ 1)
− 1

3(+ 2)
− 1

3(+ 3)
(telescoping sum), so

∞
=1

1

(+ 3)
= lim

→∞
 =

1

3
+

1

6
+

1

9
=

11

18
.

29.
∞
=1

[tan−1(+ 1)− tan−1 ] = lim
→∞



= lim
→∞

[(tan−1 2− tan−1 1) + (tan−1 3− tan−1 2) + · · ·+ (tan−1(+ 1)− tan−1 )]

= lim
→∞

[tan−1(+ 1)− tan−1 1] = 
2
− 

4
= 

4

30.
∞
=0

(−1)

32 (2)!
=

∞
=0

(−1)
1

(2)!
· 



32
=

∞
=0

(−1)
1

(2)!
·
√



3

2

= cos

√


3


since cos =

∞
=0

(−1)
2

(2)!

for all .

31. 1− +
2

2!
− 3

3!
+

4

4!
− · · · =

∞
=0

(−1)


!
=

∞
=0

(−)
!

= − since  =
∞
=0



!
for all .

32. 417326 = 417 +
326

105
+

326

108
+ · · · = 417 +

326105

1− 1103
=

417

100
+

326

99,900
=

416,909
99,900

33. cosh =
1

2
( + −) =

1

2

 ∞
=0



!
+

∞
=0

(−)

!



=
1

2


1 + +

2

2!
+

3

3!
+

4

4!
+ · · ·


+


1− +

2

2!
− 3

3!
+

4

4!
− · · ·



=
1

2


2 + 2 · 

2

2!
+ 2 · 

4

4!
+ · · ·


= 1 +

1

2
2 +

∞
=2

2

(2)!
≥ 1 +

1

2
2 for all 
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34.
∞
=1

(ln) is a geometric series which converges whenever |ln|  1 ⇒ −1  ln  1 ⇒ −1    .

35.
∞
=1

(−1)+1

5
= 1− 1

32
+

1

243
− 1

1024
+

1

3125
− 1

7776
+

1

16,807
− 1

32,768
+ · · · .

Since 8 =
1

85
=

1

32,768
 0000031,

∞
=1

(−1)+1

5
≈

7
=1

(−1)+1

5
≈ 09721.

36. (a) 5 =
5

=1

1

6
= 1 +

1

26
+ · · ·+ 1

56
≈ 1017305. The series

∞
=1

1

6
converges by the Integral Test, so we estimate the

remainder 5 with (11.3.2): 5 ≤
 ∞

5



6
=


−−5

5

∞
5

=
5−5

5
= 0000064. So the error is at most 0000064.

(b) In general,  ≤
 ∞





6
=

1

55
. If we take  = 9, then 9 ≈ 101734 and 9 ≤ 1

5 · 95
≈ 34× 10−6.

So to five decimal places,
∞
=1

1

5
≈

9
=1

1

5
≈ 101734.

Another method: Use (11.3.3) instead of (11.3.2).

37.
∞
=1

1

2 + 5
≈

8
=1

1

2 + 5
≈ 018976224. To estimate the error, note that

1

2 + 5


1

5
, so the remainder term is

8 =
∞
=9

1

2 + 5


∞
=9

1

5
=

159

1− 15
= 64× 10−7


geometric series with  = 1

59
and  = 1

5


.

38. (a) lim
→∞

+1



 = lim
→∞

 (+ 1)
+1

[2(+ 1)]!
· (2)!



 = lim
→∞

(+ 1)(+ 1)1

(2+ 2)(2+ 1)
= lim

→∞


+ 1




1

2(2+ 1)

= lim
→∞


1 +

1




1

2(2+ 1)
=  · 0 = 0  1

so the series converges by the Ratio Test.

(b) The series in part (a) is convergent, so lim
→∞

 = lim
→∞



(2)!
= 0 by Theorem 11.2.6.

39. Use the Limit Comparison Test. lim
→∞



+ 1







 = lim
→∞

+ 1


= lim

→∞


1 +

1




= 1  0.

Since
 || is convergent, so is

+ 1






, by the Limit Comparison Test.
40. lim

→∞

+1



 = lim
→∞

 +1

(+ 1)
2
5+1

· 
25



 = lim
→∞

1

(1 + 1)
2

||
5

=
||
5
, so by the Ratio Test,

∞
=1

(−1)
 

2 5

converges when
||
5

 1 ⇔ ||  5, so  = 5. When  = −5, the series becomes the convergent -series
∞
=1

1

2
with

 = 2  1. When  = 5, the series becomes
∞
=1

(−1)


2
, which converges by the Alternating Series Test. Thus,  = [−5 5].
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41. lim
→∞

+1



 = lim
→∞

 |+ 2|+1

(+ 1) 4+1
·  4

| + 2|


= lim
→∞




+ 1

|+ 2|
4


=
|+ 2|

4
 1 ⇔ |+ 2|  4, so  = 4.

|+ 2|  4 ⇔ −4   + 2  4 ⇔ −6    2. If  = −6, then the series
∞
=1

(+ 2)

 4
becomes

∞
=1

(−4)


4
=

∞
=1

(−1)



, the alternating harmonic series, which converges by the Alternating Series Test. When  = 2, the

series becomes the harmonic series
∞
=1

1


, which diverges. Thus,  = [−6 2).

42. lim
→∞

+1



 = lim
→∞

2+1 (− 2)
+1

(+ 3)!
· (+ 2)!

2(− 2)


 = lim
→∞

2

+ 3
|− 2| = 0  1, so the series

∞
=1

2 (− 2)


(+ 2)!

converges for all .  =∞ and  = (−∞∞).

43. lim
→∞

+1



 = lim
→∞

2+1(− 3)
+1

√
+ 4

·
√
+ 3

2(− 3)


 = 2 |− 3| lim
→∞


+ 3

+ 4
= 2 |− 3|  1 ⇔ |− 3|  1

2
,

so  = 1
2
. |− 3|  1

2
⇔ −1

2
 − 3  1

2
⇔ 5

2
   7

2
. For  = 7

2
, the series

∞
=1

2(− 3)√
+ 3

becomes

∞
=0

1√
+ 3

=
∞
=3

1

12
, which diverges


 = 1

2
≤ 1


, but for  = 5

2
, we get

∞
=0

(−1)√
+ 3

, which is a convergent

alternating series, so  =


5
2
 7

2


.

44. lim
→∞

+1



 = lim
→∞

 (2+ 2)!+1

[(+ 1)!]
2

· (!)2

(2)!

 = lim
→∞

(2+ 2)(2+ 1)

(+ 1)(+ 1)
|| = 4 ||.

To converge, we must have 4 ||  1 ⇔ ||  1
4
, so  = 1

4
.

45.
  ()()  ()



6


0 sin 1

2

1 cos
√

3
2

2 − sin − 1
2

3 − cos −
√

3
2

4 sin 1
2

...
...

...

sin= 


6


+  0


6


− 

6


+

 00


6


2!


− 

6

2
+

 (3)


6


3!


− 

6

3

+
 (4)


6


4!


− 

6

4
+ · · ·

=
1

2


1− 1

2!


− 

6

2
+

1

4!


− 

6

4
− · · ·


+

√
3

2


− 

6


− 1

3!


− 

6

3
+ · · ·



=
1

2

∞
=0

(−1)
1

(2)!


− 

6

2
+

√
3

2

∞
=0

(−1)
1

(2+ 1)!


− 

6

2+1
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46.
  ()()  ()



3


0 cos 1

2

1 − sin −
√

3
2

2 − cos − 1
2

3 sin
√

3
2

4 cos 1
2

...
...

...

cos= 


3


+  0


3


− 

3


+

 00


3


2!


− 

3

2
+

 (3)


3


3!


− 

3

3
+

 (4)


3


4!


− 

3

4
+ · · ·

=
1

2


1− 1

2!


− 

3

2
+

1

4!


− 

3

4
− · · ·


+

√
3

2


−

− 

3


+

1

3!


− 

3

3
− · · ·



=
1

2

∞
=0

(−1)
1

(2)!


− 

3

2
+

√
3

2

∞
=0

(−1)+1 1

(2+ 1)!


− 

3

2+1

47.
1

1 + 
=

1

1− (−)
=

∞
=0

(−)


=
∞
=0

(−1)

 for ||  1 ⇒ 2

1 + 
=

∞
=0

(−1)

+2 with  = 1.

48. tan−1  =
∞
=0

(−1)
2+1

2+ 1
with interval of convergence [−1 1], so

tan−1(2) =
∞
=0

(−1)
(2)2+1

2+ 1
=

∞
=0

(−1)
4+2

2+ 1
, which converges when 2 ∈ [−1 1] ⇔  ∈ [−1 1].

Therefore,  = 1.

49.


1

4− 
 = − ln(4 − ) +  and

1

4− 
 =

1

4


1

1− 4
 =

1

4

 ∞
=0


4


 =

1

4

 ∞
=0



4
 =

1

4

∞
=0

+1

4(+ 1)
+. So

ln(4− ) = −1

4

∞
=0

+1

4(+ 1)
+  = −

∞
=0

+1

4+1(+ 1)
+ = −

∞
=1



4
+ . Putting  = 0, we get  = ln 4.

Thus, () = ln(4− ) = ln 4−
∞
=1



4
. The series converges for |4|  1 ⇔ ||  4, so  = 4.

Another solution:

ln(4− ) = ln[4(1− 4)] = ln 4 + ln(1− 4) = ln 4 + ln[1 + (−4)]

= ln 4 +
∞
=1

(−1)+1 (−4)


[from Table 1] = ln 4 +
∞
=1

(−1)2+1 

4
= ln 4−

∞
=1



4
.

50.  =
∞
=0



!
⇒ 2 =

∞
=0

(2)

!
⇒ 2 = 

∞
=0

2 

!
=

∞
=0

2 +1

!
,  =∞

51. sin =
∞
=0

(−1) 2+1

(2+ 1)!
⇒ sin(4) =

∞
=0

(−1) (4)2+1

(2+ 1)!
=

∞
=0

(−1) 8+4

(2+ 1)!
for all , so the radius of

convergence is∞.

52.  =
∞
=0



!
⇒ 10 = (ln 10) =

∞
=0

[(ln 10)]

!
=

∞
=0

(ln 10)

!
,  =∞
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53. () =
1

4
√

16− 
=

1
4


16(1− 16)
=

1
4
√

16

1− 1

16

14 = 1

2


1− 1

16

−14

=
1

2


1 +


−1

4


− 

16


+

− 1
4

−5
4


2!


− 

16

2

+

− 1
4

 − 5
4

 − 9
4


3!


− 

16

3
+ · · ·



=
1

2
+

∞
=1

1 · 5 · 9 · · · · · (4− 3)

2 · 4 · ! · 16  =
1

2
+

∞
=1

1 · 5 · 9 · · · · · (4− 3)

26+1 !


for
− 

16

  1 ⇔ ||  16, so  = 16.

54. (1− 3)
−5

=
∞
=0


−5




(−3)


= 1 + (−5)(−3) +

(−5)(−6)

2!
(−3)

2
+

(−5)(−6)(−7)

3!
(−3)

3
+ · · ·

= 1 +
∞
=1

5 · 6 · 7 · · · · · (+ 4) · 3 
!

for |−3|  1 ⇔ ||  1
3
, so  = 1

3
.

55.  =
∞
=0



!
, so




=

1



∞
=0



!
=

∞
=0

−1

!
= −1 +

∞
=1

−1

!
=

1


+

∞
=1

−1

!
and




 =  + ln ||+

∞
=1



 · !
.

56. (1 + 4)12 =
∞
=0


1
2




(4) = 1 +


1
2


4 +


1
2

−1
2


2!

(4)2 +


1
2

− 1
2

− 3
2


3!

(4)3 + · · ·

= 1 + 1
2
4 − 1

8
8 + 1

16
12 − · · ·

so
 1

0
(1 + 4)12  =


+ 1

10
5 − 1

72
9 + 1

208
13 − · · · 1

0
= 1 + 1

10
− 1

72
+ 1

208
− · · · .

This is an alternating series, so by the Alternating Series Test, the error in the approximation 1

0
(1 + 4)12  ≈ 1 + 1

10
− 1

72
≈ 1086 is less than 1

208
, sufficient for the desired accuracy.

Thus, correct to two decimal places,
 1

0
(1 + 4)12  ≈ 109.

57. (a)
  ()()  ()(1)

0 12 1

1 1
2
−12 1

2

2 − 1
4
−32 − 1

4

3 3
8
−52 3

8

4 − 15
16
−72 − 15

16

...
...

...

√
 ≈ 3() = 1 +

12

1!
(− 1)− 14

2!
(− 1)2 +

38

3!
(− 1)3

= 1 + 1
2
(− 1)− 1

8
(− 1)2 + 1

16
(− 1)3

(b)

(c) |3 ()| ≤ 

4!
|− 1|4, where

 (4) ()
 ≤  with  (4)() = − 15

16
−72. Now 09 ≤  ≤ 11 ⇒

−01 ≤ − 1 ≤ 01 ⇒ (− 1)
4 ≤ (01)

4, and letting  = 09 gives =
15

16(09)72
, so

|3()| ≤ 15

16(09)72 4!
(01)

4 ≈ 0000 005 648 ≈ 0000 006 = 6× 10−6.
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(d)

From the graph of |3()| = |√− 3()|, it appears that

the error is less than 5× 10−6 on [09 11].

58. (a)
  ()()  ()(0)

0 sec 1

1 sec tan 0

2 sec tan2 + sec3  1

3 sec tan3 + 5 sec3  tan 0

...
...

...

sec ≈ 2() = 1 + 1
2
2

(b)

(c) |2 ()| ≤ 

3!
||3, where

 (3)()
 ≤ with  (3)() = sec tan3 + 5 sec3  tan.

Now 0 ≤  ≤ 
6
⇒ 3 ≤ 

6

3
, and letting  = 

6
gives = 14

3
, so |2 ()| ≤ 14

3 · 6


6

3
≈ 0111648.

(d)

From the graph of |2()| = |sec− 2()|, it appears that

the error is less than 002 on

0 

6


.

59. sin =
∞
=0

(−1)
 2+1

(2+ 1)!
= − 3

3!
+

5

5!
− 7

7!
+ · · · , so sin−  = −3

3!
+

5

5!
− 7

7!
+ · · · and

sin− 

3
= − 1

3!
+

2

5!
− 4

7!
+ · · · . Thus, lim

→0

sin− 

3
= lim

→0


−1

6
+

2

120
− 4

5040
+ · · ·


= −1

6
.

60. (a)  =
2

(+ )2
=



(1 + )2
= 

∞
=0


−2









[binomial series]
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(b) We expand  = 

1− 2 () + 3 ()

2 − · · · .
This is an alternating series, so by the Alternating Series

Estimation Theorem, the error in the approximation  = 

is less than 2, so for accuracy within 1% we want 2

2( + )2

  001 ⇔ 2(+ )2

3
 001.

This inequality would be difficult to solve for , so we substitute  = 6,400 km and plot both sides of the inequality.

It appears that the approximation is accurate to within 1% for   31 km.

61. () =
∞
=0

 
 ⇒ (−) =

∞
=0

(−) =
∞
=0

(−1) 


(a) If  is an odd function, then (−) = −() ⇒
∞
=0

(−1)
 =

∞
=0

−. The coefficients of any power series

are uniquely determined (by Theorem 11.10.5), so (−1)

 = −.

If  is even, then (−1) = 1, so  = − ⇒ 2 = 0 ⇒  = 0. Thus, all even coefficients are 0, that is,

0 = 2 = 4 = · · · = 0.

(b) If  is even, then (−) = () ⇒
∞
=0

(−1)

 

 =
∞
=0

 
 ⇒ (−1)  = .

If  is odd, then (−1) = −1, so − =  ⇒ 2 = 0 ⇒  = 0. Thus, all odd coefficients are 0,

that is, 1 = 3 = 5 = · · · = 0.

62.  =
∞
=0



!
⇒ () = 

2

=
∞
=0

(2)

!
=

∞
=0

2

!
=

∞
=0

1

!
2. By Theorem 11.10.6 with  = 0, we also have

() =
∞
=0

 ()(0)

!
. Comparing coefficients for  = 2, we have

 (2)(0)

(2)!
=

1

!
⇒  (2)(0) =

(2)!

!
.
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PROBLEMS PLUS

1. It would be far too much work to compute 15 derivatives of  . The key idea is to remember that  ()(0) occurs in the

coefficient of  in the Maclaurin series of  . We start with the Maclaurin series for sin: sin = − 3

3!
+

5

5!
− · · · .

Then sin(3) = 3 − 9

3!
+

15

5!
− · · · , and so the coefficient of 15 is

 (15)(0)

15!
=

1

5!
. Therefore,

 (15)(0) =
15!

5!
= 6 · 7 · 8 · 9 · 10 · 11 · 12 · 13 · 14 · 15 = 10,897,286,400.

2. We use the problem-solving strategy of taking cases:

Case (i): If ||  1, then 0 ≤ 2  1, so lim
→∞

2 = 0 [see Example 11.1.11]

and () = lim
→∞

2 − 1

2 + 1
=

0− 1

0 + 1
= −1.[]

Case (ii): If || = 1, that is,  = ±1, then 2 = 1, so () = lim
→∞

2 − 1

2 + 1
= lim

→∞
1− 1

1 + 1
= 0.

Case (iii): If ||  1, then 2  1, so lim
→∞

2 =∞ and () = lim
→∞

2 − 1

2 + 1
= lim

→∞
1− (12)

1 + (12)
=

1− 0

1 + 0
= 1.

Thus, () =



1 if   −1

0 if  = −1

−1 if −1    1

0 if  = 1

1 if   1

The graph shows that  is continuous everywhere except at  = ±1.

3. (a) From Formula 14a in Appendix D, with  =  = , we get tan 2 =
2 tan 

1− tan2 
, so cot 2 =

1− tan2 

2 tan 
⇒

2 cot 2 =
1− tan2 

tan 
= cot  − tan . Replacing  by 1

2
, we get 2 cot = cot 1

2
− tan 1

2
, or

tan 1
2
 = cot 1

2
− 2 cot.

(b) From part (a) with


2−1
in place of , tan



2
= cot



2
− 2 cot



2−1
, so the th partial sum of

∞
=1

1

2
tan



2
is

 =
tan(2)

2
+

tan(4)

4
+

tan(8)

8
+ · · ·+ tan(2)

2

=


cot(2)

2
− cot


+


cot(4)

4
− cot(2)

2


+


cot(8)

8
− cot(4)

4


+ · · ·

+


cot(2)

2
− cot(2−1)

2−1


= − cot+

cot(2)

2
[telescoping sum]

Now
cot(2)

2
=

cos(2)

2 sin(2)
=

cos(2)


· 2

sin(2)
→ 1


· 1 =

1


as →∞ since 2 → 0
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for  6= 0. Therefore, if  6= 0 and  6=  where  is any integer, then

∞
=1

1

2
tan



2
= lim

→∞
 = lim

→∞


− cot+

1

2
cot



2


= − cot+

1



If  = 0, then all terms in the series are 0, so the sum is 0.

4. |2|2 = 2, |3|2 = 2 + 22, |4|2 = 2 + 22 +

22
2
, |5|2 = 2 + 22 +


22
2

+

23
2
,    ,

||2 = 2 + 22 +

22
2

+ · · ·+ (2−2)2 [for  ≥ 3] = 2 + (4 + 42 + 43 + · · ·+ 4−2)

= 2 +
4(4−2 − 1)

4− 1
[finite geometric sum with  = 4,  = 4] =

6

3
+

4−1 − 4

3
=

2

3
+

4−1

3

So tan∠+1 =
|+1|
|| =

2−1
2

3
+

4−1

3

=

√
4−1

2

3
+

4−1

3

=
1

2

3 · 4−1
+

1

3

→√
3 as →∞.

Thus, ∠+1 → 
3
as →∞.

5. (a) At each stage, each side is replaced by four shorter sides, each of length

1
3
of the side length at the preceding stage. Writing 0 and 0 for the

number of sides and the length of the side of the initial triangle, we

generate the table at right. In general, we have  = 3 · 4 and
 =


1
3


, so the length of the perimeter at the th stage of construction

is  =  = 3 · 4 ·  1
3


= 3 ·  4

3


.

0 = 3 0 = 1

1 = 3 · 4 1 = 13

2 = 3 · 42 2 = 132

3 = 3 · 43 3 = 133

...
...

(b)  =
4

3−1
= 4


4

3

−1

. Since 4
3
 1,  →∞ as →∞.

(c) The area of each of the small triangles added at a given stage is one-ninth of the area of the triangle added at the preceding

stage. Let  be the area of the original triangle. Then the area  of each of the small triangles added at stage  is

 =  · 1

9
=



9
. Since a small triangle is added to each side at every stage, it follows that the total area added to the

figure at the th stage is  = −1 ·  = 3 · 4−1 · 

9
=  · 4−1

32−1
. Then the total area enclosed by the snowflake

curve is  = +1 + 2 +3 + · · · = +  · 1

3
+  · 4

33
+  · 42

35
+  · 43

37
+ · · · . After the first term, this is a

geometric series with common ratio
4

9
, so  = +

3

1− 4
9

= +


3
· 9

5
=

8

5
. But the area of the original equilateral

triangle with side 1 is  =
1

2
· 1 · sin 

3
=

√
3

4
. So the area enclosed by the snowflake curve is

8

5
·
√

3

4
=

2
√

3

5
.

6. Let the series  = 1 + 1
2

+ 1
3

+ 1
4

+ 1
6

+ 1
8

+ 1
9

+ 1
12

+ · · · . Then every term in  is of the form
1

23
,,  ≥ 0, and

furthermore each term occurs only once. So we can write

 =
∞

=0

∞
=0

1

23
=

∞
=0

∞
=0

1

2
1

3
=

∞
=0

1

2

∞
=0

1

3
=

1

1− 1
2

· 1

1− 1
3

= 2 · 3
2

= 3
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7. (a) Let  = arctan and  = arctan . Then, from Formula 14b in Appendix D,

tan(− ) =
tan − tan 

1 + tan  tan 
=

tan(arctan)− tan(arctan )

1 + tan(arctan) tan(arctan )
=

− 

1 + 

Now arctan− arctan  = −  = arctan(tan(− )) = arctan
− 

1 + 
since−

2
 −   

2
.

(b) From part (a) we have

arctan 120
119
− arctan 1

239
= arctan

120
119
− 1

239

1 + 120
119

· 1
239

= arctan

28,561
28,441
28,561
28,441

= arctan 1 = 
4

(c) Replacing  by − in the formula of part (a), we get arctan+ arctan  = arctan
+ 

1− 
. So

4 arctan 1
5

= 2

arctan 1

5
+ arctan 1

5


= 2arctan

1
5

+ 1
5

1− 1
5
· 1

5

= 2arctan 5
12

= arctan 5
12

+ arctan 5
12

= arctan
5
12

+ 5
12

1− 5
12
· 5

12

= arctan 120
119

Thus, from part (b), we have 4 arctan 1
5
− arctan 1

239
= arctan 120

119
− arctan 1

239
= 

4
.

(d) From Example 7 in Section 11.9 we have arctan = − 3

3
+

5

5
− 7

7
+

9

9
− 11

11
+ · · · , so

arctan
1

5
=

1

5
− 1

3 · 53
+

1

5 · 55
− 1

7 · 57
+

1

9 · 59
− 1

11 · 511
+ · · ·

This is an alternating series and the size of the terms decreases to 0, so by the Alternating Series Estimation Theorem,

the sum lies between 5 and 6, that is, 0197395560  arctan 1
5
 0197395562.

(e) From the series in part (d) we get arctan
1

239
=

1

239
− 1

3 · 2393
+

1

5 · 2395
− · · · . The third term is less than

26× 10−13, so by the Alternating Series Estimation Theorem, we have, to nine decimal places,

arctan 1
239

≈ 2 ≈ 0004184076. Thus, 0004184075  arctan 1
239

 0004184077.

(f ) From part (c) we have  = 16 arctan 1
5
− 4 arctan 1

239
, so from parts (d) and (e) we have

16(0197395560) − 4(0004184077)    16(0197395562) − 4(0004184075) ⇒
3141592652    3141592692. So, to 7 decimal places,  ≈ 31415927.

8. (a) Let  = arccot and  = arccot  where 0  −   . Then

cot(− ) =
1

tan(− )
=

1 + tan  tan 

tan − tan 
=

1

cot 
· 1

cot 
+ 1

1

cot 
− 1

cot 

· cot  cot 

cot  cot 

=
1 + cot  cot 

cot − cot 
=

1 + cot(arccot) cot(arccot )

cot(arccot )− cot(arccot)
=

1 + 

 − 

Now arccot− arccot  = −  = arccot(cot(− )) = arccot
1 + 

 − 
since 0  −   .

c° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

FOR INSTRUCTOR USE ONLY



NOT FOR S
ALE

1088 ¤ CHAPTER 11 PROBLEMS PLUS

(b) From part (a), we want arccot(2 +  + 1) to equal arccot
1 + 

 − 
. Note that 1 +  = 2 +  + 1 ⇔

 = 2 +  = (+ 1), so if we let  = + 1 and  = , then  −  = 1. Therefore,

arccot(2 + + 1) = arccot(1 + (+ 1)) = arccot
1 + (+ 1)

(+ 1)− 
= arccot− arccot(+ 1)

Thus, we have a telescoping series with th partial sum

 = [arccot 0− arccot 1] + [arccot 1− arccot 2] + · · ·+ [arccot− arccot(+ 1)] = arccot 0− arccot(+ 1).

Thus,
∞
=0

arccot(2 + + 1) = lim
→∞

 = lim
→∞

[arccot 0− arccot(+ 1)] = 
2
− 0 = 

2
.

9. We want arctan


2

2


to equal arctan

− 

1 + 
. Note that 1 +  = 2 ⇔  = 2 − 1 = (+ 1)(− 1), so if we

let  =  + 1 and  = − 1, then −  = 2 and  6= −1. Thus, from Problem 7(a),

arctan


2

2


= arctan

− 

1 + 
= arctan− arctan  = arctan( + 1)− arctan(− 1). Therefore,


=1

arctan


2

2


=


=1

[arctan(+ 1)− arctan(− 1)]

=


=1

[arctan(+ 1)− arctan+ arctan− arctan(− 1)]

=


=1

[arctan(+ 1)− arctan] +


=1

[arctan− arctan(− 1)]

= [arctan( + 1)− arctan 1] + [arctan  − arctan 0] [since both sums are telescoping]

= arctan( + 1)− 
4

+ arctan  − 0

Now


=1

arctan


2

2


= lim

→0


=1

arctan


2

2


= lim

→∞


arctan( + 1)− 

4
+ arctan 


=



2
− 

4
+



2
=

3

4
.

Note: For all  ≥ 1, 0 ≤ arctan(− 1)  arctan(+ 1)  
2
, so −

2
 arctan(+ 1)− arctan(− 1)  

2
, and the

identity in Problem 7(a) holds.

10. Let’s first try the case  = 1: 0 + 1 = 0 ⇒ 1 = −0 ⇒

lim
→∞


0

√
+ 1

√
+ 1


= lim

→∞


0

√
− 0

√
+ 1


= 0 lim

→∞

√
−√+ 1

 √+
√
+ 1√

+
√
+ 1

= 0 lim
→∞

−1√
+

√
+ 1

= 0

In general we have 0 + 1 + · · ·+  = 0 ⇒  = −0 − 1 − · · ·− −1 ⇒

lim
→∞


0

√
+ 1

√
+ 1 + 2

√
+ 2 + · · ·+ 

√
+ 


= lim

→∞


0

√
+ 1

√
+ 1 + · · ·+ −1

√
+  − 1− 0

√
+  − 1

√
+  − · · ·− −1

√
+ 


= 0 lim

→∞

√
−√+ 


+ 1 lim

→∞

√
+ 1−√+ 


+ · · ·+ −1 lim

→∞

√
+  − 1−√+ 


Each of these limits is 0 by the same type of simplification as in the case  = 1. So we have

lim
→∞


0

√
+ 1

√
+ 1 + 2

√
+ 2 + · · ·+ 

√
+ 


= 0(0) + 1(0) + · · ·+ −1(0) = 0
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11. We start with the geometric series
∞
=0

 =
1

1− 
, ||  1, and differentiate:

∞
=1

−1 =




 ∞
=0




=





1

1− 


=

1

(1− )2
for ||  1 ⇒

∞
=1

 = 
∞
=1

−1 =


(1− )2

for ||  1. Differentiate again:

∞
=1

2−1 =






(1− )2
=

(1− )2 −  · 2(1− )(−1)

(1− )4
=

+ 1

(1− )3
⇒

∞
=1

2  =
2 + 

(1− )3
⇒

∞
=1

3−1 =




2 + 

(1− )3
=

(1− )3(2+ 1)− (2 + )3(1− )2(−1)

(1− )6
=

2 + 4 + 1

(1− )4
⇒

∞
=1

3 =
3 + 42 + 

(1− )4
, ||  1. The radius of convergence is 1 because that is the radius of convergence for the

geometric series we started with. If  = ±1, the series is


3(±1), which diverges by the Test For Divergence, so the

interval of convergence is (−1 1).

12. Place the -axis as shown and let the length of each book be . We want to

show that the center of mass of the system of  books lies above the table,

that is,   . The -coordinates of the centers of mass of the books are

1 =


2
, 2 =



2(− 1)
+



2
, 3 =



2(− 1)
+



2(− 2)
+



2
, and so on.

Each book has the same mass, so if there are  books, then

 =
1 +2 + · · ·+


=

1 + 2 + · · ·+ 



=
1






2
+




2(− 1)
+



2


+




2(− 1)
+



2(− 2)
+



2


+ · · ·

+




2(− 1)
+



2(− 2)
+ · · ·+ 

4
+



2
+



2


=






− 1

2(− 1)
+

− 2

2(− 2)
+ · · ·+ 2

4
+

1

2
+



2


=






(− 1)

1

2
+



2


=

2− 1

2
  

This shows that, no matter how many books are added according to the given scheme, the center of mass lies above the table.

It remains to observe that the series 1
2

+ 1
4

+ 1
6

+ 1
8

+ · · · = 1
2


(1) is divergent (harmonic series), so we can make the top

book extend as far as we like beyond the edge of the table if we add enough books.

13. ln


1− 1

2


= ln


2 − 1

2


= ln

(+ 1)(− 1)

2
= ln[(+ 1)(− 1)]− ln2

= ln(+ 1) + ln(− 1)− 2 ln = ln(− 1)− ln− ln+ ln(+ 1)

= ln
− 1


− [ln− ln(+ 1)] = ln

− 1


− ln



+ 1
.

Let  =


=2

ln


1− 1

2


=


=2


ln

− 1


− ln



+ 1


for  ≥ 2. Then
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 =


ln

1

2
− ln

2

3


+


ln

2

3
− ln

3

4


+ · · ·+


ln

 − 1


− ln



 + 1


= ln

1

2
− ln



 + 1
, so

∞
=2

ln


1− 1

2


= lim

→∞
 = lim

→∞


ln

1

2
− ln



 + 1


= ln

1

2
− ln 1 = ln 1− ln 2− ln 1 = − ln 2 (or ln 1

2
).

14. First notice that both series are absolutely convergent (p-series with   1.) Let the given expression be called . Then

 =
1 +

1

2
+

1

3
+

1

4
+ · · ·

1− 1

2
+

1

3
− 1

4
+ · · ·

=

1 +


2 · 1

2
− 1

2


+

1

3
+


2 · 1

4
− 1

4


+ · · ·

1− 1

2
+

1

3
− 1

4
+ · · ·

=


1− 1

2
+

1

3
− 1

4
+ · · ·


+


2 · 1

2
+ 2 · 1

4
+ 2 · 1

6
+ · · ·


1− 1

2
+

1

3
− 1

4
+ · · ·

= 1 +

2


1

2
+

1

4
+

1

6
+

1

8
+ · · ·


1− 1

2
+

1

3
− 1

4
+ · · ·

= 1 +

1

2−1


1 +

1

2
+

1

3
+

1

4
+ · · ·


1− 1

2
+

1

3
− 1

4
+ · · ·

= 1 + 21−

Therefore,  = 1 + 21− ⇔ − 21− = 1 ⇔ (1− 21−) = 1 ⇔  =
1

1− 21− .

15. If  is the length of a side of the equilateral triangle, then the area is  = 1
2
 ·

√
3

2
 =

√
3

4
2 and so 2 = 4√

3
.

Let  be the radius of one of the circles. When there are  rows of circles, the figure shows that

 =
√

3  +  + (− 2)(2) +  +
√

3  = 

2− 2 + 2

√
3

, so  =



2

+

√
3− 1

 .
The number of circles is 1 + 2 + · · ·+  =

(+ 1)

2
, and so the total area of the circles is

 =
(+ 1)

2
2 =

(+ 1)

2


2

4

+

√
3− 1

2
=

(+ 1)

2


4
√

3

4

+

√
3− 1

2 =
(+ 1)

+
√

3− 1
2 

2
√

3
⇒




=

(+ 1)
+

√
3− 1

2 

2
√

3

=
1 + 1

1 +
√

3− 1


2 

2
√

3
→ 

2
√

3
as →∞

16. Given 0 = 1 = 1 and  =
(− 1)(− 2)−1 − (− 3)−2

(− 1)
, we calculate the next few terms of the sequence:

2 =
1 · 0 · 1 − (−1)0

2 · 1 =
1

2
, 3 =

2 · 1 · 2 − 0 · 1

3 · 2 =
1

6
, 4 =

3 · 2 · 3 − 1 · 2

4 · 3 =
1

24
. It seems that  =

1

!
,

so we try to prove this by induction. The first step is done, so assume  =
1

!
and −1 =

1

( − 1)!
. Then
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+1 =
( − 1) − ( − 2)−1

( + 1)
=

( − 1)

!
−  − 2

( − 1)!

( + 1)
=

( − 1)− ( − 2)

[( + 1)()]( − 1)!
=

1

( + 1)!
and the induction is

complete. Therefore,
∞
=0

 =
∞
=0

1

!
= .

17. (a) The x-intercepts of the curve occur where sin = 0 ⇔  = ,

 an integer. So using the formula for disks (and either a CAS or

sin2  = 1
2
(1− cos 2) and Formula 99 to evaluate the integral),

the volume of the nth bead is

 = 
 
(−1)

(−10 sin)2  = 
 
(−1)

−5 sin2 

= 250
101

(−(−1)5 − −5)

(b) The total volume is


∞
0

−5 sin2  =
∞
=1

 = 250
101

∞
=1

[−(−1)5 − −5] = 250
101

[telescoping sum].

Another method: If the volume in part (a) has been written as  = 250
101

−5(5 − 1), then we recognize
∞
=1



as a geometric series with  = 250
101

(1− −5) and  = −5

18. (a) Since  is defined as the midpoint of −4−3,  = 1
2
(−4 + −3) for  ≥ 5. So we prove by induction that

1
2
 + +1 + +2 + +3 = 2. The case  = 1 is immediate, since 1

2
· 0 + 1 + 1 + 0 = 2. Assume that the result

holds for  =  − 1, that is, 1
2
−1 +  + +1 + +2 = 2. Then for  = ,

1
2
 + +1 + +2 + +3 = 1

2
 + +1 + +2 + 1

2
(+3−4 + +3−3) [by above]

= 1
2
−1 +  + +1 + +2 = 2 [by the induction hypothesis]

Similarly, for  ≥ 5,  = 1
2
(−4 + −3), so the same argument as above holds for , with 2 replaced by

1
2
1 + 2 + 3 + 4 = 1

2
· 1 + 1 + 0 + 0 = 3

2
. So 1

2
 + +1 + +2 + +3 = 3

2
for all .

(b) lim
→∞


1
2
 + +1 + +2 + +3


= 1

2
lim
→∞

 + lim
→∞

+1 + lim
→∞

+2 + lim
→∞

+3 = 2. Since all

the limits on the left hand side are the same, we get 7
2

lim
→∞

 = 2 ⇒ lim
→∞

 = 4
7
. In the same way,

7
2

lim
→∞

 = 3
2
⇒ lim

→∞
 = 3

7
, so  =


4
7
 3

7


.

19. By Table 1 in Section 11.10, tan−1  =
∞
=0

(−1)
2+1

2+ 1
for ||  1. In particular, for  =

1√
3
, we

have


6
= tan−1


1√
3


=

∞
=0

(−1)

1
√

3
2+1

2+ 1
=

∞
=0

(−1)


1

3


1√
3

1

2+ 1
, so

 =
6√
3

∞
=0

(−1)

(2+ 1)3
= 2
√

3
∞
=0

(−1)

(2+ 1)3
= 2
√

3


1 +

∞
=1

(−1)

(2+ 1)3


⇒

∞
=1

(−1)

(2+ 1)3
=



2
√

3
− 1.
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20. (a) Using  =  +  + 2 + · · · + −1 =
(1− )

1− 
,

1− + 2 − 3 + · · ·+ 2−2 − 2−1 =
1

1− (−)2


1− (−)

=
1− 2

1 + 
.

(b)
 1

0

(1 −  + 
2 − 

3
+ · · · + 

2−2 − 
2−1

)  =

 1

0

1− 2

1 + 
 ⇒


− 2

2
+

3

3
− 4

4
+ · · ·+ 2−1

2− 1
− 2

2

1
0

=

 1

0



1 + 
−
 1

0

2

1 + 
 ⇒

1− 1

2
+

1

3
− 1

4
+ · · ·+ 1

2− 1
− 1

2
=

 1

0



1 + 
−
 1

0

2

1 + 


(c) Since 1− 1

2
=

1

1 · 2 ,
1

3
− 1

4
=

1

3 · 4  · · · 
1

2− 1
− 1

2
=

1

(2− 1)(2)
, we see from part (b) that

1

1 · 2 +
1

3 · 4 + · · ·+ 1

(2− 1)(2)
−
 1

0



1 + 
= −

 1

0

2

1 + 
. Thus,

 1

1 · 2 +
1

3 · 4 + · · ·+ 1

(2− 1)(2)
−
 1

0



1 + 

 =

 1

0

2

1 + 
 

 1

0


2




since

2

1 + 
 2 for 0   ≤ 1


.

(d) Note that
 1

0



1 + 
=

ln(1 + )

1
0

= ln 2 and
 1

0


2

 =


2+1

2+ 1

1

0

=
1

2+ 1
. So part (c) becomes

 1

1 · 2 +
1

3 · 4 + · · ·+ 1

(2− 1)(2)
− ln 2

  1

2+ 1
. In other words, the th partial sum  of the given series

satisfies | − ln 2|  1

2+ 1
. Thus, lim

→∞
 = ln 2, that is,

1

1 · 2 +
1

3 · 4 +
1

5 · 6 +
1

7 · 8 + · · · = ln 2.

21. Let () denote the left-hand side of the equation 1 +


2!
+

2

4!
+

3

6!
+

4

8!
+ · · · = 0. If  ≥ 0, then () ≥ 1 and there are

no solutions of the equation. Note that (−2) = 1− 2

2!
+

4

4!
− 6

6!
+

8

8!
− · · · = cos. The solutions of cos = 0 for

  0 are given by  =


2
− , where  is a positive integer. Thus, the solutions of () = 0 are  = −


2
− 

2
, where

 is a positive integer.

22. Suppose the base of the first right triangle has length . Then by repeated use of the Pythagorean theorem, we find that the base

of the second right triangle has length
√

1 + 2, the base of the third right triangle has length
√

2 + 2, and in general, the nth

right triangle has base of length
√
− 1 + 2 and hypotenuse of length

√
+ 2. Thus,  = tan−1


1
√
− 1 + 2


and

∞
=1

 =
∞
=1

tan−1


1√

− 1 + 2


=

∞
=0

tan−1


1√

+ 2


. We wish to show that this series diverges.

First notice that the series
∞
=1

1√
+ 2

diverges by the Limit Comparison Test with the divergent p-series
∞
=1

1√



 = 1

2
≤ 1


since lim

→∞
1
√
+ 2

1
√


= lim
→∞

√
√

+ 2
= lim

→∞




+ 2
= lim

→∞


1

1 + 2
= 1  0. Thus,
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∞
=0

1√
+ 2

also diverges. Now
∞
=0

tan−1


1√

+ 2


diverges by the Limit Comparison Test with

∞
=0

1√
+ 2

since

lim
→∞

tan−1

1
√
+ 2


1
√
+ 2

= lim
→∞

tan−1

1
√
+ 2


1
√
 + 2

= lim
→∞

tan−1(1)

1


 =

√
+ 2


= lim

→0+

tan−1 




 = 1

 H
= lim

→0+

1(1 + 2)

1
= 1  0

Thus,
∞
=1

 is a divergent series.

23. Call the series . We group the terms according to the number of digits in their denominators:

 =


1
1

+ 1
2

+ · · ·+ 1
8

+ 1
9

  
1

+


1
11

+ · · ·+ 1
99

  
2

+


1
111

+ · · ·+ 1
999

  
3

+ · · ·

Now in the group , since we have 9 choices for each of the  digits in the denominator, there are 9 terms.

Furthermore, each term in  is less than 1

10−1 [except for the first term in 1]. So   9 · 1

10−1 = 9


9
10

−1
.

Now
∞
=1

9


9
10

−1
is a geometric series with  = 9 and  = 9

10
 1. Therefore, by the Comparison Test,

 =
∞
=1

 
∞
=1

9


9
10

−1
= 9

1− 910
= 90.

24. (a) Let () =


1− − 2
=

∞
=0


 = 0 + 1+ 2

2 + 3
3 + · · · . Then

 = (1− − 2)(0 + 1+ 2
2 + 3

3 + · · · )

 = 0 + 1+ 2
2 + 3

3 + 4
4 + 5

5 + · · ·
− 0− 1

2 − 2
3 − 3

4 − 4
5 − · · ·

− 0
2 − 1

3 − 2
4 − 3

5 − · · ·

 = 0 + (1 − 0) + (2 − 1 − 0)
2 + (3 − 2 − 1)

3 + · · ·

Comparing coefficients of powers of  gives us 0 = 0 and

1 − 0 = 1 ⇒ 1 = 0 + 1 = 1

2 − 1 − 0 = 0 ⇒ 2 = 1 + 0 = 1 + 0 = 1

3 − 2 − 1 = 0 ⇒ 3 = 2 + 1 = 1 + 1 = 2

In general, we have  = −1 + −2 for  ≥ 3. Each  is equal to the th Fibonacci number, that is,

∞
=0


 =

∞
=1


 =

∞
=1




(b) Completing the square on 2 + − 1 gives us
2 + +

1

4


− 1− 1

4
=


+

1

2

2

− 5

4
=


+

1

2

2

−
√

5

2

2

=


+

1

2
+

√
5

2


 +

1

2
−
√

5

2


=


+

1 +
√

5

2


 +

1−√5

2


[continued]
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So


1− − 2
=

−
2 + − 1

=
−

 + 1+
√

5
2


+ 1−√5

2

 . The factors in the denominator are linear,
so the partial fraction decomposition is

−
+ 1+

√
5

2


+ 1−√5

2

 =


 + 1+
√

5
2

+


+ 1−√5
2

−  = 

+ 1−√5

2


+


+ 1+

√
5

2



If  = −1+
√

5
2

, then −−1+
√

5
2

= 
√

5 ⇒  = 1−√5

2
√

5
.

If  = −1−√5
2

, then −−1−√5
2

= 
−√5

 ⇒  = 1+
√

5

−2
√

5
. Thus,



1− − 2
=

1 +
√

5

−2
√

5

+
1 +

√
5

2

+

1 − √5

2
√

5

+
1−√5

2

=

1 +
√

5

−2
√

5

 +
1 +

√
5

2

·
2

1 +
√

5
2

1 +
√

5

+

1 − √5

2
√

5

+
1 − √5

2

·
2

1 − √5
2

1 − √5

=
−1

√
5

1 +
2

1 +
√

5


+
1
√

5

1 +
2

1 − √5


= − 1√
5

∞
=0


− 2

1 +
√

5



+

1√
5

∞
=0


− 2

1−√5




=
1√
5

∞
=0

 −2

1−√5


−
 −2

1 +
√

5




=
1√
5

∞
=1


(−2)


1 +

√
5
 − (−2)


1−√5


1−√5


1 +

√
5



 [the  = 0 term is 0]

=
1√
5

∞
=1

 (−2)


1 +
√

5
 − 1−√5


(1− 5)





=
1√
5

∞
=1


1 +

√
5
 − 1−√5


2


 [(−4) = (−2) · 2]

From part (a), this series must equal
∞
=1


, so  =


1 +

√
5
 − 1−√5


2
√

5
, which is an explicit formula for

the nth Fibonacci number.

25.  = 1 +
3

3!
+

6

6!
+

9

9!
+ · · · ,  =  +

4

4!
+

7

7!
+

10

10!
+ · · · ,  =

2

2!
+

5

5!
+

8

8!
+ · · · .

Use the Ratio Test to show that the series for , , and  have positive radii of convergence (∞ in each case), so

Theorem 11.9.2 applies, and hence, we may differentiate each of these series:




=

32

3!
+

65

6!
+

98

9!
+ · · · = 2

2!
+

5

5!
+

8

8!
+ · · · = 

Similarly,



= 1 +

3

3!
+

6

6!
+

9

9!
+ · · · = , and




= +

4

4!
+

7

7!
+

10

10!
+ · · · = .

So 0 = , 0 = , and 0 = . Now differentiate the left-hand side of the desired equation:




(3 + 3 +3 − 3) = 320 + 320 + 320 − 3(0 + 0 + 0)

= 32 + 32+ 32 − 3(2 + 2 + 2) = 0 ⇒
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3 + 3 + 3 − 3 = . To find the value of the constant , we put  = 0 in the last equation and get

13 + 03 + 03 − 3(1 · 0 · 0) =  ⇒  = 1, so 3 + 3 +3 − 3 = 1.

26. To prove: If   1, then the nth partial sum  =

=1

1


of the harmonic series is not an integer.

Proof: Let 2 be the largest power of 2 that is less than or equal to  and let be the product of all the odd positive integers

that are less than or equal to . Suppose that  = , an integer. Then2 = 2. Since  ≥ 2, we have  ≥ 1, and

hence,2 is an even integer. We will show that2 is an odd integer, contradicting the equality2 = 2

and showing that the supposition that  is an integer must have been wrong.

2 = 2

=1

1


=


=1

2


. If 1 ≤  ≤  and  is odd, then




is an odd integer since  is one of the odd integers

that were multiplied together to form. Thus,
2


is an even integer in this case. If 1 ≤  ≤  and  is even, then we can

write  = 2, where 2 is the largest power of 2 dividing  and  is odd. If   , then
2


=

2

2
· 


= 2−



, which is

an even integer, the product of the even integer 2− and the odd integer



. If  = , then  = 1, since   1 =  ≥ 2 ⇒

 = 2 ≥ 2 · 2 = 2+1, contrary to the choice of 2 as the largest power of 2 that is less than or equal to . This shows that

 =  only when  = 2. In that case,
2


=  , an odd integer. Since

2


is an even integer for every  except 2 and

2


is an odd integer when  = 2, we see that2 is an odd integer. This concludes the proof.
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