$5 \square$ INTEGRALS

5.1 Areas and Distances

1. (a) Since f is decreasing, we can obtain a lower estimate by using right endpoints. We are instructed to use five rectangles, so $n=5$.

$$
\begin{aligned}
R_{5} & =\sum_{i=1}^{5} f\left(x_{i}\right) \Delta x \quad\left[\Delta x=\frac{b-a}{n}=\frac{10-0}{5}=2\right] \\
& =f\left(x_{1}\right) \cdot 2+f\left(x_{2}\right) \cdot 2+f\left(x_{3}\right) \cdot 2+f\left(x_{4}\right) \cdot 2+f\left(x_{5}\right) \cdot 2 \\
& =2[f(2)+f(4)+f(6)+f(8)+f(10)] \\
& \approx 2(3.2+1.8+0.8+0.2+0) \\
& =2(6)=12
\end{aligned}
$$

Since f is decreasing, we can obtain an upper estimate by using left endpoints.

$$
\begin{aligned}
L_{5} & =\sum_{i=1}^{5} f\left(x_{i-1}\right) \Delta x \\
& =f\left(x_{0}\right) \cdot 2+f\left(x_{1}\right) \cdot 2+f\left(x_{2}\right) \cdot 2+f\left(x_{3}\right) \cdot 2+f\left(x_{4}\right) \cdot 2 \\
& =2[f(0)+f(2)+f(4)+f(6)+f(8)] \\
& \approx 2(5+3.2+1.8+0.8+0.2) \\
& =2(11)=22
\end{aligned}
$$

(b) $R_{10}=\sum_{i=1}^{10} f\left(x_{i}\right) \Delta x \quad\left[\Delta x=\frac{10-0}{10}=1\right]$

$$
=1\left[f\left(x_{1}\right)+f\left(x_{2}\right)+\cdots+f\left(x_{10}\right)\right]
$$

$$
=f(1)+f(2)+\cdots+f(10)
$$

$$
\approx 4+3.2+2.5+1.8+1.3+0.8+0.5+0.2+0.1+0
$$

$$
=14.4
$$

$$
\begin{aligned}
L_{10} & =\sum_{i=1}^{10} f\left(x_{i-1}\right) \Delta x \\
& =f(0)+f(1)+\cdots+f(9) \\
& =R_{10}+1 \cdot f(0)-1 \cdot f(10) \quad\left[\begin{array}{c}
\text { add leftmost upper rectangle, } \\
\text { subtract rightmost lower rectangle }
\end{array}\right] \\
& =14.4+5-0 \\
& =19.4
\end{aligned}
$$

INSTRUCTOR'USE ONLY'

2. (a) (i) $L_{6}=\sum_{i=1}^{6} f\left(x_{i-1}\right) \Delta x \quad\left[\Delta x=\frac{12-0}{6}=2\right]$

$$
\begin{aligned}
& =2\left[f\left(x_{0}\right)+f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{3}\right)+f\left(x_{4}\right)+f\left(x_{5}\right)\right] \\
& =2[f(0)+f(2)+f(4)+f(6)+f(8)+f(10)] \\
& \approx 2(9+8.8+8.2+7.3+5.9+4.1) \\
& =2(43.3)=86.6
\end{aligned}
$$

(ii) $R_{6}=L_{6}+2 \cdot f(12)-2 \cdot f(0)$

$$
\approx 86.6+2(1)-2(9)=70.6
$$

[Add area of rightmost lower rectangle and subtract area of leftmost upper rectangle.]
(iii) $M_{6}=\sum_{i=1}^{6} f\left(x_{i}\right) \Delta x$

$$
\begin{aligned}
& =2[f(1)+f(3)+f(5)+f(7)+f(9)+f(11)] \\
& \approx 2(8.9+8.5+7.8+6.6+5.1+2.8) \\
& =2(39.7)=79.4
\end{aligned}
$$

(b) Since f is decreasing, we obtain an overestimate by using left endpoints; that is, L_{6}.
(c) Since f is decreasing, we obtain an underestimate by using right endpoints; that is, R_{6}.
(d) M_{6} gives the best estimate, since the area of each rectangle appears to be closer to the true area than the overestimates and underestimates in L_{6} and R_{6}.
3. (a) $R_{4}=\sum_{i=1}^{4} f\left(x_{i}\right) \Delta x \quad\left[\Delta x=\frac{2-1}{4}=\frac{1}{4}\right]=\left[\sum_{i=1}^{4} f\left(x_{i}\right)\right] \Delta x$

$$
\begin{aligned}
& =\left[f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{3}\right)+f\left(x_{4}\right)\right] \Delta x \\
& =\left[\frac{1}{5 / 4}+\frac{1}{6 / 4}+\frac{1}{7 / 4}+\frac{1}{8 / 4}\right] \frac{1}{4}=\left[\frac{4}{5}+\frac{2}{3}+\frac{4}{7}+\frac{1}{2}\right] \frac{1}{4} \approx 0.6345
\end{aligned}
$$

Since f is decreasing on $[1,2]$, an underestimate is obtained by using the right endpoint approximation, R_{4}.

(b) $L_{4}=\sum_{i=1}^{4} f\left(x_{i-1}\right) \Delta x=\left[\sum_{i=1}^{4} f\left(x_{i-1}\right)\right] \Delta x$

$$
=\left[f\left(x_{0}\right)+f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{3}\right)\right] \Delta x
$$

$$
=\left[\frac{1}{1}+\frac{1}{5 / 4}+\frac{1}{6 / 4}+\frac{1}{7 / 4}\right] \frac{1}{4}=\left[1+\frac{4}{5}+\frac{2}{3}+\frac{4}{7}\right] \frac{1}{4} \approx 0.7595
$$

L_{4} is an overestimate. Alternatively, we could just add the area of the leftmost upper rectangle and subtract the area of the rightmost lower
 rectangle; that is, $L_{4}=R_{4}+f(1) \cdot \frac{1}{4}-f(2) \cdot \frac{1}{4}$.

INSTRUCTORUSE ONLY

4. (a) $R_{4}=\sum_{i=1}^{4} f\left(x_{i}\right) \Delta x \quad\left[\Delta x=\frac{\pi / 2-0}{4}=\frac{\pi}{8}\right]=\left[\sum_{i=1}^{4} f\left(x_{i}\right)\right] \Delta x$

$$
\begin{aligned}
& =\left[f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{3}\right)+f\left(x_{4}\right)\right] \Delta x \\
& =\left[\sin \frac{\pi}{8}+\sin \frac{2 \pi}{8}+\sin \frac{3 \pi}{8}+\sin \frac{4 \pi}{8}\right] \frac{\pi}{8} \\
& \approx 1.1835
\end{aligned}
$$

Since f is increasing on $\left[0, \frac{\pi}{2}\right], R_{4}$ is an overestimate.
(b) $L_{4}=\sum_{i=1}^{4} f\left(x_{i-1}\right) \Delta x=\left[\sum_{i=1}^{4} f\left(x_{i-1}\right)\right] \Delta x$
$=\left[f\left(x_{0}\right)+f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{3}\right)\right] \Delta x$
$=\left[\sin 0+\sin \frac{\pi}{8}+\sin \frac{2 \pi}{8}+\sin \frac{3 \pi}{8}\right] \frac{\pi}{8}$
≈ 0.7908
Since f is increasing on $\left[0, \frac{\pi}{2}\right], L_{4}$ is an underestimate.
5. (a) $f(x)=1+x^{2}$ and $\Delta x=\frac{2-(-1)}{3}=1 \Rightarrow$

$$
\begin{aligned}
R_{3} & =1 \cdot f(0)+1 \cdot f(1)+1 \cdot f(2)=1 \cdot 1+1 \cdot 2+1 \cdot 5=8 . \\
\Delta x & =\frac{2-(-1)}{6}=0.5 \Rightarrow \\
R_{6} & =0.5[f(-0.5)+f(0)+f(0.5)+f(1)+f(1.5)+f(2)] \\
& =0.5(1.25+1+1.25+2+3.25+5) \\
& =0.5(13.75)=6.875
\end{aligned}
$$

(b) $L_{3}=1 \cdot f(-1)+1 \cdot f(0)+1 \cdot f(1)=1 \cdot 2+1 \cdot 1+1 \cdot 2=5$

$$
\begin{aligned}
L_{6} & =0.5[f(-1)+f(-0.5)+f(0)+f(0.5)+f(1)+f(1.5)] \\
& =0.5(2+1.25+1+1.25+2+3.25) \\
& =0.5(10.75)=5.375
\end{aligned}
$$

(c) $M_{3}=1 \cdot f(-0.5)+1 \cdot f(0.5)+1 \cdot f(1.5)$

$$
=1 \cdot 1.25+1 \cdot 1.25+1 \cdot 3.25=5.75
$$

$$
M_{6}=0.5[f(-0.75)+f(-0.25)+f(0.25)
$$

$$
+f(0.75)+f(1.25)+f(1.75)]
$$

$$
=0.5(1.5625+1.0625+1.0625+1.5625+2.5625+4.0625)
$$

$$
=0.5(11.875)=5.9375
$$

(d) M_{6} appears to be the best estimate.
6. (a)

(b) $f(x)=x-2 \ln x$ and $\Delta x=\frac{5-1}{4}=1 \Rightarrow$
(i) $R_{4}=1 \cdot f(2)+1 \cdot f(3)+1 \cdot f(4)+1 \cdot f(5)$

$$
\begin{aligned}
& =(2-2 \ln 2)+(3-2 \ln 3)+(4-2 \ln 4)+(5-2 \ln 5) \\
& \approx 4.425
\end{aligned}
$$

(ii) $M_{4}=1 \cdot f(1.5)+1 \cdot f(2.5)+1 \cdot f(3.5)+1 \cdot f(4.5)$

$$
\begin{aligned}
=(1.5-2 \ln 1.5) & +(2.5-2 \ln 2.5) \\
& +(3.5-2 \ln 3.5)+(4.5-2 \ln 4.5)
\end{aligned}
$$

$$
\approx 3.843
$$

(c) (i) $R_{8}=\frac{1}{2}[f(1.5)+f(2)+\cdots+f(5)]$

$$
\begin{aligned}
& =\frac{1}{2}[(1.5-2 \ln 1.5)+(2-2 \ln 2)+\cdots+(5-2 \ln 5)] \\
& \approx 4.134
\end{aligned}
$$

(ii) $M_{8}=\frac{1}{2}[f(1.25)+f(1.75)+\cdots+f(4.75)]$

$$
=\frac{1}{2}[(1.25-2 \ln 1.25)+(1.75-2 \ln 1.75)+\cdots
$$

$$
+(4.75-2 \ln 4.75)]
$$

$$
\approx 3.889
$$

7. $f(x)=2+\sin x, 0 \leq x \leq \pi, \Delta x=\pi / n$.
$\boldsymbol{n}=\mathbf{2}$: The maximum values of f on both subintervals occur at $x=\frac{\pi}{2}$, so

$$
\begin{aligned}
\text { upper sum } & =f\left(\frac{\pi}{2}\right) \cdot \frac{\pi}{2}+f\left(\frac{\pi}{2}\right) \cdot \frac{\pi}{2}=3 \cdot \frac{\pi}{2}+3 \cdot \frac{\pi}{2} \\
& =3 \pi \approx 9.42 .2
\end{aligned}
$$

The minimum values of f on the subintervals occur at $x=0$ and $x=\pi$, so
lower sum $=f(0) \cdot \frac{\pi}{2}+f(\pi) \cdot \frac{\pi}{2}=2 \cdot \frac{\pi}{2}+2 \cdot \frac{\pi}{2}=2 \pi \approx 6.28$.

$$
\begin{aligned}
n=4: \quad \text { upper sum } & =\left[f\left(\frac{\pi}{4}\right)+f\left(\frac{\pi}{2}\right)+f\left(\frac{\pi}{2}\right)+f\left(\frac{3 \pi}{4}\right)\right]\left(\frac{\pi}{4}\right) \\
& =\left[\left(2+\frac{1}{2} \sqrt{2}\right)+(2+1)+(2+1)+\left(2+\frac{1}{2} \sqrt{2}\right)\right]\left(\frac{\pi}{4}\right) \\
& =(10+\sqrt{2})\left(\frac{\pi}{4}\right) \approx 8.96 \\
\text { lower sum } & =\left[f(0)+f\left(\frac{\pi}{4}\right)+f\left(\frac{3 \pi}{4}\right)+f(\pi)\right]\left(\frac{\pi}{4}\right) \\
& =\left[(2+0)+\left(2+\frac{1}{2} \sqrt{2}\right)+\left(2+\frac{1}{2} \sqrt{2}\right)+(2+0)\right]\left(\frac{\pi}{4}\right) \\
& =(8+\sqrt{2})\left(\frac{\pi}{4}\right) \approx 7.39 \\
n=\mathbf{8 :} \quad \text { upper sum } & =\left[f\left(\frac{\pi}{8}\right)+f\left(\frac{\pi}{4}\right)+f\left(\frac{3 \pi}{8}\right)+f\left(\frac{\pi}{2}\right)+f\left(\frac{\pi}{2}\right)\right. \\
& \left.+f\left(\frac{5 \pi}{8}\right)+f\left(\frac{3 \pi}{4}\right)+f\left(\frac{7 \pi}{8}\right)\right]\left(\frac{\pi}{8}\right) \\
& \approx 8.65 \quad \\
\text { lower sum } & =\left[f(0)+f\left(\frac{\pi}{8}\right)+f\left(\frac{\pi}{4}\right)+f\left(\frac{3 \pi}{8}\right)+f\left(\frac{5 \pi}{8}\right)\right. \\
& \left.\approx 7.86 \quad+f\left(\frac{3 \pi}{4}\right)+f\left(\frac{7 \pi}{8}\right)+f(\pi)\right]\left(\frac{\pi}{8}\right)
\end{aligned}
$$

8. $f(x)=1+x^{2},-1 \leq x \leq 1, \Delta x=2 / n$.

$$
\begin{aligned}
n=3: \quad \text { upper sum } & =\left[f(-1)+f\left(\frac{1}{3}\right)+f(1)\right]\left(\frac{2}{3}\right) \\
& =\left(2+\frac{10}{9}+2\right)\left(\frac{2}{3}\right) \\
& =\frac{92}{27} \approx 3.41 \\
\text { lower sum } & =\left[f\left(-\frac{1}{3}\right)+f(0)+f\left(\frac{1}{3}\right)\right]\left(\frac{2}{3}\right) \\
& =\left(\frac{10}{9}+1+\frac{10}{9}\right)\left(\frac{2}{3}\right) \\
& =\frac{58}{27} \approx 2.15 \\
n=4: \quad \text { upper sum } & =\left[f(-1)+f\left(-\frac{1}{2}\right)+f\left(\frac{1}{2}\right)+f(1)\right]\left(\frac{2}{4}\right) \\
& =\left(2+\frac{5}{4}+\frac{5}{4}+2\right)\left(\frac{1}{2}\right) \\
& =\frac{13}{4}=3.25 \\
\text { lower sum } & =\left[f\left(-\frac{1}{2}\right)+f(0)+f(0)+f\left(\frac{1}{2}\right)\right]\left(\frac{2}{4}\right) \\
& =\left(\frac{5}{4}+1+1+\frac{5}{4}\right)\left(\frac{1}{2}\right) \\
& =\frac{9}{4}=2.25
\end{aligned}
$$

9. Here is one possible algorithm (ordered sequence of operations) for calculating the sums:

1 Let $\mathrm{SUM}=0, \mathrm{X} _\mathrm{MIN}=0, \mathrm{X} _\mathrm{MAX}=1, \mathrm{~N}=10$ (depending on which sum we are calculating),

```
    DELTA_X = (X_MAX - X_MIN)/N, and RIGHT_ENDPOINT = X_MIN + DELTA_X.
```

2 Repeat steps $2 \mathrm{a}, 2 \mathrm{~b}$ in sequence until RIGHT_ENDPOINT $>\mathrm{X}_{-}$MAX.
2a Add (RIGHT_ENDPOINT)^4 to SUM.
Add DELTA_X to RIGHT_ENDPOINT.
At the end of this procedure, (DELTA_X)•(SUM) is equal to the answer we are looking for. We find that
$R_{10}=\frac{1}{10} \sum_{i=1}^{10}\left(\frac{i}{10}\right)^{4} \approx 0.2533, R_{30}=\frac{1}{30} \sum_{i=1}^{30}\left(\frac{i}{30}\right)^{4} \approx 0.2170, R_{50}=\frac{1}{50} \sum_{i=1}^{50}\left(\frac{i}{50}\right)^{4} \approx 0.2101$, and
$R_{100}=\frac{1}{100} \sum_{i=1}^{100}\left(\frac{i}{100}\right)^{4} \approx 0.2050$. It appears that the exact area is 0.2 . The following display shows the program SUMRIGHT and its output from a TI-83/4 Plus calculator. To generalize the program, we have input (rather than assign) values for Xmin , Xmax , and N . Also, the function, x^{4}, is assigned to Y_{1}, enabling us to evaluate any right sum merely by changing Y_{1} and running the program.

10. We can use the algorithm from Exercise 9 with $\mathrm{X} _\mathrm{MIN}=0, \mathrm{X} _\mathrm{MAX}=\pi / 2$, and $\cos ($ RIGHT_ENDPOINT $)$ instead of (RIGHT_ENDPOINT) $\wedge^{\wedge} 4$ in step 2a. We find that $R_{10}=\frac{\pi / 2}{10} \sum_{i=1}^{10} \cos \left(\frac{i \pi}{20}\right) \approx 0.9194, R_{30}=\frac{\pi / 2}{30} \sum_{i=1}^{30} \cos \left(\frac{i \pi}{60}\right) \approx 0.9736$, and $R_{50}=\frac{\pi / 2}{50} \sum_{i=1}^{50} \cos \left(\frac{i \pi}{100}\right) \approx 0.9842$, and $R_{100}=\frac{\pi / 2}{100} \sum_{i=1}^{100} \cos \left(\frac{i \pi}{200}\right) \approx 0.9921$. It appears that the exact area is 1.
11. In Maple, we have to perform a number of steps before getting a numerical answer. After loading the student package [command: with (student) ;] we use the command left_sum: $=\operatorname{leftsum}\left(1 /\left(x^{\wedge} 2+1\right), x=0 \ldots 1,10\right.$ [or 30, or 50$\left.]\right)$; which gives us the expression in summation notation. To get a numerical approximation to the sum, we use evalf (left_sum) ; Mathematica does not have a special command for these sums, so we must type them in manually. For example, the first left sum is given by $\left.(1 / 10) * \operatorname{Sum}\left[1 /\left(((i-1) / 10)^{\wedge} 2+1\right)\right],\{i, 1,10\}\right]$, and we use the N command on the resulting output to get a numerical approximation.

In Derive, we use the LEFT_RIEMANN command to get the left sums, but must define the right sums ourselves.
(We can define a new function using LEFT_RIEMANN with k ranging from 1 to n instead of from 0 to $n-1$.)
(a) With $f(x)=\frac{1}{x^{2}+1}, 0 \leq x \leq 1$, the left sums are of the form $L_{n}=\frac{1}{n} \sum_{i=1}^{n} \frac{1}{\left(\frac{i-1}{n}\right)^{2}+1}$. Specifically, $L_{10} \approx 0.8100$,
$L_{30} \approx 0.7937$, and $L_{50} \approx 0.7904$. The right sums are of the form $R_{n}=\frac{1}{n} \sum_{i=1}^{n} \frac{1}{\left(\frac{i}{n}\right)^{2}+1}$. Specifically, $R_{10} \approx 0.7600$, $R_{30} \approx 0.7770$, and $R_{50} \approx 0.7804$.
(b) In Maple, we use the leftbox (with the same arguments as left_sum) and rightbox commands to generate the graphs.

(c) We know that since $y=1 /\left(x^{2}+1\right)$ is a decreasing function on $(0,1)$, all of the left sums are larger than the actual area, and all of the right sums are smaller than the actual area. Since the left sum with $n=50$ is about $0.7904<0.791$ and the right sum with $n=50$ is about $0.7804>0.780$, we conclude that $0.780<R_{50}<$ exact area $<L_{50}<0.791$, so the exact area is between 0.780 and 0.791 .
12. See the solution to Exercise 11 for the CAS commands for evaluating the sums.
(a) With $f(x)=\ln x, 1 \leq x \leq 4$, the left sums are of the form $L_{n}=\frac{3}{n} \sum_{i=1}^{n} \ln \left(1+\frac{3(i-1)}{n}\right)$. In particular, $L_{10} \approx 2.3316$, $L_{30} \approx 2.4752$, and $L_{50} \approx 2.5034$. The right sums are of the form $R_{n}=\frac{3}{n} \sum_{i=1}^{n} \ln \left(1+\frac{3 i}{n}\right)$. In particular, $R_{10} \approx 2.7475, R_{30} \approx 2.6139$, and $R_{50} \approx 2.5865$.
(b) In Maple, we use the leftbox (with the same arguments as left_sum) and rightbox commands to generate the graphs.

left endpoints, $n=10$

right endpoints, $n=10$

left endpoints, $n=30$

right endpoints, $n=30$

left endpoints, $n=50$

right endpoints, $n=50$

INSTRTUCTIORUSE ONLY

(c) We know that since $y=\ln x$ is an increasing function on $(1,4)$, all of the left sums are smaller than the actual area, and all of the right sums are larger than the actual area. Since the left sum with $n=50$ is about $2.503>2.50$ and the right sum with $n=50$ is about $2.587<2.59$, we conclude that $2.50<L_{50}<$ exact area $<R_{50}<2.59$, so the exact area is between 2.50 and 2.59.
13. Since v is an increasing function, L_{6} will give us a lower estimate and R_{6} will give us an upper estimate.

$$
\begin{aligned}
& L_{6}=(0 \mathrm{ft} / \mathrm{s})(0.5 \mathrm{~s})+(6.2)(0.5)+(10.8)(0.5)+(14.9)(0.5)+(18.1)(0.5)+(19.4)(0.5)=0.5(69.4)=34.7 \mathrm{ft} \\
& R_{6}=0.5(6.2+10.8+14.9+18.1+19.4+20.2)=0.5(89.6)=44.8 \mathrm{ft}
\end{aligned}
$$

14. (a) The velocities are given with units mi / h, so we must convert the 10 -second intervals to hours:

$$
10 \text { seconds }=\frac{10 \text { seconds }}{3600 \text { seconds } / \mathrm{h}}=\frac{1}{360} \mathrm{~h}
$$

$$
\text { distance } \approx L_{6}=(182.9 \mathrm{mi} / \mathrm{h})\left(\frac{1}{360} \mathrm{~h}\right)+(168.0)\left(\frac{1}{360}\right)+(106.6)\left(\frac{1}{360}\right)+(99.8)\left(\frac{1}{360}\right)
$$

$$
+(124.5)\left(\frac{1}{360}\right)+(176.1)\left(\frac{1}{360}\right)
$$

$$
=\frac{857.9}{360} \approx 2.383 \mathrm{miles}
$$

(b) Distance $\approx R_{6}=\left(\frac{1}{360}\right)(168.0+106.6+99.8+124.5+176.1+175.6)=\frac{850.6}{360} \approx 2.363$ miles
(c) The velocity is neither increasing nor decreasing on the given interval, so the estimates in parts (a) and (b) are neither upper nor lower estimates.
15. Lower estimate for oil leakage: $R_{5}=(7.6+6.8+6.2+5.7+5.3)(2)=(31.6)(2)=63.2 \mathrm{~L}$.

Upper estimate for oil leakage: $L_{5}=(8.7+7.6+6.8+6.2+5.7)(2)=(35)(2)=70 \mathrm{~L}$.
16. We can find an upper estimate by using the final velocity for each time interval. Thus, the distance d traveled after 62 seconds can be approximated by

$$
d=\sum_{i=1}^{6} v\left(t_{i}\right) \Delta t_{i}=(185 \mathrm{ft} / \mathrm{s})(10 \mathrm{~s})+319 \cdot 5+447 \cdot 5+742 \cdot 12+1325 \cdot 27+1445 \cdot 3=54,694 \mathrm{ft}
$$

17. For a decreasing function, using left endpoints gives us an overestimate and using right endpoints results in an underestimate. We will use M_{6} to get an estimate. $\Delta t=1$, so

$$
M_{6}=1[v(0.5)+v(1.5)+v(2.5)+v(3.5)+v(4.5)+v(5.5)] \approx 55+40+28+18+10+4=155 \mathrm{ft}
$$

For a very rough check on the above calculation, we can draw a line from $(0,70)$ to $(6,0)$ and calculate the area of the triangle: $\frac{1}{2}(70)(6)=210$. This is clearly an overestimate, so our midpoint estimate of 155 is reasonable.
18. For an increasing function, using left endpoints gives us an underestimate and using right endpoints results in an overestimate. We will use M_{6} to get an estimate. $\Delta t=\frac{30-0}{6}=5 \mathrm{~s}=\frac{5}{3600} \mathrm{~h}=\frac{1}{720} \mathrm{~h}$.

$$
\begin{aligned}
M_{6} & =\frac{1}{720}[v(2.5)+v(7.5)+v(12.5)+v(17.5)+v(22.5)+v(27.5)] \\
& =\frac{1}{720}(31.25+66+88+103.5+113.75+119.25)=\frac{1}{720}(521.75) \approx 0.725 \mathrm{~km}
\end{aligned}
$$

For a very rough check on the above calculation, we can draw a line from $(0,0)$ to $(30,120)$ and calculate the area of the triangle: $\frac{1}{2}(30)(120)=1800$. Divide by 3600 to get 0.5 , which is clearly an underestimate, making our midpoint estimate of 0.725 seem reasonable. Of course, answers will vary due to different readings of the graph.
19. $f(t)=-t(t-21)(t+1)$ and $\Delta t=\frac{12-0}{6}=2$

$$
\begin{aligned}
M_{6} & =2 \cdot f(1)+2 \cdot f(3)+2 \cdot f(5)+2 \cdot f(7)+2 \cdot f(9)+2 \cdot f(11) \\
& =2 \cdot 40+2 \cdot 216+2 \cdot 480+2 \cdot 784+2 \cdot 1080+2 \cdot 1320 \\
& =7840(\text { infected cells } / \mathrm{mL}) \cdot \text { days }
\end{aligned}
$$

Thus, the total amount of infection needed to develop symptoms of measles is about 7840 infected cells per mL of blood plasma.
20. (a) Use $\Delta t=14$ days. The number of people who died of SARS in Singapore between March 1 and May 24, 2003, using left endpoints is

$$
L_{6}=14(0.0079+0.0638+0.1944+0.4435+0.5620+0.4630)=14(1.7346)=24.2844 \approx 24 \text { people }
$$

Using right endpoints,

$$
R_{6}=14(0.0638+0.1944+0.4435+0.5620+0.4630+0.2897)=14(2.0164)=28.2296 \approx 28 \text { people }
$$

(b) Let t be the number of days since March 1, 2003, $f(t)$ be the number of deaths per day on day t, and the graph of $y=f(t)$ be a reasonable continuous function on the interval $[0,84]$. Then the number of SARS deaths from $t=a$ to $t=b$ is approximately equal to the area under the curve $y=f(t)$ from $t=a$ to $t=b$.
21. $f(x)=\frac{2 x}{x^{2}+1}, 1 \leq x \leq 3$. $\Delta x=(3-1) / n=2 / n$ and $x_{i}=1+i \Delta x=1+2 i / n$.

$$
A=\lim _{n \rightarrow \infty} R_{n}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{2(1+2 i / n)}{(1+2 i / n)^{2}+1} \cdot \frac{2}{n} .
$$

22. $f(x)=x^{2}+\sqrt{1+2 x}, 4 \leq x \leq 7 . \Delta x=(7-4) / n=3 / n$ and $x_{i}=4+i \Delta x=4+3 i / n$. $A=\lim _{n \rightarrow \infty} R_{n}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left[(4+3 i / n)^{2}+\sqrt{1+2(4+3 i / n)}\right] \cdot \frac{3}{n}$.
23. $f(x)=\sqrt{\sin x}, 0 \leq x \leq \pi$. $\Delta x=(\pi-0) / n=\pi / n$ and $x_{i}=0+i \Delta x=\pi i / n$.
$A=\lim _{n \rightarrow \infty} R_{n}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \sqrt{\sin (\pi i / n)} \cdot \frac{\pi}{n}$.
24. $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{3}{n} \sqrt{1+\frac{3 i}{n}}$ can be interpreted as the area of the region lying under the graph of $y=\sqrt{1+x}$ on the interval [0,3], since for $y=\sqrt{1+x}$ on $[0,3]$ with $\Delta x=\frac{3-0}{n}=\frac{3}{n}, x_{i}=0+i \Delta x=\frac{3 i}{n}$, and $x_{i}^{*}=x_{i}$, the expression for the area is $A=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \sqrt{1+\frac{3 i}{n}} \frac{3}{n}$. Note that this answer is not unique. We could use $y=\sqrt{x}$ on $[1,4]$ or, in general, $y=\sqrt{x-n}$ on $[n+1, n+4]$, where n is any real number.
25. $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{\pi}{4 n} \tan \frac{i \pi}{4 n}$ can be interpreted as the area of the region lying under the graph of $y=\tan x$ on the interval [0, $\left.\frac{\pi}{4}\right]$, since for $y=\tan x$ on $\left[0, \frac{\pi}{4}\right]$ with $\Delta x=\frac{\pi / 4-0}{n}=\frac{\pi}{4 n}, x_{i}=0+i \Delta x=\frac{i \pi}{4 n}$, and $x_{i}^{*}=x_{i}$, the expression for the area is $A=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \tan \left(\frac{i \pi}{4 n}\right) \frac{\pi}{4 n}$. Note that this answer is not unique, since the expression for the area is the same for the function $y=\tan (x-k \pi)$ on the interval $\left[k \pi, k \pi+\frac{\pi}{4}\right]$, where k is any integer.
26. (a) $\Delta x=\frac{1-0}{n}=\frac{1}{n}$ and $x_{i}=0+i \Delta x=\frac{i}{n} . \quad A=\lim _{n \rightarrow \infty} R_{n}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\frac{i}{n}\right)^{3} \cdot \frac{1}{n}$.
(b) $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{i^{3}}{n^{3}} \cdot \frac{1}{n}=\lim _{n \rightarrow \infty} \frac{1}{n^{4}} \sum_{i=1}^{n} i^{3}=\lim _{n \rightarrow \infty} \frac{1}{n^{4}}\left[\frac{n(n+1)}{2}\right]^{2}=\lim _{n \rightarrow \infty} \frac{(n+1)^{2}}{4 n^{2}}=\frac{1}{4} \lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{2}=\frac{1}{4}$
27. (a) Since f is an increasing function, L_{n} is an underestimate of A [lower sum] and R_{n} is an overestimate of A [upper sum].

Thus, A, L_{n}, and R_{n} are related by the inequality $L_{n}<A<R_{n}$.
(b)

$$
\begin{aligned}
R_{n} & =f\left(x_{1}\right) \Delta x+f\left(x_{2}\right) \Delta x+\cdots+f\left(x_{n}\right) \Delta x \\
L_{n} & =f\left(x_{0}\right) \Delta x+f\left(x_{1}\right) \Delta x+\cdots+f\left(x_{n-1}\right) \Delta x \\
R_{n}-L_{n} & =f\left(x_{n}\right) \Delta x-f\left(x_{0}\right) \Delta x \\
& =\Delta x\left[f\left(x_{n}\right)-f\left(x_{0}\right)\right] \\
& =\frac{b-a}{n}[f(b)-f(a)]
\end{aligned}
$$

In the diagram, $R_{n}-L_{n}$ is the sum of the areas of the shaded rectangles. By sliding the shaded rectangles to the left so that they stack on top of the leftmost shaded rectangle, we form a rectangle of height $f(b)-f(a)$ and width $\frac{b-a}{n}$.
(c) $A>L_{n}$, so $R_{n}-A<R_{n}-L_{n}$; that is, $R_{n}-A<\frac{b-a}{n}[f(b)-f(a)]$.
28. $R_{n}-A<\frac{b-a}{n}[f(b)-f(a)]=\frac{3-1}{n}[f(3)-f(1)]=\frac{2}{n}\left(e^{3}-e\right)$

Solving $\frac{2}{n}\left(e^{3}-e\right)<0.0001$ for n gives us $2\left(e^{3}-e\right)<0.0001 n \Rightarrow n>\frac{2\left(e^{3}-e\right)}{0.0001} \Rightarrow n>347,345.1$. Thus, a value of n that assures us that $R_{n}-A<0.0001$ is $n=347,346$. [This is not the least value of n.]
29. (a) $y=f(x)=x^{5} . \Delta x=\frac{2-0}{n}=\frac{2}{n}$ and $x_{i}=0+i \Delta x=\frac{2 i}{n}$.

$$
A=\lim _{n \rightarrow \infty} R_{n}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\frac{2 i}{n}\right)^{5} \cdot \frac{2}{n}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{32 i^{5}}{n^{5}} \cdot \frac{2}{n}=\lim _{n \rightarrow \infty} \frac{64}{n^{6}} \sum_{i=1}^{n} i^{5} .
$$

(b) $\sum_{i=1}^{n} i^{5} \stackrel{\text { CAS }}{=} \frac{n^{2}(n+1)^{2}\left(2 n^{2}+2 n-1\right)}{12}$
(c) $\lim _{n \rightarrow \infty} \frac{64}{n^{6}} \cdot \frac{n^{2}(n+1)^{2}\left(2 n^{2}+2 n-1\right)}{12}=\frac{64}{12} \lim _{n \rightarrow \infty} \frac{\left(n^{2}+2 n+1\right)\left(2 n^{2}+2 n-1\right)}{n^{2} \cdot n^{2}}$

$$
=\frac{16}{3} \lim _{n \rightarrow \infty}\left(1+\frac{2}{n}+\frac{1}{n^{2}}\right)\left(2+\frac{2}{n}-\frac{1}{n^{2}}\right)=\frac{16}{3} \cdot 1 \cdot 2=\frac{32}{3}
$$

30. From Example 3(a), we have $A=\lim _{n \rightarrow \infty} \frac{2}{n} \sum_{i=1}^{n} e^{-2 i / n}$. Using a CAS, $\sum_{i=1}^{n} e^{-2 i / n}=\frac{e^{-2}\left(e^{2}-1\right)}{e^{2 / n}-1}$ and $\lim _{n \rightarrow \infty} \frac{2}{n} \cdot \frac{e^{-2}\left(e^{2}-1\right)}{e^{2 / n}-1}=e^{-2}\left(e^{2}-1\right) \approx 0.8647$, whereas the estimate from Example 3(b) using M_{10} was 0.8632 .
31. $y=f(x)=\cos x . \quad \Delta x=\frac{b-0}{n}=\frac{b}{n}$ and $x_{i}=0+i \Delta x=\frac{b i}{n}$.

$$
\begin{aligned}
& A=\lim _{n \rightarrow \infty} R_{n}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \cos \left(\frac{b i}{n}\right) \cdot \frac{b}{n} \\
& \stackrel{\text { CAS }}{=} \lim _{n \rightarrow \infty}\left[\frac{b \sin \left(b\left(\frac{1}{2 n}+1\right)\right)}{2 n \sin \left(\frac{b}{2 n}\right)}-\frac{b}{2 n}\right] \stackrel{\text { CAS }}{=} \sin b
\end{aligned}
$$

If $b=\frac{\pi}{2}$, then $A=\sin \frac{\pi}{2}=1$.
32. (a)

The diagram shows one of the n congruent triangles, $\triangle A O B$, with central angle $2 \pi / n . O$ is the center of the circle and $A B$ is one of the sides of the polygon.
Radius $O C$ is drawn so as to bisect $\angle A O B$. It follows that $O C$ intersects $A B$ at right angles and bisects $A B$. Thus, $\triangle A O B$ is divided into two right triangles with legs of length $\frac{1}{2}(A B)=r \sin (\pi / n)$ and $r \cos (\pi / n) . \triangle A O B$ has area
$2 \cdot \frac{1}{2}[r \sin (\pi / n)][r \cos (\pi / n)]=r^{2} \sin (\pi / n) \cos (\pi / n)=\frac{1}{2} r^{2} \sin (2 \pi / n)$, so $A_{n}=n \cdot \operatorname{area}(\triangle A O B)=\frac{1}{2} n r^{2} \sin (2 \pi / n)$.
(b) To use Equation 3.3.2, $\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1$, we need to have the same expression in the denominator as we have in the argument of the sine function-in this case, $2 \pi / n$.
$\lim _{n \rightarrow \infty} A_{n}=\lim _{n \rightarrow \infty} \frac{1}{2} n r^{2} \sin (2 \pi / n)=\lim _{n \rightarrow \infty} \frac{1}{2} n r^{2} \frac{\sin (2 \pi / n)}{2 \pi / n} \cdot \frac{2 \pi}{n}=\lim _{n \rightarrow \infty} \frac{\sin (2 \pi / n)}{2 \pi / n} \pi r^{2}$. Let $\theta=\frac{2 \pi}{n}$.
Then as $n \rightarrow \infty, \theta \rightarrow 0$, so $\lim _{n \rightarrow \infty} \frac{\sin (2 \pi / n)}{2 \pi / n} \pi r^{2}=\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta} \pi r^{2}=(1) \pi r^{2}=\pi r^{2}$.

5.2 The Definite Integral

1. $f(x)=x-1,-6 \leq x \leq 4$. $\Delta x=\frac{b-a}{n}=\frac{4-(-6)}{5}=2$.

Since we are using right endpoints, $x_{i}^{*}=x_{i}$.

$$
\begin{aligned}
R_{5} & =\sum_{i=1}^{5} f\left(x_{i}\right) \Delta x \\
& =(\Delta x)\left[f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{3}\right)+f\left(x_{4}\right)+f\left(x_{5}\right)+f\left(x_{6}\right)\right] \\
& =2[f(-4)+f(-2)+f(0)+f(2)+f(4)] \\
& =2[-5+(-3)+(-1)+1+3] \\
& =2(-5)=-10
\end{aligned}
$$

The Riemann sum represents the sum of the areas of the two rectangles above the x-axis minus the sum of the areas of the three rectangles below the x-axis; that is, the net area of the rectangles with respect to the x-axis.

INSTRUCTOR USE ONLY

2. $f(x)=\cos x, 0 \leq x \leq \frac{3 \pi}{4}$. $\Delta x=\frac{b-a}{n}=\frac{3 \pi / 4-0}{6}=\frac{\pi}{8}$.

Since we are using left endpoints, $x_{i}^{*}=x_{i-1}$.

$$
\begin{aligned}
L_{6} & =\sum_{i=1}^{6} f\left(x_{i-1}\right) \Delta x \\
& =(\Delta x)\left[f\left(x_{0}\right)+f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{3}\right)+f\left(x_{4}\right)+f\left(x_{5}\right)\right] \\
& =\frac{\pi}{8}\left[f(0)+f\left(\frac{\pi}{8}\right)+f\left(\frac{2 \pi}{8}\right)+f\left(\frac{3 \pi}{8}\right)+f\left(\frac{4 \pi}{8}\right)+f\left(\frac{5 \pi}{8}\right)\right] \\
& \approx 1.033186
\end{aligned}
$$

The Riemann sum represents the sum of the areas of the four rectangles above the x-axis minus the area of the rectangle below the x-axis; that is, the net area of the rectangles with respect to the x-axis. A sixth rectangle is degenerate, with height 0 , and has no area.
3. $f(x)=x^{2}-4,0 \leq x \leq 3$. $\Delta x=\frac{b-a}{n}=\frac{3-0}{6}=\frac{1}{2}$.

Since we are using midpoints, $x_{i}^{*}=\bar{x}_{i}=\frac{1}{2}\left(x_{i-1}+x_{i}\right)$.

$$
\begin{aligned}
M_{6} & =\sum_{i=1}^{6} f\left(\bar{x}_{i}\right) \Delta x \\
& =(\Delta x)\left[f\left(\bar{x}_{1}\right)+f\left(\bar{x}_{2}\right)+f\left(\bar{x}_{3}\right)+f\left(\bar{x}_{4}\right)+f\left(\bar{x}_{5}\right)+f\left(\bar{x}_{6}\right)\right] \\
& =\frac{1}{2}\left[f\left(\frac{1}{4}\right)+f\left(\frac{3}{4}\right)+f\left(\frac{5}{4}\right)+f\left(\frac{7}{4}\right)+f\left(\frac{9}{4}\right)+f\left(\frac{11}{4}\right)\right] \\
& =\frac{1}{2}\left(-\frac{63}{16}-\frac{55}{16}-\frac{39}{16}-\frac{15}{16}+\frac{17}{16}+\frac{57}{16}\right)=\frac{1}{2}\left(-\frac{98}{16}\right)=-\frac{49}{16}
\end{aligned}
$$

The Riemann sum represents the sum of the areas of the two rectangles above the x-axis minus the sum of the areas of the four rectangles below the x-axis; that is, the net area of the rectangles with respect to the x-axis.
4. (a) $f(x)=\frac{1}{x}, 1 \leq x \leq 2 . \Delta x=\frac{b-a}{n}=\frac{2-1}{4}=\frac{1}{4}$.

Since we are using right endpoints, $x_{i}^{*}=x_{i}$.

$$
\begin{aligned}
R_{4} & =\sum_{i=1}^{4} f\left(x_{i}\right) \Delta x \\
& =(\Delta x)\left[f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{3}\right)+f\left(x_{4}\right)\right] \\
& =\frac{1}{4}\left[f\left(\frac{5}{4}\right)+f\left(\frac{6}{4}\right)+f\left(\frac{7}{4}\right)+f\left(\frac{8}{4}\right)\right] \\
& =\frac{1}{4}\left[\frac{4}{5}+\frac{2}{3}+\frac{4}{7}+\frac{1}{2}\right] \\
& \approx 0.634524
\end{aligned}
$$

The Riemann sum represents the sum of the areas of the four rectangles.
(b) Since we are using midpoints, $x_{i}^{*}=\bar{x}_{i}=\frac{1}{2}\left(x_{i-1}+x_{i}\right)$.

$$
\begin{aligned}
M_{4} & =\sum_{i=1}^{4} f\left(\bar{x}_{i}\right) \Delta x \\
& =(\Delta x)\left[f\left(\bar{x}_{1}\right)+f\left(\bar{x}_{2}\right)+f\left(\bar{x}_{3}\right)+f\left(\bar{x}_{4}\right)\right] \\
& =\frac{1}{4}\left[f\left(\frac{9}{8}\right)+f\left(\frac{11}{8}\right)+f\left(\frac{13}{8}\right)+f\left(\frac{15}{8}\right)\right] \\
& =\frac{1}{4}\left(\frac{8}{9}+\frac{8}{11}+\frac{8}{13}+\frac{8}{15}\right) \approx 0.691220
\end{aligned}
$$

The Riemann sum represents the sum of the areas of the four rectangles.

INSTRUCTOR USE ONLY

5. (a) $\int_{0}^{10} f(x) d x \approx R_{5}=[f(2)+f(4)+f(6)+f(8)+f(10)] \Delta x$

$$
=[-1+0+(-2)+2+4](2)=3(2)=6
$$

(b) $\int_{0}^{10} f(x) d x \approx L_{5}=[f(0)+f(2)+f(4)+f(6)+f(8)] \Delta x$

$$
=[3+(-1)+0+(-2)+2](2)=2(2)=4
$$

(c) $\int_{0}^{10} f(x) d x \approx M_{5}=[f(1)+f(3)+f(5)+f(7)+f(9)] \Delta x$

$$
=[0+(-1)+(-1)+0+3](2)=1(2)=2
$$

6. (a) $\int_{-2}^{4} g(x) d x \approx R_{6}=[g(-1)+g(0)+g(1)+g(2)+g(3)+g(4)] \Delta x$

$$
=\left[-\frac{3}{2}+0+\frac{3}{2}+\frac{1}{2}+(-1)+\frac{1}{2}\right](1)=0
$$

(b) $\int_{-2}^{4} g(x) d x \approx L_{6}=[g(-2)+g(-1)+g(0)+g(1)+g(2)+g(3)] \Delta x$

$$
=\left[0+\left(-\frac{3}{2}\right)+0+\frac{3}{2}+\frac{1}{2}+(-1)\right](1)=-\frac{1}{2}
$$

(c) $\int_{-2}^{4} g(x) d x \approx M_{6}=\left[g\left(-\frac{3}{2}\right)+g\left(-\frac{1}{2}\right)+g\left(\frac{1}{2}\right)+g\left(\frac{3}{2}\right)+g\left(\frac{5}{2}\right)+g\left(\frac{7}{2}\right)\right] \Delta x$

$$
=\left[-1+(-1)+1+1+0+\left(-\frac{1}{2}\right)\right](1)=-\frac{1}{2}
$$

7. Since f is increasing, $L_{5} \leq \int_{10}^{30} f(x) d x \leq R_{5}$.

$$
\begin{aligned}
\text { Lower estimate }=L_{5} & =\sum_{i=1}^{5} f\left(x_{i-1}\right) \Delta x=4[f(10)+f(14)+f(18)+f(22)+f(26)] \\
& =4[-12+(-6)+(-2)+1+3]=4(-16)=-64 \\
\text { Upper estimate }=R_{5} & =\sum_{i=1}^{5} f(x) \Delta x=4[f(14)+f(18)+f(22)+f(26)+f(30)] \\
& =4[-6+(-2)+1+3+8]=4(4)=16
\end{aligned}
$$

8. (a) Using the right endpoints to approximate $\int_{3}^{9} f(x) d x$, we have

$$
\sum_{i=1}^{3} f\left(x_{i}\right) \Delta x=2[f(5)+f(7)+f(9)]=2(-0.6+0.9+1.8)=4.2 \text {. }
$$

Since f is increasing, using right endpoints gives an overestimate.
(b) Using the left endpoints to approximate $\int_{3}^{9} f(x) d x$, we have

$$
\sum_{i=1}^{3} f\left(x_{i-1}\right) \Delta x=2[f(3)+f(5)+f(7)]=2(-3.4-0.6+0.9)=-6.2
$$

Since f is increasing, using left endpoints gives an underestimate.
(c) Using the midpoint of each interval to approximate $\int_{3}^{9} f(x) d x$, we have

$$
\sum_{i=1}^{3} f\left(\bar{x}_{i}\right) \Delta x=2[f(4)+f(6)+f(8)]=2(-2.1+0.3+1.4)=-0.8
$$

We cannot say anything about the midpoint estimate compared to the exact value of the integral.
9. $\Delta x=(8-0) / 4=2$, so the endpoints are $0,2,4,6$, and 8 , and the midpoints are $1,3,5$, and 7 . The Midpoint Rule gives $\int_{0}^{8} \sin \sqrt{x} d x \approx \sum_{i=1}^{4} f\left(\bar{x}_{i}\right) \Delta x=2(\sin \sqrt{1}+\sin \sqrt{3}+\sin \sqrt{5}+\sin \sqrt{7}) \approx 2(3.0910)=6.1820$.
10. $\Delta x=(1-0) / 5=\frac{1}{5}$, so the endpoints are $0, \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}$, and 1 , and the midpoints are $\frac{1}{10}, \frac{3}{10}, \frac{5}{10}, \frac{7}{10}$, and $\frac{9}{10}$. The Midpoint Rule gives

$$
\begin{aligned}
\int_{0}^{1} \sqrt{x^{3}+1} d x & \approx \sum_{i=1}^{5} f\left(\bar{x}_{i}\right) \Delta x=\frac{1}{5}\left(\sqrt{\left(\frac{1}{10}\right)^{3}+1}+\sqrt{\left(\frac{3}{10}\right)^{3}+1}+\sqrt{\left(\frac{5}{10}\right)^{3}+1}+\sqrt{\left(\frac{7}{10}\right)^{3}+1}+\sqrt{\left(\frac{9}{10}\right)^{3}+1}\right) \\
& \approx 1.1097
\end{aligned}
$$

11. $\Delta x=(2-0) / 5=\frac{2}{5}$, so the endpoints are $0, \frac{2}{5}, \frac{4}{5}, \frac{6}{5}, \frac{8}{5}$, and 2 , and the midpoints are $\frac{1}{5}, \frac{3}{5}, \frac{5}{5}, \frac{7}{5}$ and $\frac{9}{5}$. The Midpoint Rule gives
$\int_{0}^{2} \frac{x}{x+1} d x \approx \sum_{i=1}^{5} f\left(\bar{x}_{i}\right) \Delta x=\frac{2}{5}\left(\frac{\frac{1}{5}}{\frac{1}{5}+1}+\frac{\frac{3}{5}}{\frac{3}{5}+1}+\frac{\frac{5}{5}}{\frac{5}{5}+1}+\frac{\frac{7}{5}}{\frac{7}{5}+1}+\frac{\frac{9}{5}}{\frac{9}{5}+1}\right)=\frac{2}{5}\left(\frac{127}{56}\right)=\frac{127}{140} \approx 0.9071$.
12. $\Delta x=(\pi-0) / 4=\frac{\pi}{4}$, so the endpoints are $\frac{\pi}{4}, \frac{2 \pi}{4}, \frac{3 \pi}{4}$, and $\frac{4 \pi}{4}$, and the midpoints are $\frac{\pi}{8}, \frac{3 \pi}{8}, \frac{5 \pi}{8}$, and $\frac{7 \pi}{8}$. The Midpoint Rule gives

$$
\int_{0}^{\pi} x \sin ^{2} x d x \approx \sum_{i=1}^{5} f\left(\bar{x}_{i}\right) \Delta x=\frac{\pi}{4}\left(\frac{\pi}{8} \sin ^{2} \frac{\pi}{8}+\frac{3 \pi}{8} \sin ^{2} \frac{3 \pi}{8}+\frac{5 \pi}{8} \sin ^{2} \frac{5 \pi}{8}+\frac{7 \pi}{8} \sin ^{2} \frac{7 \pi}{8}\right) \approx 2.4674
$$

13. In Maple 14, use the commands with(Student[Calculus1]) and

ReimannSum ($x /(x+1), 0 . .2$, partition=5, method=midpoint, output=plot). In some older versions of Maple, use with (student) to load the sum and box commands, then $m=m i d d l e s u m(x /(x+1), x=0 . .2)$, which gives us the sum in summation notation, then $M:=\operatorname{evalf}(m)$ to get the numerical approximation, and finally middlebox $(\mathrm{x} /(\mathrm{x}+1), \mathrm{x}=0 \mathrm{~F}$) to generate the graph. The values obtained for $n=5,10$, and 20 are $0.9071,0.9029$, and 0.9018 , respectively.

14. For $f(x)=x /(x+1)$ on $[0,2]$, we calculate $L_{100} \approx 0.89469$ and $R_{100} \approx 0.90802$. Since f is increasing on $[0,2], L_{100}$ is an underestimate of $\int_{0}^{2} \frac{x}{x+1} d x$ and R_{100} is an overestimate. Thus, $0.8946<\int_{0}^{2} \frac{x}{x+1} d x<0.9081$.
15. We'll create the table of values to approximate $\int_{0}^{\pi} \sin x d x$ by using the program in the solution to Exercise 5.1.9 with $\mathrm{Y}_{1}=\sin x, \mathrm{Xmin}=0$, $\mathrm{X} \max =\pi$, and $n=5,10,50$, and 100 .

The values of R_{n} appear to be approaching 2 .

n	R_{n}
5	1.933766
10	1.983524
50	1.999342
100	1.999836

16. $\int_{0}^{2} e^{-x^{2}} d x$ with $n=5,10,50$, and 100 .

n	L_{n}	R_{n}
5	1.077467	0.684794
10	0.980007	0.783670
50	0.901705	0.862438
100	0.891896	0.872262

The value of the integral lies between 0.872 and 0.892 . Note that
$f(x)=e^{-x^{2}}$ is decreasing on $(0,2)$. We cannot make a similar statement for $\int_{-1}^{2} e^{-x^{2}} d x$ since f is increasing on $(-1,0)$.
17. On $[0,1], \lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{e^{x_{i}}}{1+x_{i}} \Delta x=\int_{0}^{1} \frac{e^{x}}{1+x} d x$.
18. On $[2,5], \lim _{n \rightarrow \infty} \sum_{i=1}^{n} x_{i} \sqrt{1+x_{i}^{3}} \Delta x=\int_{2}^{5} x \sqrt{1+x^{3}} d x$.
19. On $[2,7], \lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left[5\left(x_{i}^{*}\right)^{3}-4 x_{i}^{*}\right] \Delta x=\int_{2}^{7}\left(5 x^{3}-4 x\right) d x$.
20. On $[1,3], \lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{x_{i}^{*}}{\left(x_{i}^{*}\right)^{2}+4} \Delta x=\int_{1}^{3} \frac{x}{x^{2}+4} d x$.
21. Note that $\Delta x=\frac{5-2}{n}=\frac{3}{n}$ and $x_{i}=2+i \Delta x=2+\frac{3 i}{n}$.

$$
\begin{aligned}
\int_{2}^{5}(4-2 x) d x & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(2+\frac{3 i}{n}\right) \frac{3}{n}=\lim _{n \rightarrow \infty} \frac{3}{n} \sum_{i=1}^{n}\left[4-2\left(2+\frac{3 i}{n}\right)\right] \\
& =\lim _{n \rightarrow \infty} \frac{3}{n} \sum_{i=1}^{n}\left[-\frac{6 i}{n}\right]=\lim _{n \rightarrow \infty} \frac{3}{n}\left(-\frac{6}{n}\right) \sum_{i=1}^{n} i=\lim _{n \rightarrow \infty}\left(-\frac{18}{n^{2}}\right)\left[\frac{n(n+1)}{2}\right] \\
& =\lim _{n \rightarrow \infty}\left(-\frac{18}{2}\right)\left(\frac{n+1}{n}\right)=-9 \lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)=-9(1)=-9
\end{aligned}
$$

22. Note that $\Delta x=\frac{4-1}{n}=\frac{3}{n}$ and $x_{i}=1+i \Delta x=1+\frac{3 i}{n}$.

$$
\begin{aligned}
\int_{1}^{4}\left(x^{2}-4 x+2\right) d x & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(1+\frac{3 i}{n}\right) \frac{3}{n}=\lim _{n \rightarrow \infty} \frac{3}{n} \sum_{i=1}^{n}\left[\left(1+\frac{3 i}{n}\right)^{2}-4\left(1+\frac{3 i}{n}\right)+2\right] \\
& =\lim _{n \rightarrow \infty} \frac{3}{n} \sum_{i=1}^{n}\left[1+\frac{6 i}{n}+\frac{9 i^{2}}{n^{2}}-4-\frac{12 i}{n}+2\right]=\lim _{n \rightarrow \infty} \frac{3}{n} \sum_{i=1}^{n}\left[\frac{9 i^{2}}{n^{2}}-\frac{6 i}{n}-1\right] \\
& =\lim _{n \rightarrow \infty} \frac{3}{n}\left[\frac{9}{n^{2}} \sum_{i=1}^{n} i^{2}-\frac{6}{n} \sum_{i=1}^{n} i-\sum_{i=1}^{n} 1\right] \\
& =\lim _{n \rightarrow \infty}\left[\frac{27}{n^{3}} \frac{n(n+1)(2 n+1)}{6}-\frac{18}{n^{2}} \frac{n(n+1)}{2}-\frac{3}{n} \cdot n(1)\right] \\
& =\lim _{n \rightarrow \infty}\left[\frac{9}{2} \frac{(n+1)(2 n+1)}{n^{2}}-9 \frac{n+1}{n}-3\right]=\lim _{n \rightarrow \infty}\left[\frac{9}{2} \frac{n+1}{n} \frac{2 n+1}{n}-9\left(1+\frac{1}{n}\right)-3\right] \\
& =\lim _{n \rightarrow \infty}\left[\frac{9}{2}\left(1+\frac{1}{n}\right)\left(2+\frac{1}{n}\right)-9\left(1+\frac{1}{n}\right)-3\right]=\frac{9}{2}(1)(2)-9(1)-3=-3
\end{aligned}
$$

INSTRUCTOR USE ONLY

23. Note that $\Delta x=\frac{0-(-2)}{n}=\frac{2}{n}$ and $x_{i}=-2+i \Delta x=-2+\frac{2 i}{n}$.

$$
\begin{aligned}
\int_{-2}^{0}\left(x^{2}+x\right) d x & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(-2+\frac{2 i}{n}\right) \frac{2}{n}=\lim _{n \rightarrow \infty} \frac{2}{n} \sum_{i=1}^{n}\left[\left(-2+\frac{2 i}{n}\right)^{2}+\left(-2+\frac{2 i}{n}\right)\right] \\
& =\lim _{n \rightarrow \infty} \frac{2}{n} \sum_{i=1}^{n}\left[4-\frac{8 i}{n}+\frac{4 i^{2}}{n^{2}}-2+\frac{2 i}{n}\right]=\lim _{n \rightarrow \infty} \frac{2}{n} \sum_{i=1}^{n}\left(\frac{4 i^{2}}{n^{2}}-\frac{6 i}{n}+2\right) \\
& =\lim _{n \rightarrow \infty} \frac{2}{n}\left[\frac{4}{n^{2}} \sum_{i=1}^{n} i^{2}-\frac{6}{n} \sum_{i=1}^{n} i+\sum_{i=1}^{n} 2\right]=\lim _{n \rightarrow \infty}\left[\frac{8}{n^{3}} \frac{n(n+1)(2 n+1)}{6}-\frac{12}{n^{2}} \frac{n(n+1)}{2}+\frac{2}{n} \cdot n(2)\right] \\
& =\lim _{n \rightarrow \infty}\left[\frac{4}{3} \frac{(n+1)(2 n+1)}{n^{2}}-6 \frac{n+1}{n}+4\right]=\lim _{n \rightarrow \infty}\left[\frac{4}{3} \frac{n+1}{n} \frac{2 n+1}{n}-6\left(1+\frac{1}{n}\right)+4\right] \\
& =\lim _{n \rightarrow \infty}\left[\frac{4}{3}\left(1+\frac{1}{n}\right)\left(2+\frac{1}{n}\right)-6\left(1+\frac{1}{n}\right)+4\right]=\frac{4}{3}(1)(2)-6(1)+4=\frac{2}{3}
\end{aligned}
$$

24. Note that $\Delta x=\frac{2-0}{n}=\frac{2}{n}$ and $x_{i}=0+i \Delta x=\frac{2 i}{n}$.

$$
\begin{aligned}
\int_{0}^{2}\left(2 x-x^{3}\right) d x & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(\frac{2 i}{n}\right) \frac{2}{n}=\lim _{n \rightarrow \infty} \frac{2}{n} \sum_{i=1}^{n}\left[2\left(\frac{2 i}{n}\right)-\left(\frac{2 i}{n}\right)^{3}\right] \\
& =\lim _{n \rightarrow \infty} \frac{2}{n} \sum_{i=1}^{n}\left[\frac{4 i}{n}-\frac{8 i^{3}}{n^{3}}\right]=\lim _{n \rightarrow \infty} \frac{2}{n}\left[\frac{4}{n} \sum_{i=1}^{n} i-\frac{8}{n^{3}} \sum_{i=1}^{n} i^{3}\right] \\
& =\lim _{n \rightarrow \infty}\left\{\frac{8}{n^{2}} \frac{n(n+1)}{2}-\frac{16}{n^{4}}\left[\frac{n(n+1)}{2}\right]^{2}\right\}=\lim _{n \rightarrow \infty}\left[4 \frac{n+1}{n}-4 \frac{(n+1)^{2}}{n^{2}}\right] \\
& =\lim _{n \rightarrow \infty}\left[4\left(1+\frac{1}{n}\right)-4 \frac{n+1}{n} \frac{n+1}{n}\right]=\lim _{n \rightarrow \infty}\left[4\left(1+\frac{1}{n}\right)-4\left(1+\frac{1}{n}\right)\left(1+\frac{1}{n}\right)\right] \\
& =4(1)-4(1)(1)=0
\end{aligned}
$$

25. Note that $\Delta x=\frac{1-0}{n}=\frac{1}{n}$ and $x_{i}=0+i \Delta x=\frac{i}{n}$.

$$
\begin{aligned}
\int_{0}^{1}\left(x^{3}-3 x^{2}\right) d x & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(\frac{i}{n}\right) \Delta x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left[\left(\frac{i}{n}\right)^{3}-3\left(\frac{i}{n}\right)^{2}\right] \frac{1}{n} \\
& =\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n}\left[\frac{i^{3}}{n^{3}}-\frac{3 i^{2}}{n^{2}}\right]=\lim _{n \rightarrow \infty} \frac{1}{n}\left[\frac{1}{n^{3}} \sum_{i=1}^{n} i^{3}-\frac{3}{n^{2}} \sum_{i=1}^{n} i^{2}\right] \\
& =\lim _{n \rightarrow \infty}\left\{\frac{1}{n^{4}}\left[\frac{n(n+1)}{2}\right]^{2}-\frac{3}{n^{3}} \frac{n(n+1)(2 n+1)}{6}\right\}=\lim _{n \rightarrow \infty}\left[\frac{1}{4} \frac{n+1}{n} \frac{n+1}{n}-\frac{1}{2} \frac{n+1}{n} \frac{2 n+1}{n}\right] \\
& =\lim _{n \rightarrow \infty}\left[\frac{1}{4}\left(1+\frac{1}{n}\right)\left(1+\frac{1}{n}\right)-\frac{1}{2}\left(1+\frac{1}{n}\right)\left(2+\frac{1}{n}\right)\right]=\frac{1}{4}(1)(1)-\frac{1}{2}(1)(2)=-\frac{3}{4}
\end{aligned}
$$

26. (a) $\Delta x=(4-0) / 8=0.5$ and $x_{i}^{*}=x_{i}=0.5 i$.

$$
\begin{aligned}
\int_{0}^{4}\left(x^{2}-3 x\right) d x \approx & \sum_{i=1}^{8} f\left(x_{i}^{*}\right) \Delta x \\
= & 0.5\left\{\left[0.5^{2}-3(0.5)\right]+\left[1.0^{2}-3(1.0)\right]+\cdots\right. \\
& \left.+\left[3.5^{2}-3(3.5)\right]+\left[4.0^{2}-3(4.0)\right]\right\} \\
= & \frac{1}{2}\left(-\frac{5}{4}-2-\frac{9}{4}-2-\frac{5}{4}+0+\frac{7}{4}+4\right)=-1.5
\end{aligned}
$$

(b)

$$
\text { (c) } \begin{aligned}
\int_{0}^{4}\left(x^{2}-3 x\right) d x & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left[\left(\frac{4 i}{n}\right)^{2}-3\left(\frac{4 i}{n}\right)\right]\left(\frac{4}{n}\right) \\
& =\lim _{n \rightarrow \infty} \frac{4}{n}\left[\frac{16}{n^{2}} \sum_{i=1}^{n} i^{2}-\frac{12}{n} \sum_{i=1}^{n} i\right] \\
& =\lim _{n \rightarrow \infty}\left[\frac{64}{n^{3}} \cdot \frac{n(n+1)(2 n+1)}{6}-\frac{48}{n^{2}} \cdot \frac{n(n+1)}{2}\right] \\
& =\lim _{n \rightarrow \infty}\left[\frac{32}{3}\left(1+\frac{1}{n}\right)\left(2+\frac{1}{n}\right)-24\left(1+\frac{1}{n}\right)\right] \\
& =\frac{32}{3} \cdot 2-24=-\frac{8}{3}
\end{aligned}
$$

(d) $\int_{0}^{4}\left(x^{2}-3 x\right) d x=A_{1}-A_{2}$, where A_{1} is the area marked + and A_{2} is the area marked -.

27. $\int_{a}^{b} x d x=\lim _{n \rightarrow \infty} \frac{b-a}{n} \sum_{i=1}^{n}\left[a+\frac{b-a}{n} i\right]=\lim _{n \rightarrow \infty}\left[\frac{a(b-a)}{n} \sum_{i=1}^{n} 1+\frac{(b-a)^{2}}{n^{2}} \sum_{i=1}^{n} i\right]$

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty}\left[\frac{a(b-a)}{n} n+\frac{(b-a)^{2}}{n^{2}} \cdot \frac{n(n+1)}{2}\right]=a(b-a)+\lim _{n \rightarrow \infty} \frac{(b-a)^{2}}{2}\left(1+\frac{1}{n}\right) \\
& =a(b-a)+\frac{1}{2}(b-a)^{2}=(b-a)\left(a+\frac{1}{2} b-\frac{1}{2} a\right)=(b-a) \frac{1}{2}(b+a)=\frac{1}{2}\left(b^{2}-a^{2}\right)
\end{aligned}
$$

28. $\int_{a}^{b} x^{2} d x=\lim _{n \rightarrow \infty} \frac{b-a}{n} \sum_{i=1}^{n}\left[a+\frac{b-a}{n} i\right]^{2}=\lim _{n \rightarrow \infty} \frac{b-a}{n} \sum_{i=1}^{n}\left[a^{2}+2 a \frac{b-a}{n} i+\frac{(b-a)^{2}}{n^{2}} i^{2}\right]$
$=\lim _{n \rightarrow \infty}\left[\frac{(b-a)^{3}}{n^{3}} \sum_{i=1}^{n} i^{2}+\frac{2 a(b-a)^{2}}{n^{2}} \sum_{i=1}^{n} i+\frac{a^{2}(b-a)}{n} \sum_{i=1}^{n} 1\right]$
$=\lim _{n \rightarrow \infty}\left[\frac{(b-a)^{3}}{n^{3}} \frac{n(n+1)(2 n+1)}{6}+\frac{2 a(b-a)^{2}}{n^{2}} \frac{n(n+1)}{2}+\frac{a^{2}(b-a)}{n} n\right]$
$=\lim _{n \rightarrow \infty}\left[\frac{(b-a)^{3}}{6} \cdot 1 \cdot\left(1+\frac{1}{n}\right)\left(2+\frac{1}{n}\right)+a(b-a)^{2} \cdot 1 \cdot\left(1+\frac{1}{n}\right)+a^{2}(b-a)\right]$
$=\frac{(b-a)^{3}}{3}+a(b-a)^{2}+a^{2}(b-a)=\frac{b^{3}-3 a b^{2}+3 a^{2} b-a^{3}}{3}+a b^{2}-2 a^{2} b+a^{3}+a^{2} b-a^{3}$
$=\frac{b^{3}}{3}-\frac{a^{3}}{3}-a b^{2}+a^{2} b+a b^{2}-a^{2} b=\frac{b^{3}-a^{3}}{3}$
29. $f(x)=\sqrt{4+x^{2}}, a=1, b=3$, and $\Delta x=\frac{3-1}{n}=\frac{2}{n}$. Using Theorem 4, we get $x_{i}^{*}=x_{i}=1+i \Delta x=1+\frac{2 i}{n}$, so

$$
\int_{1}^{3} \sqrt{4+x^{2}} d x=\lim _{n \rightarrow \infty} R_{n}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \sqrt{4+\left(1+\frac{2 i}{n}\right)^{2}} \cdot \frac{2}{n}
$$

30. $f(x)=x^{2}+\frac{1}{x}, a=2, b=5$, and $\Delta x=\frac{5-2}{n}=\frac{3}{n}$. Using Theorem 4, we get $x_{i}^{*}=x_{i}=2+i \Delta x=2+\frac{3 i}{n}$, so

$$
\int_{2}^{5}\left(x^{2}+\frac{1}{x}\right) d x=\lim _{n \rightarrow \infty} R_{n}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left[\left(2+\frac{3 i}{n}\right)^{2}+\frac{1}{2+\frac{3 i}{n}}\right] \cdot \frac{3}{n}
$$

31. $\Delta x=(\pi-0) / n=\pi / n$ and $x_{i}^{*}=x_{i}=\pi i / n$.

$$
\int_{0}^{\pi} \sin 5 x d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\sin 5 x_{i}\right)\left(\frac{\pi}{n}\right)=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\sin \frac{5 \pi i}{n}\right) \frac{\pi}{n} \stackrel{\text { CAS }}{=} \pi \lim _{n \rightarrow \infty} \frac{1}{n} \cot \left(\frac{5 \pi}{2 n}\right) \stackrel{\text { CAS }}{=} \pi\left(\frac{2}{5 \pi}\right)=\frac{2}{5}
$$

32. $\Delta x=(10-2) / n=8 / n$ and $x_{i}^{*}=x_{i}=2+8 i / n$.

$$
\begin{aligned}
\int_{2}^{10} x^{6} d x & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(2+\frac{8 i}{n}\right)^{6}\left(\frac{8}{n}\right)=8 \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n}\left(2+\frac{8 i}{n}\right)^{6} \\
& \stackrel{\text { CAS }}{=} 8 \lim _{n \rightarrow \infty} \frac{1}{n} \cdot \frac{64\left(58,593 n^{6}+164,052 n^{5}+131,208 n^{4}-27,776 n^{2}+2048\right)}{21 n^{5}} \\
& \stackrel{\text { CAS }}{=} 8\left(\frac{1,249,984}{7}\right)=\frac{9,999,872}{7} \approx 1,428,553.1
\end{aligned}
$$

33. (a) Think of $\int_{0}^{2} f(x) d x$ as the area of a trapezoid with bases 1 and 3 and height 2 . The area of a trapezoid is $A=\frac{1}{2}(b+B) h$, so $\int_{0}^{2} f(x) d x=\frac{1}{2}(1+3) 2=4$.
(b) $\int_{0}^{5} f(x) d x=\int_{0}^{2} f(x) d x+\int_{2}^{3} f(x) d x+\int_{3}^{5} f(x) d x$

$$
\begin{gathered}
\text { trapezoid } \begin{array}{c}
\text { rectangle } \\
= \\
\frac{1}{2}(1+3) 2+ \\
3 \cdot 1
\end{array}+\frac{1}{2} \cdot 2 \cdot 3=4+3+3=10
\end{gathered}
$$

(c) $\int_{5}^{7} f(x) d x$ is the negative of the area of the triangle with base 2 and height $3 . \int_{5}^{7} f(x) d x=-\frac{1}{2} \cdot 2 \cdot 3=-3$.
(d) $\int_{7}^{9} f(x) d x$ is the negative of the area of a trapezoid with bases 3 and 2 and height 2 , so it equals

$$
-\frac{1}{2}(B+b) h=-\frac{1}{2}(3+2) 2=-5 . \text { Thus, }
$$

$$
\int_{0}^{9} f(x) d x=\int_{0}^{5} f(x) d x+\int_{5}^{7} f(x) d x+\int_{7}^{9} f(x) d x=10+(-3)+(-5)=2 .
$$

34. (a) $\int_{0}^{2} g(x) d x=\frac{1}{2} \cdot 4 \cdot 2=4 \quad$ [area of a triangle]
(b) $\int_{2}^{6} g(x) d x=-\frac{1}{2} \pi(2)^{2}=-2 \pi \quad$ [negative of the area of a semicircle]
(c) $\int_{6}^{7} g(x) d x=\frac{1}{2} \cdot 1 \cdot 1=\frac{1}{2} \quad$ [area of a triangle]

$$
\int_{0}^{7} g(x) d x=\int_{0}^{2} g(x) d x+\int_{2}^{6} g(x) d x+\int_{6}^{7} g(x) d x=4-2 \pi+\frac{1}{2}=4.5-2 \pi
$$

35. $\int_{-1}^{2}(1-x) d x$ can be interpreted as the difference of the areas of the two shaded triangles; that is, $\frac{1}{2}(2)(2)-\frac{1}{2}(1)(1)=2-\frac{1}{2}=\frac{3}{2}$.

36. $\int_{0}^{9}\left(\frac{1}{3} x-2\right) d x$ can be interpreted as the difference of the areas of the two shaded triangles; that is, $-\frac{1}{2}(6)(2)+\frac{1}{2}(3)(1)=-6+\frac{3}{2}=-\frac{9}{2}$.

37. $\int_{-3}^{0}\left(1+\sqrt{9-x^{2}}\right) d x$ can be interpreted as the area under the graph of $f(x)=1+\sqrt{9-x^{2}}$ between $x=-3$ and $x=0$. This is equal to one-quarter the area of the circle with radius 3 , plus the area of the rectangle, so
$\int_{-3}^{0}\left(1+\sqrt{9-x^{2}}\right) d x=\frac{1}{4} \pi \cdot 3^{2}+1 \cdot 3=3+\frac{9}{4} \pi$.

38. $\int_{-5}^{5}\left(x-\sqrt{25-x^{2}}\right) d x=\int_{-5}^{5} x d x-\int_{-5}^{5} \sqrt{25-x^{2}} d x$. Ву symmetry, the value of the first integral is 0 since the shaded area above the x-axis equals the shaded area below the x-axis. The second integral can be interpreted as one half the area of a circle with radius 5 ; that is, $\frac{1}{2} \pi(5)^{2}=\frac{25}{2} \pi$. Thus, the value of

 the original integral is $0-\frac{25}{2} \pi=-\frac{25}{2} \pi$.
39. $\int_{-4}^{3}\left|\frac{1}{2} x\right| d x$ can be interpreted as the sum of the areas of the two shaded triangles; that is, $\frac{1}{2}(4)(2)+\frac{1}{2}(3)\left(\frac{3}{2}\right)=4+\frac{9}{4}=\frac{25}{4}$.

40. $\int_{0}^{1}|2 x-1| d x$ can be interpreted as the sum of the areas of the two shaded triangles; that is, $2\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)(1)=\frac{1}{2}$.

41. $\int_{1}^{1} \sqrt{1+x^{4}} d x=0$ since the limits of integration are equal.
42. $\int_{\pi}^{0} \sin ^{4} \theta d \theta=-\int_{0}^{\pi} \sin ^{4} \theta d \theta \quad$ [because we reversed the limits of integration]

$$
\begin{array}{ll}
=-\int_{0}^{\pi} \sin ^{4} x d x & \text { [we can use any letter without changing the value of the integral] } \\
=-\frac{3}{8} \pi & \text { [given value] }
\end{array}
$$

43. $\int_{0}^{1}\left(5-6 x^{2}\right) d x=\int_{0}^{1} 5 d x-6 \int_{0}^{1} x^{2} d x=5(1-0)-6\left(\frac{1}{3}\right)=5-2=3$
44. $\int_{1}^{3}\left(2 e^{x}-1\right) d x=2 \int_{1}^{3} e^{x} d x-\int_{1}^{3} 1 d x=2\left(e^{3}-e\right)-1(3-1)=2 e^{3}-2 e-2$
45. $\int_{1}^{3} e^{x+2} d x=\int_{1}^{3} e^{x} \cdot e^{2} d x=e^{2} \int_{1}^{3} e^{x} d x=e^{2}\left(e^{3}-e\right)=e^{5}-e^{3}$
46. $\int_{0}^{\pi / 2}(2 \cos x-5 x) d x=\int_{0}^{\pi / 2} 2 \cos x d x-\int_{0}^{\pi / 2} 5 x d x=2 \int_{0}^{\pi / 2} \cos x d x-5 \int_{0}^{\pi / 2} x d x$

$$
=2(1)-5 \frac{(\pi / 2)^{2}-0^{2}}{2}=2-\frac{5 \pi^{2}}{8}
$$

47. $\int_{-2}^{2} f(x) d x+\int_{2}^{5} f(x) d x-\int_{-2}^{-1} f(x) d x=\int_{-2}^{5} f(x) d x+\int_{-1}^{-2} f(x) d x \quad$ [by Property 5 and reversing limits]

$$
=\int_{-1}^{5} f(x) d x
$$

[Property 5]

20
48. $\int_{2}^{4} f(x) d x+\int_{4}^{8} f(x) d x=\int_{2}^{8} f(x) d x$, so $\int_{4}^{8} f(x) d x=\int_{2}^{8} f(x) d x-\int_{2}^{4} f(x) d x=7.3-5.9=1.4$.
49. $\int_{0}^{9}[2 f(x)+3 g(x)] d x=2 \int_{0}^{9} f(x) d x+3 \int_{0}^{9} g(x) d x=2(37)+3(16)=122$
50. If $f(x)=\left\{\begin{array}{ll}3 & \text { for } x<3 \\ x & \text { for } x \geq 3\end{array}\right.$, then $\int_{0}^{5} f(x) d x$ can be interpreted as the area of the shaded region, which consists of a 5 -by-3 rectangle surmounted by an isosceles right triangle whose legs have length 2. Thus, $\int_{0}^{5} f(x) d x=5(3)+\frac{1}{2}(2)(2)=17$.

51. $\int_{0}^{3} f(x) d x$ is clearly less than -1 and has the smallest value. The slope of the tangent line of f at $x=1, f^{\prime}(1)$, has a value between -1 and 0 , so it has the next smallest value. The largest value is $\int_{3}^{8} f(x) d x$, followed by $\int_{4}^{8} f(x) d x$, which has a value about 1 unit less than $\int_{3}^{8} f(x) d x$. Still positive, but with a smaller value than $\int_{4}^{8} f(x) d x$, is $\int_{0}^{8} f(x) d x$. Ordering these quantities from smallest to largest gives us

$$
\int_{0}^{3} f(x) d x<f^{\prime}(1)<\int_{0}^{8} f(x) d x<\int_{4}^{8} f(x) d x<\int_{3}^{8} f(x) d x \text { or } \mathrm{B}<\mathrm{E}<\mathrm{A}<\mathrm{D}<\mathrm{C}
$$

52. $F(0)=\int_{2}^{0} f(t) d t=-\int_{0}^{2} f(t) d t$, so $F(0)$ is negative, and similarly, so is $F(1) . F(3)$ and $F(4)$ are negative since they represent negatives of areas below the x-axis. Since $F(2)=\int_{2}^{2} f(t) d t=0$ is the only non-negative value, choice C is the largest.
53. $I=\int_{-4}^{2}[f(x)+2 x+5] d x=\int_{-4}^{2} f(x) d x+2 \int_{-4}^{2} x d x+\int_{-4}^{2} 5 d x=I_{1}+2 I_{2}+I_{3}$
$I_{1}=-3$ [area below x-axis] $+3-3=-3$
$I_{2}=-\frac{1}{2}(4)(4) \quad$ [area of triangle, see figure] $\quad+\frac{1}{2}(2)(2)$
$=-8+2=-6$
$I_{3}=5[2-(-4)]=5(6)=30$

Thus, $I=-3+2(-6)+30=15$.
54. Using Integral Comparison Property $8, m \leq f(x) \leq M \Rightarrow m(2-0) \leq \int_{0}^{2} f(x) d x \leq M(2-0) \Rightarrow$ $2 m \leq \int_{0}^{2} f(x) d x \leq 2 M$.
55. $x^{2}-4 x+4=(x-2)^{2} \geq 0$ on $[0,4]$, so $\int_{0}^{4}\left(x^{2}-4 x+4\right) d x \geq 0 \quad$ [Property 6$]$.
56. $x^{2} \leq x$ on $[0,1]$, so $\sqrt{1+x^{2}} \leq \sqrt{1+x}$ on $[0,1]$. Hence, $\int_{0}^{1} \sqrt{1+x^{2}} d x \leq \int_{0}^{1} \sqrt{1+x} d x \quad$ [Property 7].
57. If $-1 \leq x \leq 1$, then $0 \leq x^{2} \leq 1$ and $1 \leq 1+x^{2} \leq 2$, so $1 \leq \sqrt{1+x^{2}} \leq \sqrt{2}$ and $1[1-(-1)] \leq \int_{-1}^{1} \sqrt{1+x^{2}} d x \leq \sqrt{2}[1-(-1)]$ [Property 8$]$; that is, $2 \leq \int_{-1}^{1} \sqrt{1+x^{2}} d x \leq 2 \sqrt{2}$.
58. If $\frac{\pi}{6} \leq x \leq \frac{\pi}{3}$, then $\frac{1}{2} \leq \sin x \leq \frac{\sqrt{3}}{2} \quad\left(\sin x\right.$ is increasing on $\left.\left[\frac{\pi}{6}, \frac{\pi}{3}\right]\right)$, so
$\frac{1}{2}\left(\frac{\pi}{3}-\frac{\pi}{6}\right) \leq \int_{\pi / 6}^{\pi / 3} \sin x d x \leq \frac{\sqrt{3}}{2}\left(\frac{\pi}{3}-\frac{\pi}{6}\right) \quad\left[\right.$ Property 8]; that is, $\frac{\pi}{12} \leq \int_{\pi / 6}^{\pi / 3} \sin x d x \leq \frac{\sqrt{3} \pi}{12}$.
59. If $0 \leq x \leq 1$, then $0 \leq x^{3} \leq 1$, so $0(1-0) \leq \int_{0}^{1} x^{3} d x \leq 1(1-0) \quad[$ Property 8$]$; that is, $0 \leq \int_{0}^{1} x^{3} d x \leq 1$
60. If $0 \leq x \leq 3$, then $4 \leq x+4 \leq 7$ and $\frac{1}{7} \leq \frac{1}{x+4} \leq \frac{1}{4}$, so $\frac{1}{7}(3-0) \leq \int_{0}^{3} \frac{1}{x+4} d x \leq \frac{1}{4}(3-0)$ [Property 8]; that is, $\frac{3}{7} \leq \int_{0}^{3} \frac{1}{x+4} d x \leq \frac{3}{4}$
61. If $\frac{\pi}{4} \leq x \leq \frac{\pi}{3}$, then $1 \leq \tan x \leq \sqrt{3}$, so $1\left(\frac{\pi}{3}-\frac{\pi}{4}\right) \leq \int_{\pi / 4}^{\pi / 3} \tan x d x \leq \sqrt{3}\left(\frac{\pi}{3}-\frac{\pi}{4}\right)$ or $\frac{\pi}{12} \leq \int_{\pi / 4}^{\pi / 3} \tan x d x \leq \frac{\pi}{12} \sqrt{3}$.
62. Let $f(x)=x^{3}-3 x+3$ for $0 \leq x \leq 2$. Then $f^{\prime}(x)=3 x^{2}-3=3(x+1)(x-1)$, so f is decreasing on $(0,1)$ and increasing on $(1,2) . \quad f$ has the absolute minimum value $f(1)=1$. Since $f(0)=3$ and $f(2)=5$, the absolute maximum value of f is $f(2)=5$. Thus, $1 \leq x^{3}-3 x+3 \leq 5$ for x in [0,2]. It follows from Property 8 that $1 \cdot(2-0) \leq \int_{0}^{2}\left(x^{3}-3 x+3\right) d x \leq 5 \cdot(2-0) ;$ that is, $2 \leq \int_{0}^{2}\left(x^{3}-3 x+3\right) d x \leq 10$.
63. The only critical number of $f(x)=x e^{-x}$ on $[0,2]$ is $x=1$. Since $f(0)=0, f(1)=e^{-1} \approx 0.368$, and $f(2)=2 e^{-2} \approx 0.271$, we know that the absolute minimum value of f on $[0,2]$ is 0 , and the absolute maximum is e^{-1}. By Property $8,0 \leq x e^{-x} \leq e^{-1}$ for $0 \leq x \leq 2 \Rightarrow 0(2-0) \leq \int_{0}^{2} x e^{-x} d x \leq e^{-1}(2-0) \quad \Rightarrow \quad 0 \leq \int_{0}^{2} x e^{-x} d x \leq 2 / e$.
64. Let $f(x)=x-2 \sin x$ for $\pi \leq x \leq 2 \pi$. Then $f^{\prime}(x)=1-2 \cos x$ and $f^{\prime}(x)=0 \Rightarrow \cos x=\frac{1}{2} \quad \Rightarrow \quad x=\frac{5 \pi}{3}$. f has the absolute maximum value $f\left(\frac{5 \pi}{3}\right)=\frac{5 \pi}{3}-2 \sin \frac{5 \pi}{3}=\frac{5 \pi}{3}+\sqrt{3} \approx 6.97$ since $f(\pi)=\pi$ and $f(2 \pi)=2 \pi$ are both smaller than 6.97. Thus, $\pi \leq f(x) \leq \frac{5 \pi}{3}+\sqrt{3} \Rightarrow \pi(2 \pi-\pi) \leq \int_{\pi}^{2 \pi} f(x) d x \leq\left(\frac{5 \pi}{3}+\sqrt{3}\right)(2 \pi-\pi)$; that is, $\pi^{2} \leq \int_{\pi}^{2 \pi}(x-2 \sin x) d x \leq \frac{5}{3} \pi^{2}+\sqrt{3} \pi$.
65. $\sqrt{x^{4}+1} \geq \sqrt{x^{4}}=x^{2}$, so $\int_{1}^{3} \sqrt{x^{4}+1} d x \geq \int_{1}^{3} x^{2} d x=\frac{1}{3}\left(3^{3}-1^{3}\right)=\frac{26}{3}$.
66. $0 \leq \sin x \leq 1$ for $0 \leq x \leq \frac{\pi}{2}$, so $x \sin x \leq x \quad \Rightarrow \quad \int_{0}^{\pi / 2} x \sin x d x \leq \int_{0}^{\pi / 2} x d x=\frac{1}{2}\left[\left(\frac{\pi}{2}\right)^{2}-0^{2}\right]=\frac{\pi^{2}}{8}$.
67. $\sin x<\sqrt{x}<x$ for $1 \leq x \leq 2$ and \arctan is an increasing function, so $\arctan (\sin x)<\arctan \sqrt{x}<\arctan x$, and hence, $\int_{1}^{2} \arctan (\sin x) d x<\int_{1}^{2} \arctan \sqrt{x} d x<\int_{1}^{2} \arctan x d x$. Thus, $\int_{1}^{2} \arctan x d x$ has the largest value.
68. $x^{2}<\sqrt{x}$ for $0<x \leq 0.5$ and cosine is a decreasing function on $[0,0.5]$, so $\cos \left(x^{2}\right)>\cos \sqrt{x}$, and hence, $\int_{0}^{0.5} \cos \left(x^{2}\right) d x>\int_{0}^{0.5} \cos \sqrt{x} d x$. Thus, $\int_{0}^{0.5} \cos \left(x^{2}\right) d x$ is larger.
69. Using right endpoints as in the proof of Property 2, we calculate

$$
\int_{a}^{b} c f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} c f\left(x_{i}\right) \Delta x=\lim _{n \rightarrow \infty} c \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x=c \lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x=c \int_{a}^{b} f(x) d x
$$

70. (a) Since $-|f(x)| \leq f(x) \leq|f(x)|$, it follows from Property 7 that

$$
-\int_{a}^{b}|f(x)| d x \leq \int_{a}^{b} f(x) d x \leq \int_{a}^{b}|f(x)| d x \quad \Rightarrow \quad\left|\int_{a}^{b} f(x) d x\right| \leq \int_{a}^{b}|f(x)| d x
$$

Note that the definite integral is a real number, and so the following property applies: $-a \leq b \leq a \Rightarrow|b| \leq a$ for all real numbers b and nonnegative numbers a.

22
(b) $\left|\int_{0}^{2 \pi} f(x) \sin 2 x d x\right| \leq \int_{0}^{2 \pi}|f(x) \sin 2 x| d x \quad[$ by part (a) $]=\int_{0}^{2 \pi}|f(x)||\sin 2 x| d x \leq \int_{0}^{2 \pi}|f(x)| d x$ by Property 7, since $|\sin 2 x| \leq 1 \Rightarrow|f(x)||\sin 2 x| \leq|f(x)|$.
71. Suppose that f is integrable on $[0,1]$, that is, $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x$ exists for any choice of x_{i}^{*} in $\left[x_{i-1}, x_{i}\right]$. Let n denote a positive integer and divide the interval $[0,1]$ into n equal subintervals $\left[0, \frac{1}{n}\right],\left[\frac{1}{n}, \frac{2}{n}\right], \ldots,\left[\frac{n-1}{n}, 1\right]$. If we choose x_{i}^{*} to be a rational number in the i th subinterval, then we obtain the Riemann sum $\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \cdot \frac{1}{n}=0$, so
$\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \cdot \frac{1}{n}=\lim _{n \rightarrow \infty} 0=0$. Now suppose we choose x_{i}^{*} to be an irrational number. Then we get $\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \cdot \frac{1}{n}=\sum_{i=1}^{n} 1 \cdot \frac{1}{n}=n \cdot \frac{1}{n}=1$ for each n, so $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \cdot \frac{1}{n}=\lim _{n \rightarrow \infty} 1=1$. Since the value of $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x$ depends on the choice of the sample points x_{i}^{*}, the limit does not exist, and f is not integrable on $[0,1]$.
72. Partition the interval $[0,1]$ into n equal subintervals and choose $x_{1}^{*}=\frac{1}{n^{2}}$. Then with $f(x)=\frac{1}{x}$,
$\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x \geq f\left(x_{1}^{*}\right) \Delta x=\frac{1}{1 / n^{2}} \cdot \frac{1}{n}=n$. Thus, $\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x$ can be made arbitrarily large and hence, f is not integrable on $[0,1]$.
73. $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{i^{4}}{n^{5}}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{i^{4}}{n^{4}} \cdot \frac{1}{n}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\frac{i}{n}\right)^{4} \frac{1}{n}$. At this point, we need to recognize the limit as being of the form $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x$, where $\Delta x=(1-0) / n=1 / n, x_{i}=0+i \Delta x=i / n$, and $f(x)=x^{4}$. Thus, the definite integral is $\int_{0}^{1} x^{4} d x$.
74. $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{1+(i / n)^{2}}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{1}{1+(i / n)^{2}} \cdot \frac{1}{n}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x$, where $\Delta x=(1-0) / n=1 / n$, $x_{i}=0+i \Delta x=i / n$, and $f(x)=\frac{1}{1+x^{2}}$. Thus, the definite integral is $\int_{0}^{1} \frac{d x}{1+x^{2}}$.
75. Choose $x_{i}=1+\frac{i}{n}$ and $x_{i}^{*}=\sqrt{x_{i-1} x_{i}}=\sqrt{\left(1+\frac{i-1}{n}\right)\left(1+\frac{i}{n}\right)}$. Then

$$
\begin{aligned}
\int_{1}^{2} x^{-2} d x & =\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{\left(1+\frac{i-1}{n}\right)\left(1+\frac{i}{n}\right)}=\lim _{n \rightarrow \infty} n \sum_{i=1}^{n} \frac{1}{(n+i-1)(n+i)} \\
& =\lim _{n \rightarrow \infty} n \sum_{i=1}^{n}\left(\frac{1}{n+i-1}-\frac{1}{n+i}\right) \quad[\text { by the hint }]=\lim _{n \rightarrow \infty} n\left(\sum_{i=0}^{n-1} \frac{1}{n+i}-\sum_{i=1}^{n} \frac{1}{n+i}\right) \\
& =\lim _{n \rightarrow \infty} n\left(\left[\frac{1}{n}+\frac{1}{n+1}+\cdots+\frac{1}{2 n-1}\right]-\left[\frac{1}{n+1}+\cdots+\frac{1}{2 n-1}+\frac{1}{2 n}\right]\right) \\
& =\lim _{n \rightarrow \infty} n\left(\frac{1}{n}-\frac{1}{2 n}\right)=\lim _{n \rightarrow \infty}\left(1-\frac{1}{2}\right)=\frac{1}{2}
\end{aligned}
$$

INSTRUCTORUSE ONLY

DISCOVERY PROJECT Area Functions

1. (a)

Area of trapezoid $=\frac{1}{2}\left(b_{1}+b_{2}\right) h=\frac{1}{2}(3+7) 2$
$=10$ square units
(b)

As in part (a),

$$
\begin{aligned}
A(x) & =\frac{1}{2}[3+(2 x+1)](x-1)=\frac{1}{2}(2 x+4)(x-1) \\
& =(x+2)(x-1)=x^{2}+x-2 \text { square units }
\end{aligned}
$$

Or:
Area of rectangle + area of triangle

$$
=b_{r} h_{r}+\frac{1}{2} b_{t} h_{t}=(2)(3)+\frac{1}{2}(2)(4)=10 \text { square units }
$$

(c) $A^{\prime}(x)=2 x+1$. This is the y-coordinate of the point $(x, 2 x+1)$ on the given line.
2. (a)

(b) $A(x)=\int_{-1}^{x}\left(1+t^{2}\right) d t=\int_{-1}^{x} 1 d t+\int_{-1}^{x} t^{2} d t \quad$ [Property 2]

$$
=1[x-(-1)]+\frac{x^{3}-(-1)^{3}}{3} \quad\left[\begin{array}{l}
\text { Property } 1 \text { and } \\
\text { Exercise 5.2.28 }
\end{array}\right]
$$

$$
=x+1+\frac{1}{3} x^{3}+\frac{1}{3}
$$

$$
=\frac{1}{3} x^{3}+x+\frac{4}{3}
$$

(c) $A^{\prime}(x)=x^{2}+1$. This is the y-coordinate of the point $\left(x, 1+x^{2}\right)$ on the given curve.
(d)

$A(x+h)-A(x)$ is the area
under the curve $y=1+t^{2}$
from $t=x$ to $t=x+h$.
(e)

An approximating rectangle is shown in the figure.
It has height $1+x^{2}$, width h, and area $h\left(1+x^{2}\right)$, so

$$
A(x+h)-A(x) \approx h\left(1+x^{2}\right) \Rightarrow \frac{A(x+h)-A(x)}{h} \approx 1+x^{2} .
$$

(f) Part (e) says that the average rate of change of A is approximately $1+x^{2}$. As h approaches 0 , the quotient approaches the instantaneous rate of change-namely, $A^{\prime}(x)$. So the result of part (c), $A^{\prime}(x)=x^{2}+1$, is geometrically plausible.
3. (a) $f(x)=\cos \left(x^{2}\right)$

(b) $g(x)$ starts to decrease at that value of x where $\cos \left(t^{2}\right)$ changes from positive to negative; that is, at about $x=1.25$.
(c) $g(x)=\int_{0}^{x} \cos \left(t^{2}\right) d t$. Using an integration command, we find that

$$
g(0)=0, g(0.2) \approx 0.200, g(0.4) \approx 0.399, g(0.6) \approx 0.592
$$

$$
g(0.8) \approx 0.768, g(1.0) \approx 0.905, g(1.2) \approx 0.974, g(1.4) \approx 0.950
$$

$$
g(1.6) \approx 0.826, g(1.8) \approx 0.635, \text { and } g(2.0) \approx 0.461
$$

(d) We sketch the graph of g^{\prime} using the method of Example 1 in Section 2.8. The graphs of $g^{\prime}(x)$ and $f(x)$ look alike, so we guess that $g^{\prime}(x)=f(x)$.

4. In Problems 1 and 2, we showed that if $g(x)=\int_{a}^{x} f(t) d t$, then $g^{\prime}(x)=f(x)$, for the functions $f(t)=2 t+1$ and $f(t)=1+t^{2}$. In Problem 3 we guessed that the same is true for $f(t)=\cos \left(t^{2}\right)$, based on visual evidence. So we conjecture that $g^{\prime}(x)=f(x)$ for any continuous function f. This turns out to be true and is proved in Section 5.3 (the Fundamental Theorem of Calculus).

5.3 The Fundamental Theorem of Calculus

1. One process undoes what the other one does. The precise version of this statement is given by the Fundamental Theorem of Calculus. See the statement of this theorem and the paragraph that follows it on page 398.
2. (a) $g(x)=\int_{0}^{x} f(t) d t$, so $g(0)=\int_{0}^{0} f(t) d t=0$.

$$
\begin{aligned}
g(1) & =\int_{0}^{1} f(t) d t=\frac{1}{2} \cdot 1 \cdot 1 \quad \text { [area of triangle] } \quad=\frac{1}{2} . \\
g(2) & =\int_{0}^{2} f(t) d t=\int_{0}^{1} f(t) d t+\int_{1}^{2} f(t) d t \quad \text { [below the } t \text {-axis] } \\
& =\frac{1}{2}-\frac{1}{2} \cdot 1 \cdot 1=0 . \\
g(3) & =g(2)+\int_{2}^{3} f(t) d t=0-\frac{1}{2} \cdot 1 \cdot 1=-\frac{1}{2} . \\
g(4) & =g(3)+\int_{3}^{4} f(t) d t=-\frac{1}{2}+\frac{1}{2} \cdot 1 \cdot 1=0 . \\
g(5) & =g(4)+\int_{4}^{5} f(t) d t=0+1.5=1.5 . \\
g(6) & =g(5)+\int_{5}^{6} f(t) d t=1.5+2.5=4 .
\end{aligned}
$$

(b) $g(7)=g(6)+\int_{6}^{7} f(t) d t \approx 4+2.2$ [estimate from the graph] $=6.2$.
(c) The answers from part (a) and part (b) indicate that g has a minimum at $x=3$ and a maximum at $x=7$. This makes sense from the graph of f since we are subtracting area on $1<x<3$ and adding area on $3<x<7$.
(d)

$g(1)=\int_{0}^{1} f(t) d t=1 \cdot 2=2 \quad$ [rectangle],
$g(2)=\int_{0}^{2} f(t) d t=\int_{0}^{1} f(t) d t+\int_{1}^{2} f(t) d t=g(1)+\int_{1}^{2} f(t) d t$ $=2+1 \cdot 2+\frac{1}{2} \cdot 1 \cdot 2=5 \quad$ [rectangle plus triangle $]$,
$g(3)=\int_{0}^{3} f(t) d t=g(2)+\int_{2}^{3} f(t) d t=5+\frac{1}{2} \cdot 1 \cdot 4=7$,
$g(6)=g(3)+\int_{3}^{6} f(t) d t \quad$ [the integral is negative since f lies under the t-axis]

$$
=7+\left[-\left(\frac{1}{2} \cdot 2 \cdot 2+1 \cdot 2\right)\right]=7-4=3
$$

(b) g is increasing on $(0,3)$ because as x increases from 0 to 3 , we keep adding more area.
(c) g has a maximum value when we start subtracting area; that is, at $x=3$.
(d)

4. (a) $g(x)=\int_{0}^{x} f(t) d t$, so $g(0)=0$ since the limits of integration are equal and $g(6)=0$ since the areas above and below the t-axis are equal.
(b) $g(1)$ is the area under the curve from 0 to 1 , which includes two unit squares and about 80% to 90% of a third unit square, so $g(1) \approx 2.8$. Similarly, $g(2) \approx 4.9$ and $g(3) \approx 5.7$. Now $g(3)-g(2) \approx 0.8$, so $g(4) \approx g(3)-0.8 \approx 4.9$ by the symmetry of f about $x=3$. Likewise, $g(5) \approx 2.8$.
(c) As we go from $x=0$ to $x=3$, we are adding area, so g increases on the interval $(0,3)$.
(d) g increases on $(0,3)$ and decreases on $(3,6)$ [where we are subtracting area], so g has a maximum value at $x=3$.
(e) A graph of g must have a maximum at $x=3$, be symmetric about $x=3$, and have zeros at $x=0$ and $x=6$.

(f) If we sketch the graph of g^{\prime} by estimating slopes on the graph of g (as in Section 2.8), we get a graph that looks like f (as indicated by FTC1).

INSTTRU'CTIORUSE ONLY

5.

6.

(a) By FTC1 with $f(t)=t^{2}$ and $a=1, g(x)=\int_{1}^{x} t^{2} d t \quad \Rightarrow$

$$
g^{\prime}(x)=f(x)=x^{2}
$$

(b) Using FTC2, $g(x)=\int_{1}^{x} t^{2} d t=\left[\frac{1}{3} t^{3}\right]_{1}^{x}=\frac{1}{3} x^{3}-\frac{1}{3} \quad \Rightarrow \quad g^{\prime}(x)=x^{2}$.
(a) By FTC1 with $f(t)=2+\sin t$ and $a=0, g(x)=\int_{0}^{x}(2+\sin t) d t \Rightarrow$ $g^{\prime}(x)=f(x)=2+\sin x$.
(b) Using FTC2,

$$
\begin{aligned}
g(x) & =\int_{0}^{x}(2+\sin t) d t=[2 t-\cos t]_{0}^{x}=(2 x-\cos x)-(0-1) \\
& =2 x-\cos x+1 \Rightarrow \\
g^{\prime}(x) & =2-(-\sin x)+0=2+\sin x
\end{aligned}
$$

7. $f(t)=\sqrt{t+t^{3}}$ and $g(x)=\int_{0}^{x} \sqrt{t+t^{3}} d t$, so by FTC1, $g^{\prime}(x)=f(x)=\sqrt{x+x^{3}}$.
8. $f(t)=\ln \left(1+t^{2}\right)$ and $g(x)=\int_{1}^{x} \ln \left(1+t^{2}\right) d t$, so by FTC1, $g^{\prime}(x)=f(x)=\ln \left(1+x^{2}\right)$.
9. $f(t)=\left(t-t^{2}\right)^{8}$ and $g(s)=\int_{5}^{s}\left(t-t^{2}\right)^{8} d t$, so by FTC1, $g^{\prime}(s)=f(s)=\left(s-s^{2}\right)^{8}$.
10. $f(t)=\frac{\sqrt{t}}{t+1}$ and $h(u)=\int_{0}^{u} \frac{\sqrt{t}}{t+1} d t$, so by FTC1, $h^{\prime}(u)=f(u)=\frac{\sqrt{u}}{u+1}$.
11. $F(x)=\int_{x}^{0} \sqrt{1+\sec t} d t=-\int_{0}^{x} \sqrt{1+\sec t} d t \Rightarrow F^{\prime}(x)=-\frac{d}{d x} \int_{0}^{x} \sqrt{1+\sec t} d t=-\sqrt{1+\sec x}$
12. $R(y)=\int_{y}^{2} t^{3} \sin t d t=-\int_{2}^{y} t^{3} \sin t d t \Rightarrow R^{\prime}(y)=-\frac{d}{d y} \int_{2}^{y} t^{3} \sin t d t=-y^{3} \sin y$
13. Let $u=e^{x}$. Then $\frac{d u}{d x}=e^{x}$. Also, $\frac{d h}{d x}=\frac{d h}{d u} \frac{d u}{d x}$, so
$h^{\prime}(x)=\frac{d}{d x} \int_{1}^{e^{x}} \ln t d t=\frac{d}{d u} \int_{1}^{u} \ln t d t \cdot \frac{d u}{d x}=\ln u \frac{d u}{d x}=\left(\ln e^{x}\right) \cdot e^{x}=x e^{x}$.
14. Let $u=\sqrt{x}$. Then $\frac{d u}{d x}=\frac{1}{2 \sqrt{x}}$. Also, $\frac{d h}{d x}=\frac{d h}{d u} \frac{d u}{d x}$, so

$$
h^{\prime}(x)=\frac{d}{d x} \int_{1}^{\sqrt{x}} \frac{z^{2}}{z^{4}+1} d z=\frac{d}{d u} \int_{1}^{u} \frac{z^{2}}{z^{4}+1} d z \cdot \frac{d u}{d x}=\frac{u^{2}}{u^{4}+1} \frac{d u}{d x}=\frac{x}{x^{2}+1} \frac{1}{2 \sqrt{x}}=\frac{\sqrt{x}}{2\left(x^{2}+1\right)} .
$$

15. Let $u=3 x+2$. Then $\frac{d u}{d x}=3$. Also, $\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}$, so

$$
y^{\prime}=\frac{d}{d x} \int_{1}^{3 x+2} \frac{t}{1+t^{3}} d t=\frac{d}{d u} \int_{1}^{u} \frac{t}{1+t^{3}} d t \cdot \frac{d u}{d x}=\frac{u}{1+u^{3}} \frac{d u}{d x}=\frac{3 x+2}{1+(3 x+2)^{3}} \cdot 3=\frac{3(3 x+2)}{1+(3 x+2)^{3}}
$$

16. Let $u=x^{4}$. Then $\frac{d u}{d x}=4 x^{3}$. Also, $\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}$, so
$y^{\prime}=\frac{d}{d x} \int_{0}^{x^{4}} \cos ^{2} \theta d \theta=\frac{d}{d u} \int_{0}^{u} \cos ^{2} \theta d \theta \cdot \frac{d u}{d x}=\cos ^{2} u \frac{d u}{d x}=\cos ^{2}\left(x^{4}\right) \cdot 4 x^{3}$.
17. Let $u=\sqrt{x}$. Then $\frac{d u}{d x}=\frac{1}{2 \sqrt{x}}$. Also, $\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}$, so

$$
y^{\prime}=\frac{d}{d x} \int_{\sqrt{x}}^{\pi / 4} \theta \tan \theta d \theta=-\frac{d}{d u} \int_{\pi / 4}^{\sqrt{x}} \theta \tan \theta d \theta \cdot \frac{d u}{d x}=-u \tan u \frac{d u}{d x}=-\sqrt{x} \tan \sqrt{x} \cdot \frac{1}{2 \sqrt{x}}=-\frac{1}{2} \tan \sqrt{x}
$$

18. Let $u=\sin x$. Then $\frac{d u}{d x}=\cos x$. Also, $\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}$, so

$$
\begin{aligned}
y^{\prime} & =\frac{d}{d x} \int_{\sin x}^{1} \sqrt{1+t^{2}} d t=\frac{d}{d u} \int_{u}^{1} \sqrt{1+t^{2}} d t \cdot \frac{d u}{d x}=-\frac{d}{d u} \int_{1}^{u} \sqrt{1+t^{2}} d t \cdot \frac{d u}{d x} \\
& =-\sqrt{1+u^{2}} \cos x=-\sqrt{1+\sin ^{2} x} \cos x
\end{aligned}
$$

19. $\int_{1}^{3}\left(x^{2}+2 x-4\right) d x=\left[\frac{1}{3} x^{3}+x^{2}-4 x\right]_{1}^{3}=(9+9-12)-\left(\frac{1}{3}+1-4\right)=6+\frac{8}{3}=\frac{26}{3}$
20. $\int_{-1}^{1} x^{100} d x=\left[\frac{1}{101} x^{101}\right]_{-1}^{1}=\frac{1}{101}-\left(-\frac{1}{101}\right)=\frac{2}{101}$
21. $\int_{0}^{2}\left(\frac{4}{5} t^{3}-\frac{3}{4} t^{2}+\frac{2}{5} t\right) d t=\left[\frac{1}{5} t^{4}-\frac{1}{4} t^{3}+\frac{1}{5} t^{2}\right]_{0}^{2}=\left(\frac{16}{5}-2+\frac{4}{5}\right)-0=2$
22. $\int_{0}^{1}\left(1-8 v^{3}+16 v^{7}\right) d v=\left[v-2 v^{4}+2 v^{8}\right]_{0}^{1}=(1-2+2)-0=1$
23. $\int_{1}^{9} \sqrt{x} d x=\int_{1}^{9} x^{1 / 2} d x=\left[\frac{x^{3 / 2}}{3 / 2}\right]_{1}^{9}=\frac{2}{3}\left[x^{3 / 2}\right]_{1}^{9}=\frac{2}{3}\left(9^{3 / 2}-1^{3 / 2}\right)=\frac{2}{3}(27-1)=\frac{52}{3}$
24. $\int_{1}^{8} x^{-2 / 3} d x=\left[\frac{x^{1 / 3}}{1 / 3}\right]_{1}^{8}=3\left[x^{1 / 3}\right]_{1}^{8}=3\left(8^{1 / 3}-1^{1 / 3}\right)=3(2-1)=3$
25. $\int_{\pi / 6}^{\pi} \sin \theta d \theta=[-\cos \theta]_{\pi / 6}^{\pi}=-\cos \pi-\left(-\cos \frac{\pi}{6}\right)=-(-1)-(-\sqrt{3} / 2)=1+\sqrt{3} / 2$
26. $\int_{-5}^{5} e d x=[e x]_{-5}^{5}=5 e-(-5 e)=10 e$
27. $\int_{0}^{1}(u+2)(u-3) d u=\int_{0}^{1}\left(u^{2}-u-6\right) d u=\left[\frac{1}{3} u^{3}-\frac{1}{2} u^{2}-6 u\right]_{0}^{1}=\left(\frac{1}{3}-\frac{1}{2}-6\right)-0=-\frac{37}{6}$
28. $\int_{0}^{4}(4-t) \sqrt{t} d t=\int_{0}^{4}(4-t) t^{1 / 2} d t=\int_{0}^{4}\left(4 t^{1 / 2}-t^{3 / 2}\right) d t=\left[\frac{8}{3} t^{3 / 2}-\frac{2}{5} t^{5 / 2}\right]_{0}^{4}=\frac{8}{3}(8)-\frac{2}{5}(32)=\frac{320-192}{15}=\frac{128}{15}$
29. $\int_{1}^{4} \frac{2+x^{2}}{\sqrt{x}} d x=\int_{1}^{4}\left(\frac{2}{\sqrt{x}}+\frac{x^{2}}{\sqrt{x}}\right) d x=\int_{1}^{4}\left(2 x^{-1 / 2}+x^{3 / 2}\right) d x$

$$
=\left[4 x^{1 / 2}+\frac{2}{5} x^{5 / 2}\right]_{1}^{4}=\left[4(2)+\frac{2}{5}(32)\right]-\left(4+\frac{2}{5}\right)=8+\frac{64}{5}-4-\frac{2}{5}=\frac{82}{5}
$$

30. $\int_{-1}^{2}(3 u-2)(u+1) d u=\int_{-1}^{2}\left(3 u^{2}+u-2\right) d u=\left[u^{3}+\frac{1}{2} u^{2}-2 u\right]_{-1}^{2}=(8+2-4)-\left(-1+\frac{1}{2}+2\right)=6-\frac{3}{2}=\frac{9}{2}$
31. $\int_{\pi / 6}^{\pi / 2} \csc t \cot t d t=[-\csc t]_{\pi / 6}^{\pi / 2}=\left(-\csc \frac{\pi}{2}\right)-\left(-\csc \frac{\pi}{6}\right)=-1-(-2)=1$
32. $\int_{\pi / 4}^{\pi / 3} \csc ^{2} \theta d \theta=[-\cot \theta]_{\pi / 4}^{\pi / 3}=\left(-\cot \frac{\pi}{3}\right)-\left(-\cot \frac{\pi}{4}\right)=-\frac{1}{\sqrt{3}}-(-1)=1-\frac{1}{\sqrt{3}}$

28
33. $\int_{0}^{1}(1+r)^{3} d r=\int_{0}^{1}\left(1+3 r+3 r^{2}+r^{3}\right) d r=\left[r+\frac{3}{2} r^{2}+r^{3}+\frac{1}{4} r^{4}\right]_{0}^{1}=\left(1+\frac{3}{2}+1+\frac{1}{4}\right)-0=\frac{15}{4}$
34. $\int_{0}^{3}\left(2 \sin x-e^{x}\right) d x=\left[-2 \cos x-e^{x}\right]_{0}^{3}=\left(-2 \cos 3-e^{3}\right)-(-2-1)=3-2 \cos 3-e^{3}$
35. $\int_{1}^{2} \frac{v^{3}+3 v^{6}}{v^{4}}=\int_{1}^{2}\left(\frac{1}{v}+3 v^{2}\right) d v=\left[\ln |v|+v^{3}\right]_{1}^{2}=(\ln 2+8)-(\ln 1+1)=\ln 2+7$
36. $\int_{1}^{18} \sqrt{\frac{3}{z}} d z=\int_{1}^{18} \sqrt{3} z^{-1 / 2} d z=\sqrt{3}\left[2 z^{1 / 2}\right]_{1}^{18}=2 \sqrt{3}\left(18^{1 / 2}-1^{1 / 2}\right)=2 \sqrt{3}(3 \sqrt{2}-1)$
37. $\int_{0}^{1}\left(x^{e}+e^{x}\right) d x=\left[\frac{x^{e+1}}{e+1}+e^{x}\right]_{0}^{1}=\left(\frac{1}{e+1}+e\right)-(0+1)=\frac{1}{e+1}+e-1$
38. $\int_{0}^{1} \cosh t d t=[\sinh t]_{0}^{1}=\sinh 1-\sinh 0=\sinh 1 \quad\left[\right.$ or $\left.\frac{1}{2}\left(e-e^{-1}\right)\right]$
39. $\int_{1 / \sqrt{3}}^{\sqrt{3}} \frac{8}{1+x^{2}} d x=[8 \arctan x]_{1 / \sqrt{3}}^{\sqrt{3}}=8\left(\frac{\pi}{3}-\frac{\pi}{6}\right)=8\left(\frac{\pi}{6}\right)=\frac{4 \pi}{3}$
40. $\int_{1}^{3} \frac{y^{3}-2 y^{2}-y}{y^{2}} d y=\int_{1}^{3}\left(y-2-\frac{1}{y}\right) d y=\left[\frac{1}{2} y^{2}-2 y-\ln |y|\right]_{1}^{3}=\left(\frac{9}{2}-6-\ln 3\right)-\left(\frac{1}{2}-2-0\right)=-\ln 3$
41. $\int_{0}^{4} 2^{s} d s=\left[\frac{1}{\ln 2} 2^{s}\right]_{0}^{4}=\frac{16}{\ln 2}-\frac{1}{\ln 2}=\frac{15}{\ln 2}$
42. $\int_{1 / 2}^{1 / \sqrt{2}} \frac{4}{\sqrt{1-x^{2}}} d x=[4 \arcsin x]_{1 / 2}^{1 / \sqrt{2}}=4\left(\frac{\pi}{4}-\frac{\pi}{6}\right)=4\left(\frac{\pi}{12}\right)=\frac{\pi}{3}$
43. If $f(x)=\left\{\begin{array}{ll}\sin x & \text { if } 0 \leq x<\pi / 2 \\ \cos x & \text { if } \pi / 2 \leq x \leq \pi\end{array}\right.$ then

$$
\begin{aligned}
\int_{0}^{\pi} f(x) d x & =\int_{0}^{\pi / 2} \sin x d x+\int_{\pi / 2}^{\pi} \cos x d x=[-\cos x]_{0}^{\pi / 2}+[\sin x]_{\pi / 2}^{\pi}=-\cos \frac{\pi}{2}+\cos 0+\sin \pi-\sin \frac{\pi}{2} \\
& =-0+1+0-1=0
\end{aligned}
$$

Note that f is integrable by Theorem 3 in Section 5.2.
44. If $f(x)=\left\{\begin{array}{ll}2 & \text { if }-2 \leq x \leq 0 \\ 4-x^{2} & \text { if } 0<x \leq 2\end{array}\right.$ then

$$
\int_{-2}^{2} f(x) d x=\int_{-2}^{0} 2 d x+\int_{0}^{2}\left(4-x^{2}\right) d x=[2 x]_{-2}^{0}+\left[4 x-\frac{1}{3} x^{3}\right]_{0}^{2}=[0-(-4)]+\left(\frac{16}{3}-0\right)=\frac{28}{3}
$$

Note that f is integrable by Theorem 3 in Section 5.2.
45. Area $=\int_{0}^{4} \sqrt{x} d x=\int_{0}^{4} x^{1 / 2} d x=\left[\frac{2}{3} x^{3 / 2}\right]_{0}^{4}=\frac{2}{3}(8)-0=\frac{16}{3}$

46. Area $=\int_{0}^{1} x^{3} d x=\left[\frac{1}{4} x^{4}\right]_{0}^{1}=\frac{1}{4}-0=\frac{1}{4}$

47. Area $=\int_{-2}^{2}\left(4-x^{2}\right) d x=\left[4 x-\frac{1}{3} x^{3}\right]_{-2}^{2}=\left(8-\frac{8}{3}\right)-\left(-8+\frac{8}{3}\right)=\frac{32}{3}$

48. Area $=\int_{0}^{2}\left(2 x-x^{2}\right) d x=\left[x^{2}-\frac{1}{3} x^{3}\right]_{0}^{2}=\left(4-\frac{8}{3}\right)-0=\frac{4}{3}$

49. From the graph, it appears that the area is about 60 . The actual area is $\int_{0}^{27} x^{1 / 3} d x=\left[\frac{3}{4} x^{4 / 3}\right]_{0}^{27}=\frac{3}{4} \cdot 81-0=\frac{243}{4}=60.75$. This is $\frac{3}{4}$ of the area of the viewing rectangle.

50. From the graph, it appears that the area is about $\frac{1}{3}$. The actual area is

$$
\int_{1}^{6} x^{-4} d x=\left[\frac{x^{-3}}{-3}\right]_{1}^{6}=\left[\frac{-1}{3 x^{3}}\right]_{1}^{6}=-\frac{1}{3 \cdot 216}+\frac{1}{3}=\frac{215}{648} \approx 0.3318
$$

51. It appears that the area under the graph is about $\frac{2}{3}$ of the area of the viewing rectangle, or about $\frac{2}{3} \pi \approx 2.1$. The actual area is
$\int_{0}^{\pi} \sin x d x=[-\cos x]_{0}^{\pi}=(-\cos \pi)-(-\cos 0)=-(-1)+1=2$.

52. Splitting up the region as shown, we estimate that the area under the graph is $\frac{\pi}{3}+\frac{1}{4}\left(3 \cdot \frac{\pi}{3}\right) \approx 1.8$. The actual area is
$\int_{0}^{\pi / 3} \sec ^{2} x d x=[\tan x]_{0}^{\pi / 3}=\sqrt{3}-0=\sqrt{3} \approx 1.73$.

30
CHAPTER 5 INTEGRALS
53. $\int_{-1}^{2} x^{3} d x=\left[\frac{1}{4} x^{4}\right]_{-1}^{2}=4-\frac{1}{4}=\frac{15}{4}=3.75$

54. $\int_{\pi / 6}^{2 \pi} \cos x d x=[\sin x]_{\pi / 6}^{2 \pi}=0-\frac{1}{2}=-\frac{1}{2}$

55. $f(x)=x^{-4}$ is not continuous on the interval $[-2,1]$, so FTC2 cannot be applied. In fact, f has an infinite discontinuity at $x=0$, so $\int_{-2}^{1} x^{-4} d x$ does not exist.
56. $f(x)=\frac{4}{x^{3}}$ is not continuous on the interval $[-1,2]$, so FTC2 cannot be applied. In fact, f has an infinite discontinuity at $x=0$, so $\int_{-1}^{2} \frac{4}{x^{3}} d x$ does not exist.
57. $f(\theta)=\sec \theta \tan \theta$ is not continuous on the interval $[\pi / 3, \pi]$, so FTC2 cannot be applied. In fact, f has an infinite discontinuity at $x=\pi / 2$, so $\int_{\pi / 3}^{\pi} \sec \theta \tan \theta d \theta$ does not exist.
58. $f(x)=\sec ^{2} x$ is not continuous on the interval $[0, \pi]$, so FTC2 cannot be applied. In fact, f has an infinite discontinuity at $x=\pi / 2$, so $\int_{0}^{\pi} \sec ^{2} x d x$ does not exist.
59. $g(x)=\int_{2 x}^{3 x} \frac{u^{2}-1}{u^{2}+1} d u=\int_{2 x}^{0} \frac{u^{2}-1}{u^{2}+1} d u+\int_{0}^{3 x} \frac{u^{2}-1}{u^{2}+1} d u=-\int_{0}^{2 x} \frac{u^{2}-1}{u^{2}+1} d u+\int_{0}^{3 x} \frac{u^{2}-1}{u^{2}+1} d u \Rightarrow$ $g^{\prime}(x)=-\frac{(2 x)^{2}-1}{(2 x)^{2}+1} \cdot \frac{d}{d x}(2 x)+\frac{(3 x)^{2}-1}{(3 x)^{2}+1} \cdot \frac{d}{d x}(3 x)=-2 \cdot \frac{4 x^{2}-1}{4 x^{2}+1}+3 \cdot \frac{9 x^{2}-1}{9 x^{2}+1}$
60. $g(x)=\int_{1-2 x}^{1+2 x} t \sin t d t=\int_{1-2 x}^{0} t \sin t d t+\int_{0}^{1+2 x} t \sin t d t=-\int_{0}^{1-2 x} t \sin t d t+\int_{0}^{1+2 x} t \sin t d t \Rightarrow$ $g^{\prime}(x)=-(1-2 x) \sin (1-2 x) \cdot \frac{d}{d x}(1-2 x)+(1+2 x) \sin (1+2 x) \cdot \frac{d}{d x}(1+2 x)$ $=2(1-2 x) \sin (1-2 x)+2(1+2 x) \sin (1+2 x)$
61. $F(x)=\int_{x}^{x^{2}} e^{t^{2}} d t=\int_{x}^{0} e^{t^{2}} d t+\int_{0}^{x^{2}} e^{t^{2}} d t=-\int_{0}^{x} e^{t^{2}} d t+\int_{0}^{x^{2}} e^{t^{2}} d t \Rightarrow$ $F^{\prime}(x)=-e^{x^{2}}+e^{\left(x^{2}\right)^{2}} \cdot \frac{d}{d x}\left(x^{2}\right)=-e^{x^{2}}+2 x e^{x^{4}}$
62. $F(x)=\int_{\sqrt{x}}^{2 x} \arctan t d t=\int_{\sqrt{x}}^{0} \arctan t d t+\int_{0}^{2 x} \arctan t d t=-\int_{0}^{\sqrt{x}} \arctan t d t+\int_{0}^{2 x} \arctan t d t \Rightarrow$ $F^{\prime}(x)=-\arctan \sqrt{x} \cdot \frac{d}{d x}(\sqrt{x})+\arctan 2 x \cdot \frac{d}{d x}(2 x)=-\frac{1}{2 \sqrt{x}} \arctan \sqrt{x}+2 \arctan 2 x$
63. $y=\int_{\cos x}^{\sin x} \ln (1+2 v) d v=\int_{\cos x}^{0} \ln (1+2 v) d v+\int_{0}^{\sin x} \ln (1+2 v) d v$

$$
=-\int_{0}^{\cos x} \ln (1+2 v) d v+\int_{0}^{\sin x} \ln (1+2 v) d v \quad \Rightarrow
$$

$$
y^{\prime}=-\ln (1+2 \cos x) \cdot \frac{d}{d x} \cos x+\ln (1+2 \sin x) \cdot \frac{d}{d x} \sin x=\sin x \ln (1+2 \cos x)+\cos x \ln (1+2 \sin x)
$$

64. $f(x)=\int_{0}^{x}\left(1-t^{2}\right) e^{t^{2}} d t$ is increasing when $f^{\prime}(x)=\left(1-x^{2}\right) e^{x^{2}}$ is positive.

Since $e^{x^{2}}>0, f^{\prime}(x)>0 \Leftrightarrow 1-x^{2}>0 \Leftrightarrow|x|<1$, so f is increasing on $(-1,1)$.
65. $y=\int_{0}^{x} \frac{t^{2}}{t^{2}+t+2} d t \Rightarrow y^{\prime}=\frac{x^{2}}{x^{2}+x+2} \quad \Rightarrow$ $y^{\prime \prime}=\frac{\left(x^{2}+x+2\right)(2 x)-x^{2}(2 x+1)}{\left(x^{2}+x+2\right)^{2}}=\frac{2 x^{3}+2 x^{2}+4 x-2 x^{3}-x^{2}}{\left(x^{2}+x+2\right)^{2}}=\frac{x^{2}+4 x}{\left(x^{2}+x+2\right)^{2}}=\frac{x(x+4)}{\left(x^{2}+x+2\right)^{2}}$.

The curve y is concave downward when $y^{\prime \prime}<0$; that is, on the interval $(-4,0)$.
66. If $F(x)=\int_{1}^{x} f(t) d t$, then by FTC1, $F^{\prime}(x)=f(x)$, and also, $F^{\prime \prime}(x)=f^{\prime}(x) . F$ is concave downward where $F^{\prime \prime}$ is negative; that is, where f^{\prime} is negative. The given graph shows that f is decreasing $\left(f^{\prime}<0\right)$ on the interval $(-1,1)$.
67. $F(x)=\int_{2}^{x} e^{t^{2}} d t \Rightarrow F^{\prime}(x)=e^{x^{2}}$, so the slope at $x=2$ is $e^{2^{2}}=e^{4}$. The y-coordinate of the point on F at $x=2$ is $F(2)=\int_{2}^{2} e^{t^{2}} d t=0$ since the limits are equal. An equation of the tangent line is $y-0=e^{4}(x-2)$, or $y=e^{4} x-2 e^{4}$.
68. $g(y)=\int_{3}^{y} f(x) d x \Rightarrow g^{\prime}(y)=f(y)$. Since $f(x)=\int_{0}^{\sin x} \sqrt{1+t^{2}} d t, g^{\prime \prime}(y)=f^{\prime}(y)=\sqrt{1+\sin ^{2} y} \cdot \cos y$, so $g^{\prime \prime}\left(\frac{\pi}{6}\right)=\sqrt{1+\sin ^{2}\left(\frac{\pi}{6}\right)} \cdot \cos \frac{\pi}{6}=\sqrt{1+\left(\frac{1}{2}\right)^{2}} \cdot \frac{\sqrt{3}}{2}=\frac{\sqrt{5}}{2} \cdot \frac{\sqrt{3}}{2}=\frac{\sqrt{15}}{4}$.
69. By FTC2, $\int_{1}^{4} f^{\prime}(x) d x=f(4)-f(1)$, so $17=f(4)-12 \Rightarrow f(4)=17+12=29$.
70. (a) $\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t \Rightarrow \int_{0}^{x} e^{-t^{2}} d t=\frac{\sqrt{\pi}}{2} \operatorname{erf}(x)$. By Property 5 of definite integrals in Section 5.2,

$$
\begin{aligned}
& \int_{0}^{b} e^{-t^{2}} d t=\int_{0}^{a} e^{-t^{2}} d t+\int_{a}^{b} e^{-t^{2}} d t \text {, so } \\
& \int_{a}^{b} e^{-t^{2}} d t=\int_{0}^{b} e^{-t^{2}} d t-\int_{0}^{a} e^{-t^{2}} d t=\frac{\sqrt{\pi}}{2} \operatorname{erf}(b)-\frac{\sqrt{\pi}}{2} \operatorname{erf}(a)=\frac{1}{2} \sqrt{\pi}[\operatorname{erf}(b)-\operatorname{erf}(a)]
\end{aligned}
$$

(b) $y=e^{x^{2}} \operatorname{erf}(x) \Rightarrow y^{\prime}=2 x e^{x^{2}} \operatorname{erf}(x)+e^{x^{2}} \operatorname{erf}^{\prime}(x)=2 x y+e^{x^{2}} \cdot \frac{2}{\sqrt{\pi}} e^{-x^{2}} \quad[$ by FTC1 $]=2 x y+\frac{2}{\sqrt{\pi}}$.
71. (a) The Fresnel function $S(x)=\int_{0}^{x} \sin \left(\frac{\pi}{2} t^{2}\right) d t$ has local maximum values where $0=S^{\prime}(x)=\sin \left(\frac{\pi}{2} t^{2}\right)$ and S^{\prime} changes from positive to negative. For $x>0$, this happens when $\frac{\pi}{2} x^{2}=(2 n-1) \pi \quad$ [odd multiples of $\left.\pi\right] \Leftrightarrow$
$x^{2}=2(2 n-1) \Leftrightarrow x=\sqrt{4 n-2}, n$ any positive integer. For $x<0, S^{\prime}$ changes from positive to negative where $\frac{\pi}{2} x^{2}=2 n \pi \quad$ [even multiples of $\left.\pi\right] \quad \Leftrightarrow \quad x^{2}=4 n \quad \Leftrightarrow \quad x=-2 \sqrt{n} . S^{\prime}$ does not change sign at $x=0$.
(b) S is concave upward on those intervals where $S^{\prime \prime}(x)>0$. Differentiating our expression for $S^{\prime}(x)$, we get
$S^{\prime \prime}(x)=\cos \left(\frac{\pi}{2} x^{2}\right)\left(2 \frac{\pi}{2} x\right)=\pi x \cos \left(\frac{\pi}{2} x^{2}\right)$. For $x>0, S^{\prime \prime}(x)>0$ where $\cos \left(\frac{\pi}{2} x^{2}\right)>0 \quad \Leftrightarrow \quad 0<\frac{\pi}{2} x^{2}<\frac{\pi}{2}$ or $\left(2 n-\frac{1}{2}\right) \pi<\frac{\pi}{2} x^{2}<\left(2 n+\frac{1}{2}\right) \pi, n$ any integer $\Leftrightarrow 0<x<1$ or $\sqrt{4 n-1}<x<\sqrt{4 n+1}, n$ any positive integer. For $x<0, S^{\prime \prime}(x)>0$ where $\cos \left(\frac{\pi}{2} x^{2}\right)<0 \quad \Leftrightarrow \quad\left(2 n-\frac{3}{2}\right) \pi<\frac{\pi}{2} x^{2}<\left(2 n-\frac{1}{2}\right) \pi, n$ any integer \Leftrightarrow $4 n-3<x^{2}<4 n-1 \Leftrightarrow \sqrt{4 n-3}<|x|<\sqrt{4 n-1} \Rightarrow \sqrt{4 n-3}<-x<\sqrt{4 n-1} \Rightarrow$ $-\sqrt{4 n-3}>x>-\sqrt{4 n-1}$, so the intervals of upward concavity for $x<0$ are $(-\sqrt{4 n-1},-\sqrt{4 n-3}), n$ any positive integer. To summarize: S is concave upward on the intervals $(0,1),(-\sqrt{3},-1),(\sqrt{3}, \sqrt{5}),(-\sqrt{7},-\sqrt{5})$, $(\sqrt{7}, 3), \ldots$.
(c) In Maple, we use plot (\{int ($\sin (P i * t \wedge 2 / 2), t=0 \ldots x), 0.2\}, x=0 \ldots 2)$; Note that Maple recognizes the Fresnel function, calling it FresnelS (x). In Mathematica, we use Plot [\{Integrate[Sin $\left.\left.\left.\left[P i * t^{\wedge} 2 / 2\right],\{t, 0, x\}\right], 0.2\right\},\{x, 0,2\}\right]$. In Derive, we load the utility file FRESNEL and plot FRESNEL_SIN (x). From the graphs, we see that $\int_{0}^{x} \sin \left(\frac{\pi}{2} t^{2}\right) d t=0.2$ at $x \approx 0.74$.

72. (a) In Maple, we should start by setting si:=int (sin(t)/t,t=0..x);. In Mathematica, the command is si=Integrate[$\operatorname{Sin}[t] / t,\{t, 0, x\}]$. Note that both systems recognize this function; Maple calls it Si (x) and Mathematica calls it SinIntegral [x]. In Maple, the command to generate the graph is plot (si, $x=-4 * P i . .4 * P i)$;. In Mathematica, it is
 Plot [si, $\{x,-4 * P i, 4 * P i\}]$. In Derive, we load the utility file EXP_INT and plot SI (x).
(b) $\mathrm{Si}(x)$ has local maximum values where $\mathrm{Si}^{\prime}(x)$ changes from positive to negative, passing through 0 . From the Fundamental Theorem we know that $\operatorname{Si}^{\prime}(x)=\frac{d}{d x} \int_{0}^{x} \frac{\sin t}{t} d t=\frac{\sin x}{x}$, so we must have $\sin x=0$ for a maximum, and for $x>0$ we must have $x=(2 n-1) \pi, n$ any positive integer, for Si^{\prime} to be changing from positive to negative at x. For $x<0$, we must have $x=2 n \pi, n$ any positive integer, for a maximum, since the denominator of $\mathrm{Si}^{\prime}(x)$ is negative for $x<0$. Thus, the local maxima occur at $x=\pi,-2 \pi, 3 \pi,-4 \pi, 5 \pi,-6 \pi, \ldots$

INSTRUCTOR USE ONLY

(c) To find the first inflection point, we solve $\mathrm{Si}^{\prime \prime}(x)=\frac{\cos x}{x}-\frac{\sin x}{x^{2}}=0$. We can see from the graph that the first inflection point lies somewhere between $x=3$ and $x=5$. Using a rootfinder gives the value $x \approx 4.4934$. To find the y-coordinate of the inflection point, we evaluate $\mathrm{Si}(4.4934) \approx 1.6556$. So the coordinates of the first inflection point to the right of the origin are about $(4.4934,1.6556)$. Alternatively, we could graph $S^{\prime \prime}(x)$ and estimate the first positive x-value at which it changes sign.
(d) It seems from the graph that the function has horizontal asymptotes at $y \approx 1.5$, with $\lim _{x \rightarrow \pm \infty} \operatorname{Si}(x) \approx \pm 1.5$ respectively. Using the limit command, we get $\lim _{x \rightarrow \infty} \operatorname{Si}(x)=\frac{\pi}{2}$. Since $\operatorname{Si}(x)$ is an odd function, $\lim _{x \rightarrow-\infty} \operatorname{Si}(x)=-\frac{\pi}{2}$. $\operatorname{So} \operatorname{Si}(x)$ has the horizontal asymptotes $y= \pm \frac{\pi}{2}$.
(e) We use the fsolve command in Maple (or FindRoot in Mathematica) to find that the solution is $x \approx 1.1$. Or, as in Exercise 65 (c), we graph $y=\operatorname{Si}(x)$ and $y=1$ on the same screen to see where they intersect.
73. (a) By FTC1, $g^{\prime}(x)=f(x)$. So $g^{\prime}(x)=f(x)=0$ at $x=1,3,5,7$, and 9. g has local maxima at $x=1$ and 5 (since $f=g^{\prime}$ changes from positive to negative there) and local minima at $x=3$ and 7 . There is no local maximum or minimum at $x=9$, since f is not defined for $x>9$.
(b) We can see from the graph that $\left|\int_{0}^{1} f d t\right|<\left|\int_{1}^{3} f d t\right|<\left|\int_{3}^{5} f d t\right|<\left|\int_{5}^{7} f d t\right|<\left|\int_{7}^{9} f d t\right|$. So $g(1)=\left|\int_{0}^{1} f d t\right|$, $g(5)=\int_{0}^{5} f d t=g(1)-\left|\int_{1}^{3} f d t\right|+\left|\int_{3}^{5} f d t\right|$, and $g(9)=\int_{0}^{9} f d t=g(5)-\left|\int_{5}^{7} f d t\right|+\left|\int_{7}^{9} f d t\right|$. Thus, $g(1)<g(5)<g(9)$, and so the absolute maximum of $g(x)$ occurs at $x=9$.
(c) g is concave downward on those intervals where $g^{\prime \prime}<0$. But $g^{\prime}(x)=f(x)$, so $g^{\prime \prime}(x)=f^{\prime}(x)$, which is negative on (approximately) $\left(\frac{1}{2}, 2\right),(4,6)$ and $(8,9)$. So g is concave downward on these intervals.

74. (a) By FTC1, $g^{\prime}(x)=f(x)$. So $g^{\prime}(x)=f(x)=0$ at $x=2,4,6,8$, and 10. g has local maxima at $x=2$ and 6 (since $f=g^{\prime}$ changes from positive to negative there) and local minima at $x=4$ and 8 . There is no local maximum or minimum at $x=10$, since f is not defined for $x>10$.
(b) We can see from the graph that $\left|\int_{0}^{2} f d t\right|>\left|\int_{2}^{4} f d t\right|>\left|\int_{4}^{6} f d t\right|>\left|\int_{6}^{8} f d t\right|>\left|\int_{8}^{10} f d t\right|$. So $g(2)=\left|\int_{0}^{2} f d t\right|$, $g(6)=\int_{0}^{6} f d t=g(2)-\left|\int_{2}^{4} f d t\right|+\left|\int_{4}^{6} f d t\right|$, and $g(10)=\int_{0}^{10} f d t=g(6)-\left|\int_{6}^{8} f d t\right|+\left|\int_{8}^{10} f d t\right|$. Thus, $g(2)>g(6)>g(10)$, and so the absolute maximum of $g(x)$ occurs at $x=2$.
(c) g is concave downward on those intervals where $g^{\prime \prime}<0$. But $g^{\prime}(x)=f(x)$, so $g^{\prime \prime}(x)=f^{\prime}(x)$, which is negative on $(1,3),(5,7)$ and $(9,10)$. So g is concave downward on these intervals.

75. $\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\frac{i^{4}}{n^{5}}+\frac{i}{n^{2}}\right)=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\frac{i^{4}}{n^{4}}+\frac{i}{n}\right) \frac{1}{n}=\lim _{n \rightarrow \infty} \frac{1-0}{n} \sum_{i=1}^{n}\left[\left(\frac{i}{n}\right)^{4}+\frac{i}{n}\right]=\int_{0}^{1}\left(x^{4}+x\right) d x$

$$
=\left[\frac{1}{5} x^{5}+\frac{1}{2} x^{2}\right]_{0}^{1}=\left(\frac{1}{5}+\frac{1}{2}\right)-0=\frac{7}{10}
$$

76. $\lim _{n \rightarrow \infty} \frac{1}{n}\left(\sqrt{\frac{1}{n}}+\sqrt{\frac{2}{n}}+\cdots+\sqrt{\frac{n}{n}}\right)=\lim _{n \rightarrow \infty} \frac{1-0}{n} \sum_{i=1}^{n} \sqrt{\frac{i}{n}}=\int_{0}^{1} \sqrt{x} d x=\left[\frac{2 x^{3 / 2}}{3}\right]_{0}^{1}=\frac{2}{3}-0=\frac{2}{3}$
77. Suppose $h<0$. Since f is continuous on $[x+h, x]$, the Extreme Value Theorem says that there are numbers u and v in $[x+h, x]$ such that $f(u)=m$ and $f(v)=M$, where m and M are the absolute minimum and maximum values of f on $[x+h, x]$. By Property 8 of integrals, $m(-h) \leq \int_{x+h}^{x} f(t) d t \leq M(-h)$; that is, $f(u)(-h) \leq-\int_{x}^{x+h} f(t) d t \leq f(v)(-h)$.

Since $-h>0$, we can divide this inequality by $-h: f(u) \leq \frac{1}{h} \int_{x}^{x+h} f(t) d t \leq f(v)$. By Equation 2,
$\frac{g(x+h)-g(x)}{h}=\frac{1}{h} \int_{x}^{x+h} f(t) d t$ for $h \neq 0$, and hence $f(u) \leq \frac{g(x+h)-g(x)}{h} \leq f(v)$, which is Equation 3 in the case where $h<0$.
78. $\frac{d}{d x} \int_{g(x)}^{h(x)} f(t) d t=\frac{d}{d x}\left[\int_{g(x)}^{a} f(t) d t+\int_{a}^{h(x)} f(t) d t\right]$ [where a is in the domain of f]
$=\frac{d}{d x}\left[-\int_{a}^{g(x)} f(t) d t\right]+\frac{d}{d x}\left[\int_{a}^{h(x)} f(t) d t\right]=-f(g(x)) g^{\prime}(x)+f(h(x)) h^{\prime}(x)$
$=f(h(x)) h^{\prime}(x)-f(g(x)) g^{\prime}(x)$
79. (a) Let $f(x)=\sqrt{x} \Rightarrow f^{\prime}(x)=1 /(2 \sqrt{x})>0$ for $x>0 \Rightarrow f$ is increasing on $(0, \infty)$. If $x \geq 0$, then $x^{3} \geq 0$, so $1+x^{3} \geq 1$ and since f is increasing, this means that $f\left(1+x^{3}\right) \geq f(1) \Rightarrow \sqrt{1+x^{3}} \geq 1$ for $x \geq 0$. Next let $g(t)=t^{2}-t \Rightarrow g^{\prime}(t)=2 t-1 \Rightarrow g^{\prime}(t)>0$ when $t \geq 1$. Thus, g is increasing on $(1, \infty)$. And since $g(1)=0$, $g(t) \geq 0$ when $t \geq 1$. Now let $t=\sqrt{1+x^{3}}$, where $x \geq 0 . \sqrt{1+x^{3}} \geq 1$ (from above) $\Rightarrow t \geq 1 \Rightarrow g(t) \geq 0 \Rightarrow$ $\left(1+x^{3}\right)-\sqrt{1+x^{3}} \geq 0$ for $x \geq 0$. Therefore, $1 \leq \sqrt{1+x^{3}} \leq 1+x^{3}$ for $x \geq 0$.
(b) From part (a) and Property 7: $\int_{0}^{1} 1 d x \leq \int_{0}^{1} \sqrt{1+x^{3}} d x \leq \int_{0}^{1}\left(1+x^{3}\right) d x \Leftrightarrow$ $[x]_{0}^{1} \leq \int_{0}^{1} \sqrt{1+x^{3}} d x \leq\left[x+\frac{1}{4} x^{4}\right]_{0}^{1} \Leftrightarrow 1 \leq \int_{0}^{1} \sqrt{1+x^{3}} d x \leq 1+\frac{1}{4}=1.25$.
80. (a) For $0 \leq x \leq 1$, we have $x^{2} \leq x$. Since $f(x)=\cos x$ is a decreasing function on $[0,1], \cos \left(x^{2}\right) \geq \cos x$.
(b) $\pi / 6<1$, so by part (a), $\cos \left(x^{2}\right) \geq \cos x$ on $[0, \pi / 6]$. Thus,
$\int_{0}^{\pi / 6} \cos \left(x^{2}\right) d x \geq \int_{0}^{\pi / 6} \cos x d x=[\sin x]_{0}^{\pi / 6}=\sin (\pi / 6)-\sin 0=\frac{1}{2}-0=\frac{1}{2}$.
81. $0<\frac{x^{2}}{x^{4}+x^{2}+1}<\frac{x^{2}}{x^{4}}=\frac{1}{x^{2}}$ on $[5,10]$, so $0 \leq \int_{5}^{10} \frac{x^{2}}{x^{4}+x^{2}+1} d x<\int_{5}^{10} \frac{1}{x^{2}} d x=\left[-\frac{1}{x}\right]_{5}^{10}=-\frac{1}{10}-\left(-\frac{1}{5}\right)=\frac{1}{10}=0.1$.
82. (a) If $x<0$, then $g(x)=\int_{0}^{x} f(t) d t=\int_{0}^{x} 0 d t=0$.

If $0 \leq x \leq 1$, then $g(x)=\int_{0}^{x} f(t) d t=\int_{0}^{x} t d t=\left[\frac{1}{2} t^{2}\right]_{0}^{x}=\frac{1}{2} x^{2}$.
If $1<x \leq 2$, then

$$
\begin{aligned}
g(x) & =\int_{0}^{x} f(t) d t=\int_{0}^{1} f(t) d t+\int_{1}^{x} f(t) d t=g(1)+\int_{1}^{x}(2-t) d t \\
& =\frac{1}{2}(1)^{2}+\left[2 t-\frac{1}{2} t^{2}\right]_{1}^{x}=\frac{1}{2}+\left(2 x-\frac{1}{2} x^{2}\right)-\left(2-\frac{1}{2}\right)=2 x-\frac{1}{2} x^{2}-1 .
\end{aligned}
$$

If $x>2$, then $g(x)=\int_{0}^{x} f(t) d t=g(2)+\int_{2}^{x} 0 d t=1+0=1$. So

$$
g(x)= \begin{cases}0 & \text { if } x<0 \\ \frac{1}{2} x^{2} & \text { if } 0 \leq x \leq 1 \\ 2 x-\frac{1}{2} x^{2}-1 & \text { if } 1<x \leq 2 \\ 1 & \text { if } x>2\end{cases}
$$

(c) f is not differentiable at its corners at $x=0,1$, and $2 . f$ is differentiable on $(-\infty, 0),(0,1),(1,2)$ and $(2, \infty)$. g is differentiable on $(-\infty, \infty)$.
83. Using FTC1, we differentiate both sides of $6+\int_{a}^{x} \frac{f(t)}{t^{2}} d t=2 \sqrt{x}$ to get $\frac{f(x)}{x^{2}}=2 \frac{1}{2 \sqrt{x}} \Rightarrow f(x)=x^{3 / 2}$. To find a, we substitute $x=a$ in the original equation to obtain $6+\int_{a}^{a} \frac{f(t)}{t^{2}} d t=2 \sqrt{a} \Rightarrow 6+0=2 \sqrt{a} \Rightarrow$ $3=\sqrt{a} \Rightarrow a=9$.
84. $B=3 A \quad \Rightarrow \quad \int_{0}^{b} e^{x} d x=3 \int_{0}^{a} e^{x} d x \quad \Rightarrow \quad\left[e^{x}\right]_{0}^{b}=3\left[e^{x}\right]_{0}^{a} \quad \Rightarrow \quad e^{b}-1=3\left(e^{a}-1\right) \quad \Rightarrow \quad e^{b}=3 e^{a}-2 \quad \Rightarrow$ $b=\ln \left(3 e^{a}-2\right)$
85. (a) Let $F(t)=\int_{0}^{t} f(s) d s$. Then, by FTC1, $F^{\prime}(t)=f(t)=$ rate of depreciation, so $F(t)$ represents the loss in value over the interval $[0, t]$.
(b) $C(t)=\frac{1}{t}\left[A+\int_{0}^{t} f(s) d s\right]=\frac{A+F(t)}{t}$ represents the average expenditure per unit of t during the interval $[0, t]$, assuming that there has been only one overhaul during that time period. The company wants to minimize average expenditure.
(c) $C(t)=\frac{1}{t}\left[A+\int_{0}^{t} f(s) d s\right]$. Using FTC1, we have $C^{\prime}(t)=-\frac{1}{t^{2}}\left[A+\int_{0}^{t} f(s) d s\right]+\frac{1}{t} f(t)$. $C^{\prime}(t)=0 \Rightarrow t f(t)=A+\int_{0}^{t} f(s) d s \Rightarrow f(t)=\frac{1}{t}\left[A+\int_{0}^{t} f(s) d s\right]=C(t)$.
86. (a) $C(t)=\frac{1}{t} \int_{0}^{t}[f(s)+g(s)] d s$. Using FTC1 and the Product Rule, we have
$C^{\prime}(t)=\frac{1}{t}[f(t)+g(t)]-\frac{1}{t^{2}} \int_{0}^{t}[f(s)+g(s)] d s . \operatorname{Set} C^{\prime}(t)=0: \frac{1}{t}[f(t)+g(t)]-\frac{1}{t^{2}} \int_{0}^{t}[f(s)+g(s)] d s=0 \Rightarrow$ $[f(t)+g(t)]-\frac{1}{t} \int_{0}^{t}[f(s)+g(s)] d s=0 \quad \Rightarrow \quad[f(t)+g(t)]-C(t)=0 \quad \Rightarrow \quad C(t)=f(t)+g(t)$.

INSTRUCTUOR USE ONLY

(b) For $0 \leq t \leq 30$, we have $D(t)=\int_{0}^{t}\left(\frac{V}{15}-\frac{V}{450} s\right) d s=\left[\frac{V}{15} s-\frac{V}{900} s^{2}\right]_{0}^{t}=\frac{V}{15} t-\frac{V}{900} t^{2}$.

So $D(t)=V \quad \Rightarrow \quad \frac{V}{15} t-\frac{V}{900} t^{2}=V \quad \Rightarrow \quad 60 t-t^{2}=900 \quad \Rightarrow \quad t^{2}-60 t+900=0 \quad \Rightarrow$ $(t-30)^{2}=0 \Rightarrow t=30$. So the length of time T is 30 months.
(c) $C(t)=\frac{1}{t} \int_{0}^{t}\left(\frac{V}{15}-\frac{V}{450} s+\frac{V}{12,900} s^{2}\right) d s=\frac{1}{t}\left[\frac{V}{15} s-\frac{V}{900} s^{2}+\frac{V}{38,700} s^{3}\right]_{0}^{t}$

$$
=\frac{1}{t}\left(\frac{V}{15} t-\frac{V}{900} t^{2}+\frac{V}{38,700} t^{3}\right)=\frac{V}{15}-\frac{V}{900} t+\frac{V}{38,700} t^{2} \Rightarrow
$$

$C^{\prime}(t)=-\frac{V}{900}+\frac{V}{19,350} t=0$ when $\frac{1}{19,350} t=\frac{1}{900} \quad \Rightarrow \quad t=21.5$.
$C(21.5)=\frac{V}{15}-\frac{V}{900}(21.5)+\frac{V}{38,700}(21.5)^{2} \approx 0.05472 V, C(0)=\frac{V}{15} \approx 0.06667 V$, and $C(30)=\frac{V}{15}-\frac{V}{900}(30)+\frac{V}{38,700}(30)^{2} \approx 0.05659 \mathrm{~V}$, so the absolute minimum is $C(21.5) \approx 0.05472 \mathrm{~V}$.
(d) As in part (c), we have $C(t)=\frac{V}{15}-\frac{V}{900} t+\frac{V}{38,700} t^{2}$, so $C(t)=f(t)+g(t) \Leftrightarrow$

$$
\frac{V}{15}-\frac{V}{900} t+\frac{V}{38,700} t^{2}=\frac{V}{15}-\frac{V}{450} t+\frac{V}{12,900} t^{2} \Leftrightarrow
$$

$$
t^{2}\left(\frac{1}{12,900}-\frac{1}{38,700}\right)=t\left(\frac{1}{450}-\frac{1}{900}\right) \Leftrightarrow t=\frac{1 / 900}{2 / 38,700}=\frac{43}{2}=21.5 .
$$

This is the value of t that we obtained as the critical number of C in part (c), so we have verified the result of (a) in this case.

5.4 Indefinite Integrals and the Net Change Theorem

1. $\frac{d}{d x}\left[-\frac{\sqrt{1+x^{2}}}{x}+C\right]=\frac{d}{d x}\left[-\frac{\left(1+x^{2}\right)^{1 / 2}}{x}+C\right]=-\frac{x \cdot \frac{1}{2}\left(1+x^{2}\right)^{-1 / 2}(2 x)-\left(1+x^{2}\right)^{1 / 2} \cdot 1}{(x)^{2}}+0$

$$
=-\frac{\left(1+x^{2}\right)^{-1 / 2}\left[x^{2}-\left(1+x^{2}\right)\right]}{x^{2}}=-\frac{-1}{\left(1+x^{2}\right)^{1 / 2} x^{2}}=\frac{1}{x^{2} \sqrt{1+x^{2}}}
$$

2. $\frac{d}{d x}\left(\frac{1}{2} x+\frac{1}{4} \sin 2 x+C\right)=\frac{1}{2}+\frac{1}{4} \cos 2 x \cdot 2+0=\frac{1}{2}+\frac{1}{2} \cos 2 x$

$$
=\frac{1}{2}+\frac{1}{2}\left(2 \cos ^{2} x-1\right)=\frac{1}{2}+\cos ^{2} x-\frac{1}{2}=\cos ^{2} x
$$

3. $\frac{d}{d x}(\tan x-x+C)=\sec ^{2} x-1+0=\tan ^{2} x$
4. $\frac{d}{d x}\left[\frac{2}{15 b^{2}}(3 b x-2 a)(a+b x)^{3 / 2}+C\right]=\frac{2}{15 b^{2}}\left[(3 b x-2 a) \frac{3}{2}(a+b x)^{1 / 2}(b)+(a+b x)^{3 / 2}(3 b)+0\right]$

$$
\begin{aligned}
& =\frac{2}{15 b^{2}}(3 b)(a+b x)^{1 / 2}\left[(3 b x-2 a) \frac{1}{2}+(a+b x)\right] \\
& =\frac{2}{5 b}(a+b x)^{1 / 2}\left(\frac{5}{2} b x\right)=x \sqrt{a+b x}
\end{aligned}
$$

5. $\int\left(x^{1.3}+7 x^{2.5}\right) d x=\frac{1}{2.3} x^{2.3}+\frac{7}{3.5} x^{3.5}+C=\frac{1}{2.3} x^{2.3}+2 x^{3.5}+C$
6. $\int \sqrt[4]{x^{5}} d x=\int x^{5 / 4} d x=\frac{4}{9} x^{9 / 4}+C$
7. $\int\left(5+\frac{2}{3} x^{2}+\frac{3}{4} x^{3}\right) d x=5 x+\frac{2}{3} \cdot \frac{1}{3} x^{3}+\frac{3}{4} \cdot \frac{1}{4} x^{4}+C=5 x+\frac{2}{9} x^{3}+\frac{3}{16} x^{4}+C$
8. $\int\left(u^{6}-2 u^{5}-u^{3}+\frac{2}{7}\right) d u=\frac{1}{7} u^{7}-2 \cdot \frac{1}{6} u^{6}-\frac{1}{4} u^{4}+\frac{2}{7} u+C=\frac{1}{7} u^{7}-\frac{1}{3} u^{6}-\frac{1}{4} u^{4}+\frac{2}{7} u+C$
9. $\int(u+4)(2 u+1) d u=\int\left(2 u^{2}+9 u+4\right) d u=2 \frac{u^{3}}{3}+9 \frac{u^{2}}{2}+4 u+C=\frac{2}{3} u^{3}+\frac{9}{2} u^{2}+4 u+C$
10. $\int \sqrt{t}\left(t^{2}+3 t+2\right) d t=\int t^{1 / 2}\left(t^{2}+3 t+2\right) d t=\int\left(t^{5 / 2}+3 t^{3 / 2}+2 t^{1 / 2}\right) d t$

$$
=\frac{2}{7} t^{7 / 2}+3 \cdot \frac{2}{5} t^{5 / 2}+2 \cdot \frac{2}{3} t^{3 / 2}+C=\frac{2}{7} t^{7 / 2}+\frac{6}{5} t^{5 / 2}+\frac{4}{3} t^{3 / 2}+C
$$

11. $\int \frac{1+\sqrt{x}+x}{x} d x=\int\left(\frac{1}{x}+\frac{\sqrt{x}}{x}+\frac{x}{x}\right) d x=\int\left(\frac{1}{x}+x^{-1 / 2}+1\right) d x$

$$
=\ln |x|+2 x^{1 / 2}+x+C=\ln |x|+2 \sqrt{x}+x+C
$$

12. $\int\left(x^{2}+1+\frac{1}{x^{2}+1}\right) d x=\frac{x^{3}}{3}+x+\tan ^{-1} x+C$
13. $\int(\sin x+\sinh x) d x=-\cos x+\cosh x+C$
14. $\int\left(\frac{1+r}{r}\right)^{2} d r=\int \frac{1+2 r+r^{2}}{r^{2}} d r=\int\left(r^{-2}+2 r^{-1}+1\right) d r=-r^{-1}+2 \ln |r|+r+C=-\frac{1}{r}+2 \ln |r|+r+C$
15. $\int\left(2+\tan ^{2} \theta\right) d \theta=\int\left[2+\left(\sec ^{2} \theta-1\right)\right] d \theta=\int\left(1+\sec ^{2} \theta\right) d \theta=\theta+\tan \theta+C$
16. $\int \sec t(\sec t+\tan t) d t=\int\left(\sec ^{2} t+\sec t \tan t\right) d t=\tan t+\sec t+C$
17. $\int 2^{t}\left(1+5^{t}\right) d t=\int\left(2^{t}+2^{t} \cdot 5^{t}\right) d t=\int\left(2^{t}+10^{t}\right) d t=\frac{2^{t}}{\ln 2}+\frac{10^{t}}{\ln 10}+C$
18. $\int \frac{\sin 2 x}{\sin x} d x=\int \frac{2 \sin x \cos x}{\sin x} d x=\int 2 \cos x d x=2 \sin x+C$
19. $\int\left(\cos x+\frac{1}{2} x\right) d x=\sin x+\frac{1}{4} x^{2}+C$. The members of the family in the figure correspond to $C=-5,0,5$, and 10 .

20. $\int\left(e^{x}-2 x^{2}\right) d x=e^{x}-\frac{2}{3} x^{3}+C$. The members of the family in the figure correspond to $C=-5,0,2$, and 5 .

38 CHAPTER 5 INTEGRALS
21. $\int_{-2}^{3}\left(x^{2}-3\right) d x=\left[\frac{1}{3} x^{3}-3 x\right]_{-2}^{3}=(9-9)-\left(-\frac{8}{3}+6\right)=\frac{8}{3}-\frac{18}{3}=-\frac{10}{3}$
22. $\int_{1}^{2}\left(4 x^{3}-3 x^{2}+2 x\right) d x=\left[x^{4}-x^{3}+x^{2}\right]_{1}^{2}=(16-8+4)-(1-1+1)=12-1=11$
23. $\int_{-2}^{0}\left(\frac{1}{2} t^{4}+\frac{1}{4} t^{3}-t\right) d t=\left[\frac{1}{10} t^{5}+\frac{1}{16} t^{4}-\frac{1}{2} t^{2}\right]_{-2}^{0}=0-\left[\frac{1}{10}(-32)+\frac{1}{16}(16)-\frac{1}{2}(4)\right]=-\left(-\frac{16}{5}+1-2\right)=\frac{21}{5}$
24. $\int_{0}^{3}\left(1+6 w^{2}-10 w^{4}\right) d w=\left[w+2 w^{3}-2 w^{5}\right]_{0}^{3}=(3+54-486)-0=-429$
25. $\int_{0}^{2}(2 x-3)\left(4 x^{2}+1\right) d x=\int_{0}^{2}\left(8 x^{3}-12 x^{2}+2 x-3\right) d x=\left[2 x^{4}-4 x^{3}+x^{2}-3 x\right]_{0}^{2}=(32-32+4-6)-0=-2$
26. $\int_{-1}^{1} t(1-t)^{2} d t=\int_{-1}^{1} t\left(1-2 t+t^{2}\right) d t=\int_{-1}^{1}\left(t-2 t^{2}+t^{3}\right) d t=\left[\frac{1}{2} t^{2}-\frac{2}{3} t^{3}+\frac{1}{4} t^{4}\right]_{-1}^{1}$

$$
=\left(\frac{1}{2}-\frac{2}{3}+\frac{1}{4}\right)-\left(\frac{1}{2}+\frac{2}{3}+\frac{1}{4}\right)=-\frac{4}{3}
$$

27. $\int_{0}^{\pi}\left(5 e^{x}+3 \sin x\right) d x=\left[5 e^{x}-3 \cos x\right]_{0}^{\pi}=\left[5 e^{\pi}-3(-1)\right]-[5(1)-3(1)]=5 e^{\pi}+1$
28. $\int_{1}^{2}\left(\frac{1}{x^{2}}-\frac{4}{x^{3}}\right) d x=\int_{1}^{2}\left(x^{-2}-4 x^{-3}\right) d x=\left[\frac{x^{-1}}{-1}-\frac{4 x^{-2}}{-2}\right]_{1}^{2}=\left[-\frac{1}{x}+\frac{2}{x^{2}}\right]_{1}^{2}=\left(-\frac{1}{2}+\frac{1}{2}\right)-(-1+2)=-1$
29. $\int_{1}^{4}\left(\frac{4+6 u}{\sqrt{u}}\right) d u=\int_{1}^{4}\left(\frac{4}{\sqrt{u}}+\frac{6 u}{\sqrt{u}}\right) d u=\int_{1}^{4}\left(4 u^{-1 / 2}+6 u^{1 / 2}\right) d u=\left[8 u^{1 / 2}+4 u^{3 / 2}\right]_{1}^{4}=(16+32)-(8+4)=36$
30. $\int_{0}^{1} \frac{4}{1+p^{2}} d p=[4 \arctan p]_{0}^{1}=4 \arctan 1-4 \arctan 0=4\left(\frac{\pi}{4}\right)-4(0)=\pi$
31. $\int_{0}^{1} x(\sqrt[3]{x}+\sqrt[4]{x}) d x=\int_{0}^{1}\left(x^{4 / 3}+x^{5 / 4}\right) d x=\left[\frac{3}{7} x^{7 / 3}+\frac{4}{9} x^{9 / 4}\right]_{0}^{1}=\left(\frac{3}{7}+\frac{4}{9}\right)-0=\frac{55}{63}$
32. $\int_{1}^{4} \frac{\sqrt{y}-y}{y^{2}} d y=\int_{1}^{4}\left(\frac{\sqrt{y}}{y^{2}}-\frac{y}{y^{2}}\right) d y=\int_{1}^{4}\left(y^{-3 / 2}-y^{-1}\right) d y=\left[-2 y^{-1 / 2}-\ln |y|\right]_{1}^{4}=\left[-\frac{2}{\sqrt{y}}-\ln |y|\right]_{1}^{4}$

$$
=(-1-\ln 4)-(-2-\ln 1)=1-\ln 4
$$

33. $\int_{1}^{2}\left(\frac{x}{2}-\frac{2}{x}\right) d x=\left[\frac{1}{4} x^{2}-2 \ln |x|\right]_{1}^{2}=(1-2 \ln 2)-\left(\frac{1}{4}-2 \ln 1\right)=\frac{3}{4}-2 \ln 2$
34. $\int_{0}^{1}\left(5 x-5^{x}\right) d x=\left[\frac{5}{2} x^{2}-\frac{5^{x}}{\ln 5}\right]_{0}^{1}=\left(\frac{5}{2}-\frac{5}{\ln 5}\right)-\left(0-\frac{1}{\ln 5}\right)=\frac{5}{2}-\frac{4}{\ln 5}$
35. $\int_{0}^{1}\left(x^{10}+10^{x}\right) d x=\left[\frac{x^{11}}{11}+\frac{10^{x}}{\ln 10}\right]_{0}^{1}=\left(\frac{1}{11}+\frac{10}{\ln 10}\right)-\left(0+\frac{1}{\ln 10}\right)=\frac{1}{11}+\frac{9}{\ln 10}$
36. $\int_{0}^{\pi / 4} \sec \theta \tan \theta d \theta=[\sec \theta]_{0}^{\pi / 4}=\sec \frac{\pi}{4}-\sec 0=\sqrt{2}-1$
37. $\int_{0}^{\pi / 4} \frac{1+\cos ^{2} \theta}{\cos ^{2} \theta} d \theta=\int_{0}^{\pi / 4}\left(\frac{1}{\cos ^{2} \theta}+\frac{\cos ^{2} \theta}{\cos ^{2} \theta}\right) d \theta=\int_{0}^{\pi / 4}\left(\sec ^{2} \theta+1\right) d \theta$

$$
=[\tan \theta+\theta]_{0}^{\pi / 4}=\left(\tan \frac{\pi}{4}+\frac{\pi}{4}\right)-(0+0)=1+\frac{\pi}{4}
$$

38. $\int_{0}^{\pi / 3} \frac{\sin \theta+\sin \theta \tan ^{2} \theta}{\sec ^{2} \theta} d \theta=\int_{0}^{\pi / 3} \frac{\sin \theta\left(1+\tan ^{2} \theta\right)}{\sec ^{2} \theta} d \theta=\int_{0}^{\pi / 3} \frac{\sin \theta \sec ^{2} \theta}{\sec ^{2} \theta} d \theta=\int_{0}^{\pi / 3} \sin \theta d \theta$

$$
=[-\cos \theta]_{0}^{\pi / 3}=-\frac{1}{2}-(-1)=\frac{1}{2}
$$

39. $\int_{1}^{8} \frac{2+t}{\sqrt[3]{t^{2}}} d t=\int_{1}^{8}\left(\frac{2}{t^{2 / 3}}+\frac{t}{t^{2 / 3}}\right) d t=\int_{1}^{8}\left(2 t^{-2 / 3}+t^{1 / 3}\right) d t=\left[2 \cdot 3 t^{1 / 3}+\frac{3}{4} t^{4 / 3}\right]_{1}^{8}=(12+12)-\left(6+\frac{3}{4}\right)=\frac{69}{4}$
40. $\int_{-10}^{10} \frac{2 e^{x}}{\sinh x+\cosh x} d x=\int_{-10}^{10} \frac{2 e^{x}}{\frac{e^{x}-e^{-x}}{2}+\frac{e^{x}+e^{-x}}{2}} d x=\int_{-10}^{10} \frac{2 e^{x}}{e^{x}} d x=\int_{-10}^{10} 2 d x=[2 x]_{-10}^{10}=20-(-20)=40$
41. $\int_{0}^{\sqrt{3} / 2} \frac{d r}{\sqrt{1-r^{2}}}=[\arcsin r]_{0}^{\sqrt{3} / 2}=\arcsin (\sqrt{3} / 2)-\arcsin 0=\frac{\pi}{3}-0=\frac{\pi}{3}$
42. $\int_{1}^{2} \frac{(x-1)^{3}}{x^{2}} d x=\int_{1}^{2} \frac{x^{3}-3 x^{2}+3 x-1}{x^{2}} d x=\int_{1}^{2}\left(x-3+\frac{3}{x}-\frac{1}{x^{2}}\right) d x=\left[\frac{1}{2} x^{2}-3 x+3 \ln |x|+\frac{1}{x}\right]_{1}^{2}$ $=\left(2-6+3 \ln 2+\frac{1}{2}\right)-\left(\frac{1}{2}-3+0+1\right)=3 \ln 2-2$
43. $\int_{0}^{1 / \sqrt{3}} \frac{t^{2}-1}{t^{4}-1} d t=\int_{0}^{1 / \sqrt{3}} \frac{t^{2}-1}{\left(t^{2}+1\right)\left(t^{2}-1\right)} d t=\int_{0}^{1 / \sqrt{3}} \frac{1}{t^{2}+1} d t=[\arctan t]_{0}^{1 / \sqrt{3}}=\arctan (1 / \sqrt{3})-\arctan 0$

$$
=\frac{\pi}{6}-0=\frac{\pi}{6}
$$

44. $|2 x-1|=\left\{\begin{array}{ll}2 x-1 & \text { if } 2 x-1 \geq 0 \\ -(2 x-1) & \text { if } 2 x-1<0\end{array}= \begin{cases}2 x-1 & \text { if } x \geq \frac{1}{2} \\ 1-2 x & \text { if } x<\frac{1}{2}\end{cases}\right.$

Thus, $\int_{0}^{2}|2 x-1| d x=\int_{0}^{1 / 2}(1-2 x) d x+\int_{1 / 2}^{2}(2 x-1) d x=\left[x-x^{2}\right]_{0}^{1 / 2}+\left[x^{2}-x\right]_{1 / 2}^{2}$

$$
=\left(\frac{1}{2}-\frac{1}{4}\right)-0+(4-2)-\left(\frac{1}{4}-\frac{1}{2}\right)=\frac{1}{4}+2-\left(-\frac{1}{4}\right)=\frac{5}{2}
$$

45. $\int_{-1}^{2}(x-2|x|) d x=\int_{-1}^{0}[x-2(-x)] d x+\int_{0}^{2}[x-2(x)] d x=\int_{-1}^{0} 3 x d x+\int_{0}^{2}(-x) d x=3\left[\frac{1}{2} x^{2}\right]_{-1}^{0}-\left[\frac{1}{2} x^{2}\right]_{0}^{2}$

$$
=3\left(0-\frac{1}{2}\right)-(2-0)=-\frac{7}{2}=-3.5
$$

46. $\int_{0}^{3 \pi / 2}|\sin x| d x=\int_{0}^{\pi} \sin x d x+\int_{\pi}^{3 \pi / 2}(-\sin x) d x=[-\cos x]_{0}^{\pi}+[\cos x]_{\pi}^{3 \pi / 2}=[1-(-1)]+[0-(-1)]=2+1=3$
47. The graph shows that $y=1-2 x-5 x^{4}$ has x-intercepts at $x=a \approx-0.86$ and at $x=b \approx 0.42$. So the area of the region that lies under the curve and above the x-axis is

$$
\begin{aligned}
\int_{a}^{b}\left(1-2 x-5 x^{4}\right) d x & =\left[x-x^{2}-x^{5}\right]_{a}^{b} \\
& =\left(b-b^{2}-b^{5}\right)-\left(a-a^{2}-a^{5}\right) \approx 1.36
\end{aligned}
$$

48. The graph shows that $y=\left(x^{2}+1\right)^{-1}-x^{4}$ has x-intercepts at $x=a \approx-0.87$ and at $x=b \approx 0.87$. So the area of the region that lies under the curve and above the x-axis is

$$
\begin{aligned}
\int_{a}^{b}\left[\left(x^{2}+1\right)^{-1}-x^{4}\right] d x & =\left[\tan ^{-1} x-\frac{1}{5} x^{5}\right]_{a}^{b} \\
& =\left(\tan ^{-1} b-\frac{1}{5} b^{5}\right)-\left(\tan ^{-1} a-\frac{1}{5} a^{5}\right) \\
& \approx 1.23
\end{aligned}
$$

49. $A=\int_{0}^{2}\left(2 y-y^{2}\right) d y=\left[y^{2}-\frac{1}{3} y^{3}\right]_{0}^{2}=\left(4-\frac{8}{3}\right)-0=\frac{4}{3}$
50. $y=\sqrt[4]{x} \Rightarrow x=y^{4}$, so $A=\int_{0}^{1} y^{4} d y=\left[\frac{1}{5} y^{5}\right]_{0}^{1}=\frac{1}{5}$.
51. If $w^{\prime}(t)$ is the rate of change of weight in pounds per year, then $w(t)$ represents the weight in pounds of the child at age t. We know from the Net Change Theorem that $\int_{5}^{10} w^{\prime}(t) d t=w(10)-w(5)$, so the integral represents the increase in the child's weight (in pounds) between the ages of 5 and 10 .
52. $\int_{a}^{b} I(t) d t=\int_{a}^{b} Q^{\prime}(t) d t=Q(b)-Q(a)$ by the Net Change Theorem, so it represents the change in the charge Q from time $t=a$ to $t=b$.
53. Since $r(t)$ is the rate at which oil leaks, we can write $r(t)=-V^{\prime}(t)$, where $V(t)$ is the volume of oil at time t. [Note that the minus sign is needed because V is decreasing, so $V^{\prime}(t)$ is negative, but $r(t)$ is positive.] Thus, by the Net Change Theorem, $\int_{0}^{120} r(t) d t=-\int_{0}^{120} V^{\prime}(t) d t=-[V(120)-V(0)]=V(0)-V(120)$, which is the number of gallons of oil that leaked from the tank in the first two hours (120 minutes).
54. By the Net Change Theorem, $\int_{0}^{15} n^{\prime}(t) d t=n(15)-n(0)=n(15)-100$ represents the increase in the bee population in 15 weeks. So $100+\int_{0}^{15} n^{\prime}(t) d t=n(15)$ represents the total bee population after 15 weeks.
55. By the Net Change Theorem, $\int_{1000}^{5000} R^{\prime}(x) d x=R(5000)-R(1000)$, so it represents the increase in revenue when production is increased from 1000 units to 5000 units.
56. The slope of the trail is the rate of change of the elevation E, so $f(x)=E^{\prime}(x)$. By the Net Change Theorem, $\int_{3}^{5} f(x) d x=\int_{3}^{5} E^{\prime}(x) d x=E(5)-E(3)$ is the change in the elevation E between $x=3$ miles and $x=5$ miles from the start of the trail.
57. In general, the unit of measurement for $\int_{a}^{b} f(x) d x$ is the product of the unit for $f(x)$ and the unit for x. Since $f(x)$ is measured in newtons and x is measured in meters, the units for $\int_{0}^{100} f(x) d x$ are newton-meters (or joules). (A newton-meter is abbreviated $\mathrm{N} \cdot \mathrm{m}$.)
58. The units for $a(x)$ are pounds per foot and the units for x are feet, so the units for $d a / d x$ are pounds per foot per foot, denoted $(\mathrm{lb} / \mathrm{ft}) / \mathrm{ft}$. The unit of measurement for $\int_{2}^{8} a(x) d x$ is the product of pounds per foot and feet; that is, pounds.
59. (a) Displacement $=\int_{0}^{3}(3 t-5) d t=\left[\frac{3}{2} t^{2}-5 t\right]_{0}^{3}=\frac{27}{2}-15=-\frac{3}{2} \mathrm{~m}$
(b) Distance traveled $=\int_{0}^{3}|3 t-5| d t=\int_{0}^{5 / 3}(5-3 t) d t+\int_{5 / 3}^{3}(3 t-5) d t$

$$
=\left[5 t-\frac{3}{2} t^{2}\right]_{0}^{5 / 3}+\left[\frac{3}{2} t^{2}-5 t\right]_{5 / 3}^{3}=\frac{25}{3}-\frac{3}{2} \cdot \frac{25}{9}+\frac{27}{2}-15-\left(\frac{3}{2} \cdot \frac{25}{9}-\frac{25}{3}\right)=\frac{41}{6} \mathrm{~m}
$$

60. (a) Displacement $=\int_{2}^{4}\left(t^{2}-2 t-3\right) d t=\left[\frac{1}{3} t^{3}-t^{2}-3 t\right]_{2}^{4}=\left(\frac{64}{3}-16-12\right)-\left(\frac{8}{3}-4-6\right)=\frac{2}{3} \mathrm{~m}$
(b) $v(t)=t^{2}-2 t-3=(t+1)(t-3)$, so $v(t)<0$ for $-1<t<3$, but on the interval [2, 4], v(t)<0 for $2 \leq t<3$.

Distance traveled $=\int_{2}^{4}\left|t^{2}-2 t-3\right| d t=\int_{2}^{3}-\left(t^{2}-2 t-3\right) d t+\int_{3}^{4}\left(t^{2}-2 t-3\right) d t$

$$
\begin{aligned}
& =\left[-\frac{1}{3} t^{3}+t^{2}+3 t\right]_{2}^{3}+\left[\frac{1}{3} t^{3}-t^{2}-3 t\right]_{3}^{4} \\
& =(-9+9+9)-\left(-\frac{8}{3}+4+6\right)+\left(\frac{64}{3}-16-12\right)-(9-9-9)=4 \mathrm{~m}
\end{aligned}
$$

61. (a) $v^{\prime}(t)=a(t)=t+4 \Rightarrow v(t)=\frac{1}{2} t^{2}+4 t+C \Rightarrow v(0)=C=5 \Rightarrow v(t)=\frac{1}{2} t^{2}+4 t+5 \mathrm{~m} / \mathrm{s}$
(b) Distance traveled $=\int_{0}^{10}|v(t)| d t=\int_{0}^{10}\left|\frac{1}{2} t^{2}+4 t+5\right| d t=\int_{0}^{10}\left(\frac{1}{2} t^{2}+4 t+5\right) d t=\left[\frac{1}{6} t^{3}+2 t^{2}+5 t\right]_{0}^{10}$

$$
=\frac{500}{3}+200+50=416 \frac{2}{3} \mathrm{~m}
$$

62. (a) $v^{\prime}(t)=a(t)=2 t+3 \Rightarrow v(t)=t^{2}+3 t+C \Rightarrow v(0)=C=-4 \Rightarrow v(t)=t^{2}+3 t-4$
(b) Distance traveled $=\int_{0}^{3}\left|t^{2}+3 t-4\right| d t=\int_{0}^{3}|(t+4)(t-1)| d t=\int_{0}^{1}\left(-t^{2}-3 t+4\right) d t+\int_{1}^{3}\left(t^{2}+3 t-4\right) d t$

$$
\begin{aligned}
& =\left[-\frac{1}{3} t^{3}-\frac{3}{2} t^{2}+4 t\right]_{0}^{1}+\left[\frac{1}{3} t^{3}+\frac{3}{2} t^{2}-4 t\right]_{1}^{3} \\
& =\left(-\frac{1}{3}-\frac{3}{2}+4\right)+\left(9+\frac{27}{2}-12\right)-\left(\frac{1}{3}+\frac{3}{2}-4\right)=\frac{89}{6} \mathrm{~m}
\end{aligned}
$$

63. Since $m^{\prime}(x)=\rho(x), m=\int_{0}^{4} \rho(x) d x=\int_{0}^{4}(9+2 \sqrt{x}) d x=\left[9 x+\frac{4}{3} x^{3 / 2}\right]_{0}^{4}=36+\frac{32}{3}-0=\frac{140}{3}=46 \frac{2}{3} \mathrm{~kg}$.
64. By the Net Change Theorem, the amount of water that flows from the tank during the first 10 minutes is $\int_{0}^{10} r(t) d t=\int_{0}^{10}(200-4 t) d t=\left[200 t-2 t^{2}\right]_{0}^{10}=(2000-200)-0=1800$ liters.
65. Let s be the position of the car. We know from Equation 2 that $s(100)-s(0)=\int_{0}^{100} v(t) d t$. We use the Midpoint Rule for $0 \leq t \leq 100$ with $n=5$. Note that the length of each of the five time intervals is 20 seconds $=\frac{20}{3600}$ hour $=\frac{1}{180}$ hour.
So the distance traveled is
$\int_{0}^{100} v(t) d t \approx \frac{1}{180}[v(10)+v(30)+v(50)+v(70)+v(90)]=\frac{1}{180}(38+58+51+53+47)=\frac{247}{180} \approx 1.4$ miles.
66. (a) By the Net Change Theorem, the total amount spewed into the atmosphere is $Q(6)-Q(0)=\int_{0}^{6} r(t) d t=Q(6)$ since $Q(0)=0$. The rate $r(t)$ is positive, so Q is an increasing function. Thus, an upper estimate for $Q(6)$ is R_{6} and a lower estimate for $Q(6)$ is $L_{6} . \quad \Delta t=\frac{b-a}{n}=\frac{6-0}{6}=1$.

$$
\begin{aligned}
R_{6} & =\sum_{i=1}^{6} r\left(t_{i}\right) \Delta t=10+24+36+46+54+60=230 \text { tonnes. } \\
L_{6} & =\sum_{i=1}^{6} r\left(t_{i-1}\right) \Delta t=R_{6}+r(0)-r(6)=230+2-60=172 \text { tonnes. }
\end{aligned}
$$

(b) $\Delta t=\frac{b-a}{n}=\frac{6-0}{3}=2 . Q(6) \approx M_{3}=2[r(1)+r(3)+r(5)]=2(10+36+54)=2(100)=200$ tonnes.
67. From the Net Change Theorem, the increase in cost if the production level is raised from 2000 yards to 4000 yards is

$$
\begin{aligned}
& C(4000)-C(2000)=\int_{2000}^{4000} C^{\prime}(x) d x \\
& \begin{aligned}
\int_{2000}^{4000} C^{\prime}(x) d x & =\int_{2000}^{4000}\left(3-0.01 x+0.000006 x^{2}\right) d x=\left[3 x-0.005 x^{2}+0.000002 x^{3}\right]_{2000}^{4000} \\
& =60,000-2,000=\$ 58,000
\end{aligned}
\end{aligned}
$$

68. By the Net Change Theorem, the amount of water after four days is

$$
\begin{aligned}
25,000+\int_{0}^{4} r(t) d t \approx 25,000+M_{4} & =25,000+\frac{4-0}{4}[r(0.5)+r(1.5)+r(2.5)+r(3.5)] \\
& \approx 25,000+[1500+1770+740+(-690)]=28,320 \text { liters }
\end{aligned}
$$

69. To use the Midpoint Rule, we'll use the midpoint of each of three 2 -second intervals.

$$
v(6)-v(0)=\int_{0}^{6} a(t) d t \approx[a(1)+a(3)+a(5)] \frac{6-0}{3} \approx(0.6+10+9.3)(2)=39.8 \mathrm{ft} / \mathrm{s}
$$

70. Use the midpoint of each of four 2-day intervals. Let $t=0$ correspond to July 18 and note that the inflow rate, $r(t)$, is in $\mathrm{ft}^{3} / \mathrm{s}$. Amount of water $=\int_{0}^{8} r(t) d t \approx[r(1)+r(3)+r(5)+r(7)] \frac{8-0}{4} \approx[6401+4249+3821+2628](2)=34,198$. Now multiply by the number of seconds in a day, $24 \cdot 60^{2}$, to get $2,954,707,200 \mathrm{ft}^{3}$.
71. Let $P(t)$ denote the bacteria population at time t (in hours). By the Net Change Theorem,
$P(1)-P(0)=\int_{0}^{1} P^{\prime}(t) d t=\int_{0}^{1}\left(1000 \cdot 2^{t}\right) d t=\left[1000 \frac{2^{t}}{\ln 2}\right]_{0}^{1}=\frac{1000}{\ln 2}\left(2^{1}-2^{0}\right)=\frac{1000}{\ln 2} \approx 1443$.
Thus, the population after one hour is $4000+1443=5443$.
72. Let $M(t)$ denote the number of megabits transmitted at time t (in hours) [note that $D(t)$ is measured in megabits/second]. By the Net Change Theorem and the Midpoint Rule,

$$
\begin{aligned}
M(8)-M(0) & =\int_{0}^{8} 3600 D(t) d t \approx 3600 \cdot \frac{8-0}{4}[D(1)+D(3)+D(5)+D(7)] \\
& \approx 7200(0.32+0.50+0.56+0.83)=7200(2.21)=15,912 \text { megabits }
\end{aligned}
$$

73. Power is the rate of change of energy with respect to time; that is, $P(t)=E^{\prime}(t)$. By the Net Change Theorem and the Midpoint Rule,

$$
\begin{aligned}
E(24)-E(0)= & \int_{0}^{24} P(t) d t \approx \frac{24-0}{12}[P(1)+P(3)+P(5)+\cdots+P(21)+P(23)] \\
\approx & 2(16,900+16,400+17,000+19,800+20,700+21,200 \\
& \quad+20,500+20,500+21,700+22,300+21,700+18,900) \\
= & 2(237,600)=475,200
\end{aligned}
$$

Thus, the energy used on that day was approximately 4.75×10^{5} megawatt-hours.
74. (a) From Exercise 4.1.74(a), $v(t)=0.00146 t^{3}-0.11553 t^{2}+24.98169 t-21.26872$.
(b) $h(125)-h(0)=\int_{0}^{125} v(t) d t=\left[0.000365 t^{4}-0.03851 t^{3}+12.490845 t^{2}-21.26872 t\right]_{0}^{125} \approx 206,407 \mathrm{ft}$

5.5 The Substitution Rule

1. Let $u=2 x$. Then $d u=2 d x$ and $d x=\frac{1}{2} d u$, so $\int \cos 2 x d x=\int \cos u\left(\frac{1}{2} d u\right)=\frac{1}{2} \sin u+C=\frac{1}{2} \sin 2 x+C$.
2. Let $u=-x^{2}$. Then $d u=-2 x d x$ and $x d x=-\frac{1}{2} d u$, so $\int x e^{-x^{2}} d x=\int e^{u}\left(-\frac{1}{2} d u\right)=-\frac{1}{2} e^{u}+C=-\frac{1}{2} e^{-x^{2}}+C$.
3. Let $u=x^{3}+1$. Then $d u=3 x^{2} d x$ and $x^{2} d x=\frac{1}{3} d u$, so

$$
\int x^{2} \sqrt{x^{3}+1} d x=\int \sqrt{u}\left(\frac{1}{3} d u\right)=\frac{1}{3} \frac{u^{3 / 2}}{3 / 2}+C=\frac{1}{3} \cdot \frac{2}{3} u^{3 / 2}+C=\frac{2}{9}\left(x^{3}+1\right)^{3 / 2}+C .
$$

4. Let $u=\sin \theta$. Then $d u=\cos \theta d \theta$, so $\int \sin ^{2} \theta \cos \theta d \theta=\int u^{2} d u=\frac{1}{3} u^{3}+C=\frac{1}{3} \sin ^{3} \theta+C$.
5. Let $u=x^{4}-5$. Then $d u=4 x^{3} d x$ and $x^{3} d x=\frac{1}{4} d u$, so

$$
\int \frac{x^{3}}{x^{4}-5} d x=\int \frac{1}{u}\left(\frac{1}{4} d u\right)=\frac{1}{4} \ln |u|+C=\frac{1}{4} \ln \left|x^{4}-5\right|+C .
$$

6. Let $u=2 t+1$. Then $d u=2 d t$ and $d t=\frac{1}{2} d u$, so $\int \sqrt{2 t+1} d t=\int \sqrt{u}\left(\frac{1}{2} d u\right)=\frac{1}{2} \cdot \frac{2}{3} u^{3 / 2}+C=\frac{1}{3}(2 t+1)^{3 / 2}+C$.
7. Let $u=1-x^{2}$. Then $d u=-2 x d x$ and $x d x=-\frac{1}{2} d u$, so

$$
\int x \sqrt{1-x^{2}} d x=\int \sqrt{u}\left(-\frac{1}{2} d u\right)=-\frac{1}{2} \cdot \frac{2}{3} u^{3 / 2}+C=-\frac{1}{3}\left(1-x^{2}\right)^{3 / 2}+C .
$$

8. Let $u=x^{3}$. Then $d u=3 x^{2} d x$ and $x^{2} d x=\frac{1}{3} d u$, so $\int x^{2} e^{x^{3}} d x=\int e^{u}\left(\frac{1}{3} d u\right)=\frac{1}{3} e^{u}+C=\frac{1}{3} e^{x^{3}}+C$.
9. Let $u=1-2 x$. Then $d u=-2 d x$ and $d x=-\frac{1}{2} d u$, so

$$
\int(1-2 x)^{9} d x=\int u^{9}\left(-\frac{1}{2} d u\right)=-\frac{1}{2} \cdot \frac{1}{10} u^{10}+C=-\frac{1}{20}(1-2 x)^{10}+C
$$

10. Let $u=1+\cos t$. Then $d u=-\sin t d t$ and $\sin t d t=-d u$, so

$$
\int \sin t \sqrt{1+\cos t} d t=\int \sqrt{u}(-d u)=-\frac{2}{3} u^{3 / 2}+C=-\frac{2}{3}(1+\cos t)^{3 / 2}+C
$$

11. Let $u=\frac{\pi}{2} t$. Then $d u=\frac{\pi}{2} d t$ and $d t=\frac{2}{\pi} d u$, so $\int \cos \left(\frac{\pi}{2} t\right) d t=\int \cos u\left(\frac{2}{\pi} d u\right)=\frac{2}{\pi} \sin u+C=\frac{2}{\pi} \sin \left(\frac{\pi}{2} t\right)+C$.
12. Let $u=2 \theta$. Then $d u=2 d \theta$ and $d \theta=\frac{1}{2} d u$, so $\int \sec ^{2} 2 \theta d \theta=\int \sec ^{2} u\left(\frac{1}{2} d u\right)=\frac{1}{2} \tan u+C=\frac{1}{2} \tan 2 \theta+C$.
13. Let $u=5-3 x$. Then $d u=-3 d x$ and $d x=-\frac{1}{3} d u$, so

$$
\int \frac{d x}{5-3 x}=\int \frac{1}{u}\left(-\frac{1}{3} d u\right)=-\frac{1}{3} \ln |u|+C=-\frac{1}{3} \ln |5-3 x|+C .
$$

14. Let $u=4-y^{3}$. Then $d u=-3 y^{2} d y$ and $y^{2} d y=-\frac{1}{3} d u$, so

$$
\int y^{2}\left(4-y^{3}\right)^{2 / 3} d y=\int u^{2 / 3}\left(-\frac{1}{3} d u\right)=-\frac{1}{3} \cdot \frac{3}{5} u^{5 / 3}+C=-\frac{1}{5}\left(4-y^{3}\right)^{5 / 3}+C .
$$

15. Let $u=\cos \theta$. Then $d u=-\sin \theta d \theta$ and $\sin \theta d \theta=-d u$, so

$$
\int \cos ^{3} \theta \sin \theta d \theta=\int u^{3}(-d u)=-\frac{1}{4} u^{4}+C=-\frac{1}{4} \cos ^{4} \theta+C .
$$

16. Let $u=-5 r$. Then $d u=-5 d r$ and $d r=-\frac{1}{5} d u$, so $\int e^{-5 r} d r=\int e^{u}\left(-\frac{1}{5} d u\right)=-\frac{1}{5} e^{u}+C=-\frac{1}{5} e^{-5 r}+C$.
17. Let $x=1-e^{u}$. Then $d x=-e^{u} d u$ and $e^{u} d u=-d x$, so

$$
\int \frac{e^{u}}{\left(1-e^{u}\right)^{2}} d u=\int \frac{1}{x^{2}}(-d x)=-\int x^{-2} d x=-\left(-x^{-1}\right)+C=\frac{1}{x}+C=\frac{1}{1-e^{u}}+C .
$$

18. Let $u=\sqrt{x}$. Then $d u=\frac{1}{2 \sqrt{x}} d x$ and $2 d u=\frac{1}{\sqrt{x}} d x$, so

$$
\int \frac{\sin \sqrt{x}}{\sqrt{x}} d x=\int \sin u(2 d u)=-2 \cos u+C=-2 \cos \sqrt{x}+C .
$$

19. Let $u=3 a x+b x^{3}$. Then $d u=\left(3 a+3 b x^{2}\right) d x=3\left(a+b x^{2}\right) d x$, so

$$
\int \frac{a+b x^{2}}{\sqrt{3 a x+b x^{3}}} d x=\int \frac{\frac{1}{3} d u}{u^{1 / 2}}=\frac{1}{3} \int u^{-1 / 2} d u=\frac{1}{3} \cdot 2 u^{1 / 2}+C=\frac{2}{3} \sqrt{3 a x+b x^{3}}+C .
$$

INSTRUCTOR USE ONLY

20. Let $u=z^{3}+1$. Then $d u=3 z^{2} d z$ and $\frac{1}{3} d u=z^{2} d z+C$, so

$$
\int \frac{z^{2}}{z^{3}+1} d z=\int \frac{1}{u}\left(\frac{1}{3} d u\right)=\frac{1}{3} \ln |u|+C=\frac{1}{3} \ln \left|z^{3}+1\right|+C .
$$

21. Let $u=\ln x$. Then $d u=\frac{d x}{x}$, so $\int \frac{(\ln x)^{2}}{x} d x=\int u^{2} d u=\frac{1}{3} u^{3}+C=\frac{1}{3}(\ln x)^{3}+C$.
22. Let $u=\cos x$. Then $d u=-\sin x d x$ and $-d u=\sin x d x$, so
$\int \sin x \sin (\cos x) d x=\int \sin u(-d u)=(-\cos u)(-1)+C=\cos (\cos x)+C$.
23. Let $u=\tan \theta$. Then $d u=\sec ^{2} \theta d \theta$, so $\int \sec ^{2} \theta \tan ^{3} \theta d \theta=\int u^{3} d u=\frac{1}{4} u^{4}+C=\frac{1}{4} \tan ^{4} \theta+C$.
24. Let $u=x+2$. Then $d u=d x$ and $x=u-2$, so
$\int x \sqrt{x+2} d x=\int(u-2) \sqrt{u} d u=\int\left(u^{3 / 2}-2 u^{1 / 2}\right) d u=\frac{2}{5} u^{5 / 2}-2 \cdot \frac{2}{3} u^{3 / 2}+C=\frac{2}{5}(x+2)^{5 / 2}-\frac{4}{3}(x+2)^{3 / 2}+C$.
25. Let $u=1+e^{x}$. Then $d u=e^{x} d x$, so $\int e^{x} \sqrt{1+e^{x}} d x=\int \sqrt{u} d u=\frac{2}{3} u^{3 / 2}+C=\frac{2}{3}\left(1+e^{x}\right)^{3 / 2}+C$.

Or: Let $u=\sqrt{1+e^{x}}$. Then $u^{2}=1+e^{x}$ and $2 u d u=e^{x} d x$, so
$\int e^{x} \sqrt{1+e^{x}} d x=\int u \cdot 2 u d u=\frac{2}{3} u^{3}+C=\frac{2}{3}\left(1+e^{x}\right)^{3 / 2}+C$.
26. Let $u=a x+b$. Then $d u=a d x$ and $d x=(1 / a) d u$, so

$$
\int \frac{d x}{a x+b}=\int \frac{(1 / a) d u}{u}=\frac{1}{a} \int \frac{1}{u} d u=\frac{1}{a} \ln |u|+C=\frac{1}{a} \ln |a x+b|+C .
$$

27. Let $u=x^{3}+3 x$. Then $d u=\left(3 x^{2}+3\right) d x$ and $\frac{1}{3} d u=\left(x^{2}+1\right) d x$, so
$\int\left(x^{2}+1\right)\left(x^{3}+3 x\right)^{4} d x=\int u^{4}\left(\frac{1}{3} d u\right)=\frac{1}{3} \cdot \frac{1}{5} u^{5}+C=\frac{1}{15}\left(x^{3}+3 x\right)^{5}+C$.
28. Let $u=\cos t$. Then $d u=-\sin t d t$ and $\sin t d t=-d u$, so $\int e^{\cos t} \sin t d t=\int e^{u}(-d u)=-e^{u}+C=-e^{\cos t}+C$.
29. Let $u=5^{t}$. Then $d u=5^{t} \ln 5 d t$ and $5^{t} d t=\frac{1}{\ln 5} d u$, so
$\int 5^{t} \sin \left(5^{t}\right) d t=\int \sin u\left(\frac{1}{\ln 5} d u\right)=-\frac{1}{\ln 5} \cos u+C=-\frac{1}{\ln 5} \cos \left(5^{t}\right)+C$.
30. Let $u=\tan x$. Then $d u=\sec ^{2} x d x$, so
$\int \frac{\sec ^{2} x}{\tan ^{2} x} d x=\int \frac{1}{u^{2}} d u=\int u^{-2} d u=-1 u^{-1}+C=-\frac{1}{\tan x}+C=-\cot x+C$.
Or: $\int \frac{\sec ^{2} x}{\tan ^{2} x} d x=\int\left(\frac{1}{\cos ^{2} x} \cdot \frac{\cos ^{2} x}{\sin ^{2} x}\right) d x=\int \csc ^{2} x d x=-\cot x+C$
31. Let $u=\arctan x$. Then $d u=\frac{1}{x^{2}+1} d x$, so $\int \frac{(\arctan x)^{2}}{x^{2}+1} d x=\int u^{2} d u=\frac{1}{3} u^{3}+C=\frac{1}{3}(\arctan x)^{3}+C$.
32. Let $u=x^{2}+4$. Then $d u=2 x d x$ and $x d x=\frac{1}{2} d u$, so
$\int \frac{x}{x^{2}+4} d x=\int \frac{1}{u}\left(\frac{1}{2} d u\right)=\frac{1}{2} \ln |u|+C=\frac{1}{2} \ln \left|x^{2}+4\right|+C=\frac{1}{2} \ln \left(x^{2}+4\right)+C \quad\left[\right.$ since $\left.x^{2}+4>0\right]$.

33. Let $u=1+5 t$. Then $d u=5 d t$ and $d t=\frac{1}{5} d u$, so
$\int \cos (1+5 t) d t=\int \cos u\left(\frac{1}{5} d u\right)=\frac{1}{5} \sin u+C=\frac{1}{5} \sin (1+5 t)+C$.
34. Let $u=\frac{\pi}{x}$. Then $d u=-\frac{\pi}{x^{2}} d x$ and $\frac{1}{x^{2}} d x=-\frac{1}{\pi} d u$, so

$$
\int \frac{\cos (\pi / x)}{x^{2}} d x=\int \cos u\left(-\frac{1}{\pi} d u\right)=-\frac{1}{\pi} \sin u+C=-\frac{1}{\pi} \sin \frac{\pi}{x}+C
$$

35. Let $u=\cot x$. Then $d u=-\csc ^{2} x d x$ and $\csc ^{2} x d x=-d u$, so $\int \sqrt{\cot x} \csc ^{2} x d x=\int \sqrt{u}(-d u)=-\frac{u^{3 / 2}}{3 / 2}+C=-\frac{2}{3}(\cot x)^{3 / 2}+C$.
36. Let $u=2^{t}+3$. Then $d u=2^{t} \ln 2 d t$ and $2^{t} d t=\frac{1}{\ln 2} d u$, so

$$
\int \frac{2^{t}}{2^{t}+3} d t=\int \frac{1}{u}\left(\frac{1}{\ln 2} d u\right)=\frac{1}{\ln 2} \ln |u|+C=\frac{1}{\ln 2} \ln \left(2^{t}+3\right)+C .
$$

37. Let $u=\sinh x$. Then $d u=\cosh x d x$, so $\int \sinh ^{2} x \cosh x d x=\int u^{2} d u=\frac{1}{3} u^{3}+C=\frac{1}{3} \sinh ^{3} x+C$.
38. Let $u=1+\tan t$. Then $d u=\sec ^{2} t d t$, so
$\int \frac{d t}{\cos ^{2} t \sqrt{1+\tan t}}=\int \frac{\sec ^{2} t d t}{\sqrt{1+\tan t}}=\int \frac{d u}{\sqrt{u}}=\int u^{-1 / 2} d u=\frac{u^{1 / 2}}{1 / 2}+C=2 \sqrt{1+\tan t}+C$.
39. $\int \frac{\sin 2 x}{1+\cos ^{2} x} d x=2 \int \frac{\sin x \cos x}{1+\cos ^{2} x} d x=2 I$. Let $u=\cos x$. Then $d u=-\sin x d x$, so
$2 I=-2 \int \frac{u d u}{1+u^{2}}=-2 \cdot \frac{1}{2} \ln \left(1+u^{2}\right)+C=-\ln \left(1+u^{2}\right)+C=-\ln \left(1+\cos ^{2} x\right)+C$.
Or: Let $u=1+\cos ^{2} x$.
40. Let $u=\cos x$. Then $d u=-\sin x d x$ and $\sin x d x=-d u$, so
$\int \frac{\sin x}{1+\cos ^{2} x} d x=\int \frac{-d u}{1+u^{2}}=-\tan ^{-1} u+C=-\tan ^{-1}(\cos x)+C$.
41. $\int \cot x d x=\int \frac{\cos x}{\sin x} d x$. Let $u=\sin x$. Then $d u=\cos x d x$, so $\int \cot x d x=\int \frac{1}{u} d u=\ln |u|+C=\ln |\sin x|+C$.
42. Let $u=\ln t$. Then $d u=\frac{1}{t} d t$, so $\int \frac{\cos (\ln t)}{t} d t=\int \cos u d u=\sin u+C=\sin (\ln t)+C$.
43. Let $u=\sin ^{-1} x$. Then $d u=\frac{1}{\sqrt{1-x^{2}}} d x$, so $\int \frac{d x}{\sqrt{1-x^{2}} \sin ^{-1} x}=\int \frac{1}{u} d u=\ln |u|+C=\ln \left|\sin ^{-1} x\right|+C$.
44. Let $u=x^{2}$. Then $d u=2 x d x$, so $\int \frac{x}{1+x^{4}} d x=\int \frac{\frac{1}{2} d u}{1+u^{2}}=\frac{1}{2} \tan ^{-1} u+C=\frac{1}{2} \tan ^{-1}\left(x^{2}\right)+C$.
45. Let $u=1+x^{2}$. Then $d u=2 x d x$, so

$$
\begin{aligned}
\int \frac{1+x}{1+x^{2}} d x & =\int \frac{1}{1+x^{2}} d x+\int \frac{x}{1+x^{2}} d x=\tan ^{-1} x+\int \frac{\frac{1}{2} d u}{u}=\tan ^{-1} x+\frac{1}{2} \ln |u|+C \\
& =\tan ^{-1} x+\frac{1}{2} \ln \left|1+x^{2}\right|+C=\tan ^{-1} x+\frac{1}{2} \ln \left(1+x^{2}\right)+C \quad\left[\text { since } 1+x^{2}>0\right]
\end{aligned}
$$

INSTRUCTOR USE ONLY

46. Let $u=2+x$. Then $d u=d x, x=u-2$, and $x^{2}=(u-2)^{2}$, so

$$
\begin{aligned}
\int x^{2} \sqrt{2+x} d x & =\int(u-2)^{2} \sqrt{u} d u=\int\left(u^{2}-4 u+4\right) u^{1 / 2} d u=\int\left(u^{5 / 2}-4 u^{3 / 2}+4 u^{1 / 2}\right) d u \\
& =\frac{2}{7} u^{7 / 2}-\frac{8}{5} u^{5 / 2}+\frac{8}{3} u^{3 / 2}+C=\frac{2}{7}(2+x)^{7 / 2}-\frac{8}{5}(2+x)^{5 / 2}+\frac{8}{3}(2+x)^{3 / 2}+C
\end{aligned}
$$

47. Let $u=2 x+5$. Then $d u=2 d x$ and $x=\frac{1}{2}(u-5)$, so

$$
\begin{aligned}
\int x(2 x+5)^{8} d x & =\int \frac{1}{2}(u-5) u^{8}\left(\frac{1}{2} d u\right)=\frac{1}{4} \int\left(u^{9}-5 u^{8}\right) d u \\
& =\frac{1}{4}\left(\frac{1}{10} u^{10}-\frac{5}{9} u^{9}\right)+C=\frac{1}{40}(2 x+5)^{10}-\frac{5}{36}(2 x+5)^{9}+C
\end{aligned}
$$

48. Let $u=x^{2}+1$ [so $\left.x^{2}=u-1\right]$. Then $d u=2 x d x$ and $x d x=\frac{1}{2} d u$, so

$$
\begin{aligned}
\int x^{3} \sqrt{x^{2}+1} d x & =\int x^{2} \sqrt{x^{2}+1} x d x=\int(u-1) \sqrt{u}\left(\frac{1}{2} d u\right)=\frac{1}{2} \int\left(u^{3 / 2}-u^{1 / 2}\right) d u \\
& =\frac{1}{2}\left(\frac{2}{5} u^{5 / 2}-\frac{2}{3} u^{3 / 2}\right)+C=\frac{1}{5}\left(x^{2}+1\right)^{5 / 2}-\frac{1}{3}\left(x^{2}+1\right)^{3 / 2}+C .
\end{aligned}
$$

Or: Let $u=\sqrt{x^{2}+1}$. Then $u^{2}=x^{2}+1 \Rightarrow 2 u d u=2 x d x \Rightarrow u d u=x d x$, so

$$
\begin{aligned}
\int x^{3} \sqrt{x^{2}+1} d x & =\int x^{2} \sqrt{x^{2}+1} x d x=\int\left(u^{2}-1\right) u \cdot u d u=\int\left(u^{4}-u^{2}\right) d u \\
& =\frac{1}{5} u^{5}-\frac{1}{3} u^{3}+C=\frac{1}{5}\left(x^{2}+1\right)^{5 / 2}-\frac{1}{3}\left(x^{2}+1\right)^{3 / 2}+C .
\end{aligned}
$$

Note: This answer can be written as $\frac{1}{15} \sqrt{x^{2}+1}\left(3 x^{4}+x^{2}-2\right)+C$.
49. $f(x)=x\left(x^{2}-1\right)^{3}$. $u=x^{2}-1 \Rightarrow d u=2 x d x$, so

$$
\int x\left(x^{2}-1\right)^{3} d x=\int u^{3}\left(\frac{1}{2} d u\right)=\frac{1}{8} u^{4}+C=\frac{1}{8}\left(x^{2}-1\right)^{4}+C
$$

Where f is positive (negative), F is increasing (decreasing). Where f changes from negative to positive (positive to negative), F has a local
 minimum (maximum).
50. $f(\theta)=\tan ^{2} \theta \sec ^{2} \theta \cdot u=\tan \theta \Rightarrow d u=\sec ^{2} \theta d \theta$, so

$$
\int \tan ^{2} \theta \sec ^{2} \theta d \theta=\int u^{2} d u=\frac{1}{3} u^{3}+C=\frac{1}{3} \tan ^{3} \theta+C
$$

Note that f is positive and F is increasing. At $x=0, f=0$ and F has a horizontal tangent.

51. $f(x)=e^{\cos x} \sin x . u=\cos x \quad \Rightarrow \quad d u=-\sin x d x$, so

$$
\int e^{\cos x} \sin x d x=\int e^{u}(-d u)=-e^{u}+C=-e^{\cos x}+C
$$

Note that at $x=\pi, f$ changes from positive to negative and F has a local maximum. Also, both f and F are periodic with period 2π, so at $x=0$ and at $x=2 \pi, f$ changes from negative to positive and F has a local minimum.

INSTRUCTOR USE ONLY

52. $f(x)=\sin x \cos ^{4} x . u=\cos x \quad \Rightarrow \quad d u=-\sin x d x$, so

$$
\int \sin x \cos ^{4} x d x=\int u^{4}(-d u)=-\frac{1}{5} u^{5}+C=-\frac{1}{5} \cos ^{5} x+C
$$

Note that at $x=\pi, f$ changes from positive to negative and F has a local maximum. Also, both f and F are periodic with period 2π, so at $x=0$ and at $x=2 \pi, f$ changes from negative to positive and F has a local minimum.

53. Let $u=\frac{\pi}{2} t$, so $d u=\frac{\pi}{2} d t$. When $t=0, u=0$; when $t=1, u=\frac{\pi}{2}$. Thus,

$$
\int_{0}^{1} \cos (\pi t / 2) d t=\int_{0}^{\pi / 2} \cos u\left(\frac{2}{\pi} d u\right)=\frac{2}{\pi}[\sin u]_{0}^{\pi / 2}=\frac{2}{\pi}\left(\sin \frac{\pi}{2}-\sin 0\right)=\frac{2}{\pi}(1-0)=\frac{2}{\pi}
$$

54. Let $u=3 t-1$, so $d u=3 d t$. When $t=0, u=-1$; when $t=1, u=2$. Thus,

$$
\int_{0}^{1}(3 t-1)^{50} d t=\int_{-1}^{2} u^{50}\left(\frac{1}{3} d u\right)=\frac{1}{3}\left[\frac{1}{51} u^{51}\right]_{-1}^{2}=\frac{1}{153}\left[2^{51}-(-1)^{51}\right]=\frac{1}{153}\left(2^{51}+1\right)
$$

55. Let $u=1+7 x$, so $d u=7 d x$. When $x=0, u=1$; when $x=1, u=8$. Thus,

$$
\int_{0}^{1} \sqrt[3]{1+7 x} d x=\int_{1}^{8} u^{1 / 3}\left(\frac{1}{7} d u\right)=\frac{1}{7}\left[\frac{3}{4} u^{4 / 3}\right]_{1}^{8}=\frac{3}{28}\left(8^{4 / 3}-1^{4 / 3}\right)=\frac{3}{28}(16-1)=\frac{45}{28}
$$

56. Let $u=5 x+1$, so $d u=5 d x$. When $x=0, u=1$; when $x=3, u=16$. Thus,

$$
\int_{0}^{3} \frac{d x}{5 x+1}=\int_{1}^{16} \frac{1}{u}\left(\frac{1}{5} d u\right)=\frac{1}{5}[\ln |u|]_{1}^{16}=\frac{1}{5}(\ln 16-\ln 1)=\frac{1}{5} \ln 16 .
$$

57. Let $u=\cos t$, so $d u=-\sin t d t$. When $t=0, u=1$; when $t=\frac{\pi}{6}, u=\sqrt{3} / 2$. Thus,

$$
\int_{0}^{\pi / 6} \frac{\sin t}{\cos ^{2} t} d t=\int_{1}^{\sqrt{3} / 2} \frac{1}{u^{2}}(-d u)=\left[\frac{1}{u}\right]_{1}^{\sqrt{3} / 2}=\frac{2}{\sqrt{3}}-1 .
$$

58. Let $u=\frac{1}{2} t$, so $d u=\frac{1}{2} d t$. When $t=\frac{\pi}{3}, u=\frac{\pi}{6}$; when $t=\frac{2 \pi}{3}, u=\frac{\pi}{3}$. Thus,

$$
\begin{aligned}
\int_{\pi / 3}^{2 \pi / 3} \csc ^{2}\left(\frac{1}{2} t\right) d t & =\int_{\pi / 6}^{\pi / 3} \csc ^{2} u(2 d u)=2[-\cot u]_{\pi / 6}^{\pi / 3}=-2\left(\cot \frac{\pi}{3}-\cot \frac{\pi}{6}\right) \\
& =-2\left(\frac{1}{\sqrt{3}}-\sqrt{3}\right)=-2\left(\frac{1}{3} \sqrt{3}-\sqrt{3}\right)=\frac{4}{3} \sqrt{3}
\end{aligned}
$$

59. Let $u=1 / x$, so $d u=-1 / x^{2} d x$. When $x=1, u=1$; when $x=2, u=\frac{1}{2}$. Thus, $\int_{1}^{2} \frac{e^{1 / x}}{x^{2}} d x=\int_{1}^{1 / 2} e^{u}(-d u)=-\left[e^{u}\right]_{1}^{1 / 2}=-\left(e^{1 / 2}-e\right)=e-\sqrt{e}$.
60. Let $u=-x^{2}$, so $d u=-2 x d x$. When $x=0, u=0$; when $x=1, u=-1$. Thus, $\int_{0}^{1} x e^{-x^{2}} d x=\int_{0}^{-1} e^{u}\left(-\frac{1}{2} d u\right)=-\frac{1}{2}\left[e^{u}\right]_{0}^{-1}=-\frac{1}{2}\left(e^{-1}-e^{0}\right)=\frac{1}{2}(1-1 / e)$.
61. $\int_{-\pi / 4}^{\pi / 4}\left(x^{3}+x^{4} \tan x\right) d x=0$ by Theorem 7(b), since $f(x)=x^{3}+x^{4} \tan x$ is an odd function.
62. Let $u=\sin x$, so $d u=\cos x d x$. When $x=0, u=0$; when $x=\frac{\pi}{2}, u=1$. Thus, $\int_{0}^{\pi / 2} \cos x \sin (\sin x) d x=\int_{0}^{1} \sin u d u=[-\cos u]_{0}^{1}=-(\cos 1-1)=1-\cos 1$.
63. Let $u=1+2 x$, so $d u=2 d x$. When $x=0, u=1$; when $x=13, u=27$. Thus,

$$
\int_{0}^{13} \frac{d x}{\sqrt[3]{(1+2 x)^{2}}}=\int_{1}^{27} u^{-2 / 3}\left(\frac{1}{2} d u\right)=\left[\frac{1}{2} \cdot 3 u^{1 / 3}\right]_{1}^{27}=\frac{3}{2}(3-1)=3 .
$$

64. Assume $a>0$. Let $u=a^{2}-x^{2}$, so $d u=-2 x d x$. When $x=0, u=a^{2}$; when $x=a, u=0$. Thus,

$$
\int_{0}^{a} x \sqrt{a^{2}-x^{2}} d x=\int_{a^{2}}^{0} u^{1 / 2}\left(-\frac{1}{2} d u\right)=\frac{1}{2} \int_{0}^{a^{2}} u^{1 / 2} d u=\frac{1}{2} \cdot\left[\frac{2}{3} u^{3 / 2}\right]_{0}^{a^{2}}=\frac{1}{3} a^{3} .
$$

65. Let $u=x^{2}+a^{2}$, so $d u=2 x d x$ and $x d x=\frac{1}{2} d u$. When $x=0, u=a^{2}$; when $x=a, u=2 a^{2}$. Thus,

$$
\int_{0}^{a} x \sqrt{x^{2}+a^{2}} d x=\int_{a^{2}}^{2 a^{2}} u^{1 / 2}\left(\frac{1}{2} d u\right)=\frac{1}{2}\left[\frac{2}{3} u^{3 / 2}\right]_{a^{2}}^{2 a^{2}}=\left[\frac{1}{3} u^{3 / 2}\right]_{a^{2}}^{2 a^{2}}=\frac{1}{3}\left[\left(2 a^{2}\right)^{3 / 2}-\left(a^{2}\right)^{3 / 2}\right]=\frac{1}{3}(2 \sqrt{2}-1) a^{3}
$$

66. $\int_{-\pi / 3}^{\pi / 3} x^{4} \sin x d x=0$ by Theorem $7(\mathrm{~b})$, since $f(x)=x^{4} \sin x$ is an odd function.
67. Let $u=x-1$, so $u+1=x$ and $d u=d x$. When $x=1, u=0$; when $x=2, u=1$. Thus,

$$
\int_{1}^{2} x \sqrt{x-1} d x=\int_{0}^{1}(u+1) \sqrt{u} d u=\int_{0}^{1}\left(u^{3 / 2}+u^{1 / 2}\right) d u=\left[\frac{2}{5} u^{5 / 2}+\frac{2}{3} u^{3 / 2}\right]_{0}^{1}=\frac{2}{5}+\frac{2}{3}=\frac{16}{15} .
$$

68. Let $u=1+2 x$, so $x=\frac{1}{2}(u-1)$ and $d u=2 d x$. When $x=0, u=1$; when $x=4, u=9$. Thus,

$$
\begin{aligned}
\int_{0}^{4} \frac{x d x}{\sqrt{1+2 x}} & =\int_{1}^{9} \frac{\frac{1}{2}(u-1)}{\sqrt{u}} \frac{d u}{2}=\frac{1}{4} \int_{1}^{9}\left(u^{1 / 2}-u^{-1 / 2}\right) d u=\frac{1}{4}\left[\frac{2}{3} u^{3 / 2}-2 u^{1 / 2}\right]_{1}^{9}=\frac{1}{4} \cdot \frac{2}{3}\left[u^{3 / 2}-3 u^{1 / 2}\right]_{1}^{9} \\
& =\frac{1}{6}[(27-9)-(1-3)]=\frac{20}{6}=\frac{10}{3}
\end{aligned}
$$

69. Let $u=\ln x$, so $d u=\frac{d x}{x}$. When $x=e, u=1$; when $x=e^{4} ; u=4$. Thus,

$$
\int_{e}^{e^{4}} \frac{d x}{x \sqrt{\ln x}}=\int_{1}^{4} u^{-1 / 2} d u=2\left[u^{1 / 2}\right]_{1}^{4}=2(2-1)=2 .
$$

70. Let $u=(x-1)^{2}$, so $d u=2(x-1) d x$. When $x=0, u=1$; when $x=2, u=1$. Thus,

$$
\int_{0}^{2}(x-1) e^{(x-1)^{2}} d x=\int_{1}^{1} e^{u}\left(\frac{1}{2} d u\right)=0 \text { since the limits are equal. }
$$

71. Let $u=e^{z}+z$, so $d u=\left(e^{z}+1\right) d z$. When $z=0, u=1$; when $z=1, u=e+1$. Thus,

$$
\int_{0}^{1} \frac{e^{z}+1}{e^{z}+z} d z=\int_{1}^{e+1} \frac{1}{u} d u=[\ln |u|]_{1}^{e+1}=\ln |e+1|-\ln |1|=\ln (e+1) .
$$

72. Let $u=\frac{2 \pi t}{T}-\alpha$, so $d u=\frac{2 \pi}{T} d t$. When $t=0, u=-\alpha$; when $t=\frac{T}{2}, u=\pi-\alpha$. Thus,

$$
\begin{aligned}
\int_{0}^{T / 2} \sin \left(\frac{2 \pi t}{T}-\alpha\right) d t & =\int_{-\alpha}^{\pi-\alpha} \sin u\left(\frac{T}{2 \pi} d u\right)=\frac{T}{2 \pi}[-\cos u]_{-\alpha}^{\pi-\alpha}=-\frac{T}{2 \pi}[\cos (\pi-\alpha)-\cos (-\alpha)] \\
& =-\frac{T}{2 \pi}(-\cos \alpha-\cos \alpha)=-\frac{T}{2 \pi}(-2 \cos \alpha)=\frac{T}{\pi} \cos \alpha
\end{aligned}
$$

73. Let $u=1+\sqrt{x}$, so $d u=\frac{1}{2 \sqrt{x}} d x \Rightarrow 2 \sqrt{x} d u=d x \quad \Rightarrow \quad 2(u-1) d u=d x$. When $x=0, u=1$; when $x=1$, $u=2$. Thus,

$$
\begin{aligned}
\int_{0}^{1} \frac{d x}{(1+\sqrt{x})^{4}} & =\int_{1}^{2} \frac{1}{u^{4}} \cdot[2(u-1) d u]=2 \int_{1}^{2}\left(\frac{1}{u^{3}}-\frac{1}{u^{4}}\right) d u=2\left[-\frac{1}{2 u^{2}}+\frac{1}{3 u^{3}}\right]_{1}^{2} \\
& =2\left[\left(-\frac{1}{8}+\frac{1}{24}\right)-\left(-\frac{1}{2}+\frac{1}{3}\right)\right]=2\left(\frac{1}{12}\right)=\frac{1}{6}
\end{aligned}
$$

74. If $f(x)=\sin \sqrt[3]{x}$, then $f(-x)=\sin \sqrt[3]{-x}=\sin (-\sqrt[3]{x})=-\sin \sqrt[3]{x}=-f(x)$, so f is an odd function. Now $I=\int_{-2}^{3} \sin \sqrt[3]{x} d x=\int_{-2}^{2} \sin \sqrt[3]{x} d x+\int_{2}^{3} \sin \sqrt[3]{x} d x=I_{1}+I_{2} . \quad I_{1}=0$ by Theorem 7(b). To estimate I_{2}, note that $2 \leq x \leq 3 \Rightarrow \sqrt[3]{2} \leq \sqrt[3]{x} \leq \sqrt[3]{3}[\approx 1.44] \Rightarrow 0 \leq \sqrt[3]{x} \leq \frac{\pi}{2}[\approx 1.57] \Rightarrow \sin 0 \leq \sin \sqrt[3]{x} \leq \sin \frac{\pi}{2}$ [since sine is increasing on this interval] $\Rightarrow 0 \leq \sin \sqrt[3]{x} \leq 1$. By comparison property $8,0(3-2) \leq I_{2} \leq 1(3-2) \Rightarrow$ $0 \leq I_{2} \leq 1 \quad \Rightarrow \quad 0 \leq I \leq 1$.
75. From the graph, it appears that the area under the curve is about $1+\left(\right.$ a little more than $\left.\frac{1}{2} \cdot 1 \cdot 0.7\right)$, or about 1.4. The exact area is given by $A=\int_{0}^{1} \sqrt{2 x+1} d x$. Let $u=2 x+1$, so $d u=2 d x$. The limits change to $2 \cdot 0+1=1$ and $2 \cdot 1+1=3$, and $A=\int_{1}^{3} \sqrt{u}\left(\frac{1}{2} d u\right)=\frac{1}{2}\left[\frac{2}{3} u^{3 / 2}\right]_{1}^{3}=\frac{1}{3}(3 \sqrt{3}-1)=\sqrt{3}-\frac{1}{3} \approx 1.399$.

76. From the graph, it appears that the area under the curve is almost $\frac{1}{2} \cdot \pi \cdot 2.6$, or about 4 . The exact area is given by

$$
\begin{aligned}
A & =\int_{0}^{\pi}(2 \sin x-\sin 2 x) d x=-2[\cos x]_{0}^{\pi}-\int_{0}^{\pi} \sin 2 x d x \\
& =-2(-1-1)-0=4
\end{aligned}
$$

Note: $\int_{0}^{\pi} \sin 2 x d x=0$ since it is clear from the graph of $y=\sin 2 x$ that $\int_{\pi / 2}^{\pi} \sin 2 x d x=-\int_{0}^{\pi / 2} \sin 2 x d x$.
77. First write the integral as a sum of two integrals:
$I=\int_{-2}^{2}(x+3) \sqrt{4-x^{2}} d x=I_{1}+I_{2}=\int_{-2}^{2} x \sqrt{4-x^{2}} d x+\int_{-2}^{2} 3 \sqrt{4-x^{2}} d x . I_{1}=0$ by Theorem 7(b), since $f(x)=x \sqrt{4-x^{2}}$ is an odd function and we are integrating from $x=-2$ to $x=2$. We interpret I_{2} as three times the area of a semicircle with radius 2 , so $I=0+3 \cdot \frac{1}{2}\left(\pi \cdot 2^{2}\right)=6 \pi$.
78. Let $u=x^{2}$. Then $d u=2 x d x$ and the limits are unchanged $\left(0^{2}=0\right.$ and $\left.1^{2}=1\right)$, so $I=\int_{0}^{1} x \sqrt{1-x^{4}} d x=\frac{1}{2} \int_{0}^{1} \sqrt{1-u^{2}} d u$. But this integral can be interpreted as the area of a quarter-circle with radius 1. So $I=\frac{1}{2} \cdot \frac{1}{4}\left(\pi \cdot 1^{2}\right)=\frac{1}{8} \pi$.

INSTRUCTOR USE ONLY

79. First Figure Let $u=\sqrt{x}$, so $x=u^{2}$ and $d x=2 u d u$. When $x=0, u=0$; when $x=1, u=1$. Thus,

$$
A_{1}=\int_{0}^{1} e^{\sqrt{x}} d x=\int_{0}^{1} e^{u}(2 u d u)=2 \int_{0}^{1} u e^{u} d u
$$

Second Figure $\quad A_{2}=\int_{0}^{1} 2 x e^{x} d x=2 \int_{0}^{1} u e^{u} d u$.
Third Figure Let $u=\sin x$, so $d u=\cos x d x$. When $x=0, u=0$; when $x=\frac{\pi}{2}, u=1$. Thus,

$$
A_{3}=\int_{0}^{\pi / 2} e^{\sin x} \sin 2 x d x=\int_{0}^{\pi / 2} e^{\sin x}(2 \sin x \cos x) d x=\int_{0}^{1} e^{u}(2 u d u)=2 \int_{0}^{1} u e^{u} d u
$$

Since $A_{1}=A_{2}=A_{3}$, all three areas are equal.
80. Let $u=\frac{\pi t}{12}$. Then $d u=\frac{\pi}{12} d t$ and

$$
\begin{aligned}
\int_{0}^{24} R(t) d t & =\int_{0}^{24}\left[85-0.18 \cos \left(\frac{\pi t}{12}\right)\right] d t=\int_{0}^{2 \pi}(85-0.18 \cos u)\left(\frac{12}{\pi} d u\right)=\frac{12}{\pi}[85 u-0.18 \sin u]_{0}^{2 \pi} \\
& =\frac{12}{\pi}[(85 \cdot 2 \pi-0)-(0-0)]=2040 \mathrm{kcal}
\end{aligned}
$$

81. The rate is measured in liters per minute. Integrating from $t=0$ minutes to $t=60$ minutes will give us the total amount of oil that leaks out (in liters) during the first hour.

$$
\begin{aligned}
\int_{0}^{60} r(t) d t & =\int_{0}^{60} 100 e^{-0.01 t} d t \quad[u=-0.01 t, d u=-0.01 d t] \\
& =100 \int_{0}^{-0.6} e^{u}(-100 d u)=-10,000\left[e^{u}\right]_{0}^{-0.6}=-10,000\left(e^{-0.6}-1\right) \approx 4511.9 \approx 4512 \text { liters }
\end{aligned}
$$

82. Let $r(t)=a e^{b t}$ with $a=450.268$ and $b=1.12567$, and $n(t)=$ population after t hours. Since $r(t)=n^{\prime}(t)$, $\int_{0}^{3} r(t) d t=n(3)-n(0)$ is the total change in the population after three hours. Since we start with 400 bacteria, the population will be

$$
\begin{aligned}
n(3) & =400+\int_{0}^{3} r(t) d t=400+\int_{0}^{3} a e^{b t} d t=400+\frac{a}{b}\left[e^{b t}\right]_{0}^{3}=400+\frac{a}{b}\left(e^{3 b}-1\right) \\
& \approx 400+11,313=11,713 \text { bacteria }
\end{aligned}
$$

83. The volume of inhaled air in the lungs at time t is

$$
\begin{aligned}
V(t) & =\int_{0}^{t} f(u) d u=\int_{0}^{t} \frac{1}{2} \sin \left(\frac{2 \pi}{5} u\right) d u=\int_{0}^{2 \pi t / 5} \frac{1}{2} \sin v\left(\frac{5}{2 \pi} d v\right) \quad\left[\text { substitute } v=\frac{2 \pi}{5} u, d v=\frac{2 \pi}{5} d u\right] \\
& =\frac{5}{4 \pi}[-\cos v]_{0}^{2 \pi t / 5}=\frac{5}{4 \pi}\left[-\cos \left(\frac{2 \pi}{5} t\right)+1\right]=\frac{5}{4 \pi}\left[1-\cos \left(\frac{2 \pi}{5} t\right)\right] \quad \text { liters }
\end{aligned}
$$

84. The rate G is measured in kilograms per year. Integrating from $t=0$ years (2000) to $t=20$ years (2020) will give us the net change in biomass from 2000 to 2020.

$$
\begin{aligned}
\int_{0}^{20} \frac{60,000 e^{-0.6 t}}{\left(1+5 e^{-0.6 t}\right)^{2}} d t & =\int_{6}^{1+5 e^{-12}} \frac{60,000}{u^{2}}\left(-\frac{1}{3} d u\right) \quad\left[\begin{array}{c}
u=1+5 e^{-0.6 t}, \\
d u=-3 e^{-0.6 t} d t
\end{array}\right] \\
& =\left[\frac{20,000}{u}\right]_{6}^{1+5 e^{-12}}=\frac{20,000}{1+5 e^{-12}}-\frac{20,000}{6} \approx 16,666
\end{aligned}
$$

Thus, the predicted biomass for the year 2020 is approximately $25,000+16,666=41,666 \mathrm{~kg}$.
85. $\int_{0}^{30} u(t) d t=\int_{0}^{30} \frac{r}{V} C_{0} e^{-r t / V} d t=C_{0} \int_{1}^{e^{-30 r / V}}(-d x) \quad\left[\begin{array}{c}x=e^{-r t / V}, \\ d x=-\frac{r}{V} e^{-r t / V} d t\end{array}\right]$

$$
=C_{0}[-x]_{1}^{e^{-30 r / V}}=C_{0}\left(-e^{-30 r / V}+1\right)
$$

The integral $\int_{0}^{30} u(t) d t$ represents the total amount of urea removed from the blood in the first 30 minutes of dialysis.
86. Number of calculators $=x(4)-x(2)=\int_{2}^{4} 5000\left[1-100(t+10)^{-2}\right] d t$

$$
=5000\left[t+100(t+10)^{-1}\right]_{2}^{4}=5000\left[\left(4+\frac{100}{14}\right)-\left(2+\frac{100}{12}\right)\right] \approx 4048
$$

87. Let $u=2 x$. Then $d u=2 d x$, so $\int_{0}^{2} f(2 x) d x=\int_{0}^{4} f(u)\left(\frac{1}{2} d u\right)=\frac{1}{2} \int_{0}^{4} f(u) d u=\frac{1}{2}(10)=5$.
88. Let $u=x^{2}$. Then $d u=2 x d x$, so $\int_{0}^{3} x f\left(x^{2}\right) d x=\int_{0}^{9} f(u)\left(\frac{1}{2} d u\right)=\frac{1}{2} \int_{0}^{9} f(u) d u=\frac{1}{2}(4)=2$.
89. Let $u=-x$. Then $d u=-d x$, so

$$
\int_{a}^{b} f(-x) d x=\int_{-a}^{-b} f(u)(-d u)=\int_{-b}^{-a} f(u) d u=\int_{-b}^{-a} f(x) d x
$$

From the diagram, we see that the equality follows from the fact that we are reflecting the graph of f, and the limits of integration, about the y-axis.

90. Let $u=x+c$. Then $d u=d x$, so

$$
\int_{a}^{b} f(x+c) d x=\int_{a+c}^{b+c} f(u) d u=\int_{a+c}^{b+c} f(x) d x
$$

From the diagram, we see that the equality follows from the fact that we are translating the graph of f, and the limits of integration, by a distance c.

91. Let $u=1-x$. Then $x=1-u$ and $d x=-d u$, so $\int_{0}^{1} x^{a}(1-x)^{b} d x=\int_{1}^{0}(1-u)^{a} u^{b}(-d u)=\int_{0}^{1} u^{b}(1-u)^{a} d u=\int_{0}^{1} x^{b}(1-x)^{a} d x$.
92. Let $u=\pi-x$. Then $d u=-d x$. When $x=\pi, u=0$ and when $x=0, u=\pi$. So

$$
\begin{aligned}
\int_{0}^{\pi} x f(\sin x) d x & =-\int_{\pi}^{0}(\pi-u) f(\sin (\pi-u)) d u=\int_{0}^{\pi}(\pi-u) f(\sin u) d u \\
& =\pi \int_{0}^{\pi} f(\sin u) d u-\int_{0}^{\pi} u f(\sin u) d u=\pi \int_{0}^{\pi} f(\sin x) d x-\int_{0}^{\pi} x f(\sin x) d x \quad \Rightarrow
\end{aligned}
$$

$$
2 \int_{0}^{\pi} x f(\sin x) d x=\pi \int_{0}^{\pi} f(\sin x) d x \quad \Rightarrow \quad \int_{0}^{\pi} x f(\sin x) d x=\frac{\pi}{2} \int_{0}^{\pi} f(\sin x) d x
$$

93. $\frac{x \sin x}{1+\cos ^{2} x}=x \cdot \frac{\sin x}{2-\sin ^{2} x}=x f(\sin x)$, where $f(t)=\frac{t}{2-t^{2}}$. By Exercise 92,

$$
\int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x=\int_{0}^{\pi} x f(\sin x) d x=\frac{\pi}{2} \int_{0}^{\pi} f(\sin x) d x=\frac{\pi}{2} \int_{0}^{\pi} \frac{\sin x}{1+\cos ^{2} x} d x
$$

Let $u=\cos x$. Then $d u=-\sin x d x$. When $x=\pi, u=-1$ and when $x=0, u=1$. So

$$
\begin{aligned}
\frac{\pi}{2} \int_{0}^{\pi} \frac{\sin x}{1+\cos ^{2} x} d x & =-\frac{\pi}{2} \int_{1}^{-1} \frac{d u}{1+u^{2}}=\frac{\pi}{2} \int_{-1}^{1} \frac{d u}{1+u^{2}}=\frac{\pi}{2}\left[\tan ^{-1} u\right]_{-1}^{1} \\
& =\frac{\pi}{2}\left[\tan ^{-1} 1-\tan ^{-1}(-1)\right]=\frac{\pi}{2}\left[\frac{\pi}{4}-\left(-\frac{\pi}{4}\right)\right]=\frac{\pi^{2}}{4}
\end{aligned}
$$

94. (a) $\int_{0}^{\pi / 2} f(\cos x) d x=\int_{0}^{\pi / 2} f\left[\sin \left(\frac{\pi}{2}-x\right)\right] d x \quad\left[u=\frac{\pi}{2}-x, d u=-d x\right]$

$$
=\int_{\pi / 2}^{0} f(\sin u)(-d u)=\int_{0}^{\pi / 2} f(\sin u) d u=\int_{0}^{\pi / 2} f(\sin x) d x
$$

Continuity of f is needed in order to apply the substitution rule for definite integrals.
(b) In part (a), take $f(x)=x^{2}$, so $\int_{0}^{\pi / 2} \cos ^{2} x d x=\int_{0}^{\pi / 2} \sin ^{2} x d x$. Now

$$
\begin{aligned}
& \int_{0}^{\pi / 2} \cos ^{2} x d x+\int_{0}^{\pi / 2} \sin ^{2} x d x=\int_{0}^{\pi / 2}\left(\cos ^{2} x+\sin ^{2} x\right) d x=\int_{0}^{\pi / 2} 1 d x=[x]_{0}^{\pi / 2}=\frac{\pi}{2}, \\
& \text { so } 2 \int_{0}^{\pi / 2} \cos ^{2} x d x=\frac{\pi}{2} \Rightarrow \int_{0}^{\pi / 2} \cos ^{2} x d x=\frac{\pi}{4} \quad\left[=\int_{0}^{\pi / 2} \sin ^{2} x d x\right] .
\end{aligned}
$$

5 Review

TRUE-FALSE QUIZ

1. True by Property 2 of the Integral in Section 5.2.
2. False. Try $a=0, b=2, f(x)=g(x)=1$ as a counterexample.
3. True by Property 3 of the Integral in Section 5.2.
4. False. You can't take a variable outside the integral sign. For example, using $f(x)=1$ on $[0,1]$, $\int_{0}^{1} x f(x) d x=\int_{0}^{1} x d x=\left[\frac{1}{2} x^{2}\right]_{0}^{1}=\frac{1}{2}$ (a constant) while $x \int_{0}^{1} 1 d x=x[x]_{0}^{1}=x \cdot 1=x$ (a variable).
5. False. For example, let $f(x)=x^{2}$. Then $\int_{0}^{1} \sqrt{x^{2}} d x=\int_{0}^{1} x d x=\frac{1}{2}$, but $\sqrt{\int_{0}^{1} x^{2} d x}=\sqrt{\frac{1}{3}}=\frac{1}{\sqrt{3}}$.
6. True by the Net Change Theorem.
7. True by Comparison Property 7 of the Integral in Section 5.2.
8. False. For example, let $a=0, b=1, f(x)=3, g(x)=x . f(x)>g(x)$ for each x in $(0,1)$, but $f^{\prime}(x)=0<1=g^{\prime}(x)$ for $x \in(0,1)$.
9. True. The integrand is an odd function that is continuous on $[-1,1]$.
10. True. $\quad \int_{-5}^{5}\left(a x^{2}+b x+c\right) d x=\int_{-5}^{5}\left(a x^{2}+c\right) d x+\int_{-5}^{5} b x d x$

$$
=2 \int_{0}^{5}\left(a x^{2}+c\right) d x+0 \quad\left[\text { because } a x^{2}+c \text { is even and } b x \text { is odd }\right]
$$

11. False. For example, the function $y=|x|$ is continuous on \mathbb{R}, but has no derivative at $x=0$.
12. True by FTC1.
13. True by Property 5 of Integrals.
14. False. For example, $\int_{0}^{1}\left(x-\frac{1}{2}\right) d x=\left[\frac{1}{2} x^{2}-\frac{1}{2} x\right]_{0}^{1}=\left(\frac{1}{2}-\frac{1}{2}\right)-(0-0)=0$, but $f(x)=x-\frac{1}{2} \neq 0$.
15. False. $\quad \int_{a}^{b} f(x) d x$ is a constant, so $\frac{d}{d x}\left(\int_{a}^{b} f(x) d x\right)=0$, not $f(x)$ [unless $f(x)=0$. Compare the given statement carefully with FTC1, in which the upper limit in the integral is x.
16. False. See the paragraph before Note 4 and Figure 4 in Section 5.2, and notice that $y=x-x^{3}<0$ for $1<x \leq 2$.
17. False. The function $f(x)=1 / x^{4}$ is not bounded on the interval $[-2,1]$. It has an infinite discontinuity at $x=0$, so it is not integrable on the interval. (If the integral were to exist, a positive value would be expected, by Comparison Property 6 of Integrals.)
18. False. For example, if $f(x)=\left\{\begin{array}{ll}1 & \text { if } 0 \leq x \leq 1 \\ 0 & \text { if }-1 \leq x<0\end{array}\right.$ then f has a jump discontinuity at 0 , but $\int_{-1}^{1} f(x) d x$ exists and is equal to 1 .

EXERCISES

1. (a)

(b)

2. (a)

$$
\begin{aligned}
L_{6} & =\sum_{i=1}^{6} f\left(x_{i-1}\right) \Delta x \quad\left[\Delta x=\frac{6-0}{6}=1\right] \\
& =f\left(x_{0}\right) \cdot 1+f\left(x_{1}\right) \cdot 1+f\left(x_{2}\right) \cdot 1+f\left(x_{3}\right) \cdot 1+f\left(x_{4}\right) \cdot 1+f\left(x_{5}\right) \cdot 1 \\
& \approx 2+3.5+4+2+(-1)+(-2.5)=8
\end{aligned}
$$

The Riemann sum represents the sum of the areas of the four rectangles above the x-axis minus the sum of the areas of the two rectangles below the x-axis.

$$
\begin{aligned}
M_{6} & =\sum_{i=1}^{6} f\left(\bar{x}_{i}\right) \Delta x \quad\left[\Delta x=\frac{6-0}{6}=1\right] \\
& =f\left(\bar{x}_{1}\right) \cdot 1+f\left(\bar{x}_{2}\right) \cdot 1+f\left(\bar{x}_{3}\right) \cdot 1+f\left(\bar{x}_{4}\right) \cdot 1+f\left(\bar{x}_{5}\right) \cdot 1+f\left(\bar{x}_{6}\right) \cdot 1 \\
& =f(0.5)+f(1.5)+f(2.5)+f(3.5)+f(4.5)+f(5.5) \\
& \approx 3+3.9+3.4+0.3+(-2)+(-2.9)=5.7
\end{aligned}
$$

The Riemann sum represents the sum of the areas of the four rectangles above the x-axis minus the sum of the areas of the two rectangles below the x-axis.

$$
\begin{aligned}
& f(x)=x^{2}-x \text { and } \Delta x=\frac{2-0}{4}=0.5 \Rightarrow \\
& R_{4}=0.5 f(0.5)+0.5 f(1)+0.5 f(1.5)+0.5 f(2) \\
& \quad=0.5(-0.25+0+0.75+2)=1.25
\end{aligned}
$$

The Riemann sum represents the sum of the areas of the two rectangles above the x-axis minus the area of the rectangle below the x-axis. (The second rectangle vanishes.)

54
(b) $\int_{0}^{2}\left(x^{2}-x\right) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x \quad\left[\Delta x=2 / n\right.$ and $\left.x_{i}=2 i / n\right]$

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\frac{4 i^{2}}{n^{2}}-\frac{2 i}{n}\right)\left(\frac{2}{n}\right)=\lim _{n \rightarrow \infty} \frac{2}{n}\left[\frac{4}{n^{2}} \sum_{i=1}^{n} i^{2}-\frac{2}{n} \sum_{i=1}^{n} i\right] \\
& =\lim _{n \rightarrow \infty}\left[\frac{8}{n^{3}} \cdot \frac{n(n+1)(2 n+1)}{6}-\frac{4}{n^{2}} \cdot \frac{n(n+1)}{2}\right]=\lim _{n \rightarrow \infty}\left[\frac{4}{3} \cdot \frac{n+1}{n} \cdot \frac{2 n+1}{n}-2 \cdot \frac{n+1}{n}\right] \\
& =\lim _{n \rightarrow \infty}\left[\frac{4}{3}\left(1+\frac{1}{n}\right)\left(2+\frac{1}{n}\right)-2\left(1+\frac{1}{n}\right)\right]=\frac{4}{3} \cdot 1 \cdot 2-2 \cdot 1=\frac{2}{3}
\end{aligned}
$$

(c) $\int_{0}^{2}\left(x^{2}-x\right) d x=\left[\frac{1}{3} x^{3}-\frac{1}{2} x^{2}\right]_{0}^{2}=\left(\frac{8}{3}-2\right)=\frac{2}{3}$
(d)

$\int_{0}^{2}\left(x^{2}-x\right) d x=A_{1}-A_{2}$, where A_{1} and A_{2} are the areas shown in the diagram.
3. $\int_{0}^{1}\left(x+\sqrt{1-x^{2}}\right) d x=\int_{0}^{1} x d x+\int_{0}^{1} \sqrt{1-x^{2}} d x=I_{1}+I_{2}$.
I_{1} can be interpreted as the area of the triangle shown in the figure and I_{2} can be interpreted as the area of the quarter-circle.
Area $=\frac{1}{2}(1)(1)+\frac{1}{4}(\pi)(1)^{2}=\frac{1}{2}+\frac{\pi}{4}$.

4. On $[0, \pi], \lim _{n \rightarrow \infty} \sum_{i=1}^{n} \sin x_{i} \Delta x=\int_{0}^{\pi} \sin x d x=[-\cos x]_{0}^{\pi}=-(-1)-(-1)=2$.
5. $\int_{0}^{6} f(x) d x=\int_{0}^{4} f(x) d x+\int_{4}^{6} f(x) d x \quad \Rightarrow \quad 10=7+\int_{4}^{6} f(x) d x \quad \Rightarrow \quad \int_{4}^{6} f(x) d x=10-7=3$
6. (a) $\int_{1}^{5}\left(x+2 x^{5}\right) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x \quad\left[\Delta x=\frac{5-1}{n}=\frac{4}{n}, x_{i}=1+\frac{4 i}{n}\right]$

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left[\left(1+\frac{4 i}{n}\right)+2\left(1+\frac{4 i}{n}\right)^{5}\right] \cdot \frac{4}{n} \stackrel{\text { CAS }}{=} \lim _{n \rightarrow \infty} \frac{1305 n^{4}+3126 n^{3}+2080 n^{2}-256}{n^{3}} \cdot \frac{4}{n} \\
& =5220
\end{aligned}
$$

(b) $\int_{1}^{5}\left(x+2 x^{5}\right) d x=\left[\frac{1}{2} x^{2}+\frac{2}{6} x^{6}\right]_{1}^{5}=\left(\frac{25}{2}+\frac{15,625}{3}\right)-\left(\frac{1}{2}+\frac{1}{3}\right)=12+5208=5220$
7. First note that either a or b must be the graph of $\int_{0}^{x} f(t) d t$, since $\int_{0}^{0} f(t) d t=0$, and $c(0) \neq 0$. Now notice that $b>0$ when c is increasing, and that $c>0$ when a is increasing. It follows that c is the graph of $f(x), b$ is the graph of $f^{\prime}(x)$, and a is the graph of $\int_{0}^{x} f(t) d t$.
8. (a) By the Net Change Theorem (FTC2), $\int_{0}^{1} \frac{d}{d x}\left(e^{\arctan x}\right) d x=\left[e^{\arctan x}\right]_{0}^{1}=e^{\pi / 4}-1$
(b) $\frac{d}{d x} \int_{0}^{1} e^{\arctan x} d x=0$ since this is the derivative of a constant.
(c) By FTC1, $\frac{d}{d x} \int_{0}^{x} e^{\arctan t} d t=e^{\arctan x}$.
9. $g(4)=\int_{0}^{4} f(t) d t=\int_{0}^{1} f(t) d t+\int_{1}^{2} f(t) d t+\int_{2}^{3} f(t) d t+\int_{3}^{4} f(t) d t$

$$
=-\frac{1}{2} \cdot 1 \cdot 2\left[\begin{array}{l}
\text { area of triangle, } \\
\text { below } t \text {-axis }
\end{array}\right]+\frac{1}{2} \cdot 1 \cdot 2+1 \cdot 2+\frac{1}{2} \cdot 1 \cdot 2=3
$$

By FTC $1, g^{\prime}(x)=f(x)$, so $g^{\prime}(4)=f(4)=0$.
10. $g(x)=\int_{0}^{x} f(t) d t \quad \Rightarrow \quad g^{\prime}(x)=f(x) \quad$ [by FTC1] $\Rightarrow \quad g^{\prime \prime}(x)=f^{\prime}(x)$, so $g^{\prime \prime}(4)=f^{\prime}(4)=-2$, which is the slope of the line segment at $x=4$.
11. $\int_{1}^{2}\left(8 x^{3}+3 x^{2}\right) d x=\left[8 \cdot \frac{1}{4} x^{4}+3 \cdot \frac{1}{3} x^{3}\right]_{1}^{2}=\left[2 x^{4}+x^{3}\right]_{1}^{2}=\left(2 \cdot 2^{4}+2^{3}\right)-(2+1)=40-3=37$
12. $\int_{0}^{T}\left(x^{4}-8 x+7\right) d x=\left[\frac{1}{5} x^{5}-4 x^{2}+7 x\right]_{0}^{T}=\left(\frac{1}{5} T^{5}-4 T^{2}+7 T\right)-0=\frac{1}{5} T^{5}-4 T^{2}+7 T$
13. $\int_{0}^{1}\left(1-x^{9}\right) d x=\left[x-\frac{1}{10} x^{10}\right]_{0}^{1}=\left(1-\frac{1}{10}\right)-0=\frac{9}{10}$
14. Let $u=1-x$, so $d u=-d x$ and $d x=-d u$. When $x=0, u=1$; when $x=1, u=0$. Thus, $\int_{0}^{1}(1-x)^{9} d x=\int_{1}^{0} u^{9}(-d u)=\int_{0}^{1} u^{9} d u=\frac{1}{10}\left[u^{10}\right]_{0}^{1}=\frac{1}{10}(1-0)=\frac{1}{10}$.
15. $\int_{1}^{9} \frac{\sqrt{u}-2 u^{2}}{u} d u=\int_{1}^{9}\left(u^{-1 / 2}-2 u\right) d u=\left[2 u^{1 / 2}-u^{2}\right]_{1}^{9}=(6-81)-(2-1)=-76$
16. $\int_{0}^{1}(\sqrt[4]{u}+1)^{2} d u=\int_{0}^{1}\left(u^{1 / 2}+2 u^{1 / 4}+1\right) d u=\left[\frac{2}{3} u^{3 / 2}+\frac{8}{5} u^{5 / 4}+u\right]_{0}^{1}=\left(\frac{2}{3}+\frac{8}{5}+1\right)-0=\frac{49}{15}$
17. Let $u=y^{2}+1$, so $d u=2 y d y$ and $y d y=\frac{1}{2} d u$. When $y=0, u=1$; when $y=1, u=2$. Thus, $\int_{0}^{1} y\left(y^{2}+1\right)^{5} d y=\int_{1}^{2} u^{5}\left(\frac{1}{2} d u\right)=\frac{1}{2}\left[\frac{1}{6} u^{6}\right]_{1}^{2}=\frac{1}{12}(64-1)=\frac{63}{12}=\frac{21}{4}$.
18. Let $u=1+y^{3}$, so $d u=3 y^{2} d y$ and $y^{2} d y=\frac{1}{3} d u$. When $y=0, u=1$; when $y=2, u=9$. Thus, $\int_{0}^{2} y^{2} \sqrt{1+y^{3}} d y=\int_{1}^{9} u^{1 / 2}\left(\frac{1}{3} d u\right)=\frac{1}{3}\left[\frac{2}{3} u^{3 / 2}\right]_{1}^{9}=\frac{2}{9}(27-1)=\frac{52}{9}$.
19. $\int_{1}^{5} \frac{d t}{(t-4)^{2}}$ does not exist because the function $f(t)=\frac{1}{(t-4)^{2}}$ has an infinite discontinuity at $t=4$; that is, f is discontinuous on the interval $[1,5]$.
20. Let $u=3 \pi t$, so $d u=3 \pi d t$. When $t=0, u=1$; when $t=1, u=3 \pi$. Thus, $\int_{0}^{1} \sin (3 \pi t) d t=\int_{0}^{3 \pi} \sin u\left(\frac{1}{3 \pi} d u\right)=\frac{1}{3 \pi}[-\cos u]_{0}^{3 \pi}=-\frac{1}{3 \pi}(-1-1)=\frac{2}{3 \pi}$.

INSTRUCTTOR USE ONLY

21. Let $u=v^{3}$, so $d u=3 v^{2} d v$. When $v=0, u=0$; when $v=1, u=1$. Thus,
$\int_{0}^{1} v^{2} \cos \left(v^{3}\right) d v=\int_{0}^{1} \cos u\left(\frac{1}{3} d u\right)=\frac{1}{3}[\sin u]_{0}^{1}=\frac{1}{3}(\sin 1-0)=\frac{1}{3} \sin 1$.
22. $\int_{-1}^{1} \frac{\sin x}{1+x^{2}} d x=0$ by Theorem 5.5.7(b), since $f(x)=\frac{\sin x}{1+x^{2}}$ is an odd function.
23. $\int_{-\pi / 4}^{\pi / 4} \frac{t^{4} \tan t}{2+\cos t} d t=0$ by Theorem 5.5.7(b), since $f(t)=\frac{t^{4} \tan t}{2+\cos t}$ is an odd function.
24. Let $u=e^{x}$, so $d u=e^{x} d x$. When $x=0, u=1$; when $x=1, u=e$. Thus,
$\int_{0}^{1} \frac{e^{x}}{1+e^{2 x}} d x=\int_{1}^{e} \frac{1}{1+u^{2}} d u=[\arctan u]_{1}^{e}=\arctan e-\arctan 1=\arctan e-\frac{\pi}{4}$.
25. $\int\left(\frac{1-x}{x}\right)^{2} d x=\int\left(\frac{1}{x}-1\right)^{2} d x=\int\left(\frac{1}{x^{2}}-\frac{2}{x}+1\right) d x=-\frac{1}{x}-2 \ln |x|+x+C$
26. $\int_{1}^{10} \frac{x}{x^{2}-4} d x$ does not exist because the function $f(x)=\frac{x}{x^{2}-4}$ has an infinite discontinuity at $x=2$; that is, f is discontinuous on the interval $[1,10]$.
27. Let $u=x^{2}+4 x$. Then $d u=(2 x+4) d x=2(x+2) d x$, so

$$
\int \frac{x+2}{\sqrt{x^{2}+4 x}} d x=\int u^{-1 / 2}\left(\frac{1}{2} d u\right)=\frac{1}{2} \cdot 2 u^{1 / 2}+C=\sqrt{u}+C=\sqrt{x^{2}+4 x}+C .
$$

28. Let $u=1+\cot x$. Then $d u=-\csc ^{2} x d x$, so $\int \frac{\csc ^{2} x}{1+\cot x} d x=\int \frac{1}{u}(-d u)=-\ln |u|+C=-\ln |1+\cot x|+C$.
29. Let $u=\sin \pi t$. Then $d u=\pi \cos \pi t d t$, so $\int \sin \pi t \cos \pi t d t=\int u\left(\frac{1}{\pi} d u\right)=\frac{1}{\pi} \cdot \frac{1}{2} u^{2}+C=\frac{1}{2 \pi}(\sin \pi t)^{2}+C$.
30. Let $u=\cos x$. Then $d u=-\sin x d x$, so $\int \sin x \cos (\cos x) d x=-\int \cos u d u=-\sin u+C=-\sin (\cos x)+C$.
31. Let $u=\sqrt{x}$. Then $d u=\frac{d x}{2 \sqrt{x}}$, so $\int \frac{e^{\sqrt{x}}}{\sqrt{x}} d x=2 \int e^{u} d u=2 e^{u}+C=2 e^{\sqrt{x}}+C$.
32. Let $u=\ln x$. Then $d u=\frac{1}{x} d x$, so $\int \frac{\sin (\ln x)}{x} d x=\int \sin u d u=-\cos u+C=-\cos (\ln x)+C$.
33. Let $u=\ln (\cos x)$. Then $d u=\frac{-\sin x}{\cos x} d x=-\tan x d x$, so
$\int \tan x \ln (\cos x) d x=-\int u d u=-\frac{1}{2} u^{2}+C=-\frac{1}{2}[\ln (\cos x)]^{2}+C$.
34. Let $u=x^{2}$. Then $d u=2 x d x$, so $\int \frac{x}{\sqrt{1-x^{4}}} d x=\frac{1}{2} \int \frac{d u}{\sqrt{1-u^{2}}}=\frac{1}{2} \sin ^{-1} u+C=\frac{1}{2} \sin ^{-1}\left(x^{2}\right)+C$.
35. Let $u=1+x^{4}$. Then $d u=4 x^{3} d x$, so $\int \frac{x^{3}}{1+x^{4}} d x=\frac{1}{4} \int \frac{1}{u} d u=\frac{1}{4} \ln |u|+C=\frac{1}{4} \ln \left(1+x^{4}\right)+C$.
36. Let $u=1+4 x$. Then $d u=4 d x$, so $\int \sinh (1+4 x) d x=\frac{1}{4} \int \sinh u d u=\frac{1}{4} \cosh u+C=\frac{1}{4} \cosh (1+4 x)+C$.
37. Let $u=1+\sec \theta$. Then $d u=\sec \theta \tan \theta d \theta$, so
$\int \frac{\sec \theta \tan \theta}{1+\sec \theta} d \theta=\int \frac{1}{1+\sec \theta}(\sec \theta \tan \theta d \theta)=\int \frac{1}{u} d u=\ln |u|+C=\ln |1+\sec \theta|+C$.
38. Let $u=1+\tan t$, so $d u=\sec ^{2} t d t$. When $t=0, u=1$; when $t=\frac{\pi}{4}, u=2$. Thus,
$\int_{0}^{\pi / 4}(1+\tan t)^{3} \sec ^{2} t d t=\int_{1}^{2} u^{3} d u=\left[\frac{1}{4} u^{4}\right]_{1}^{2}=\frac{1}{4}\left(2^{4}-1^{4}\right)=\frac{1}{4}(16-1)=\frac{15}{4}$.
39. Since $x^{2}-4<0$ for $0 \leq x<2$ and $x^{2}-4>0$ for $2<x \leq 3$, we have $\left|x^{2}-4\right|=-\left(x^{2}-4\right)=4-x^{2}$ for $0 \leq x<2$ and $\left|x^{2}-4\right|=x^{2}-4$ for $2<x \leq 3$. Thus,

$$
\begin{aligned}
\int_{0}^{3}\left|x^{2}-4\right| d x & =\int_{0}^{2}\left(4-x^{2}\right) d x+\int_{2}^{3}\left(x^{2}-4\right) d x=\left[4 x-\frac{x^{3}}{3}\right]_{0}^{2}+\left[\frac{x^{3}}{3}-4 x\right]_{2}^{3} \\
& =\left(8-\frac{8}{3}\right)-0+(9-12)-\left(\frac{8}{3}-8\right)=\frac{16}{3}-3+\frac{16}{3}=\frac{32}{3}-\frac{9}{3}=\frac{23}{3}
\end{aligned}
$$

40. Since $\sqrt{x}-1<0$ for $0 \leq x<1$ and $\sqrt{x}-1>0$ for $1<x \leq 4$, we have $|\sqrt{x}-1|=-(\sqrt{x}-1)=1-\sqrt{x}$ for $0 \leq x<1$ and $|\sqrt{x}-1|=\sqrt{x}-1$ for $1<x \leq 4$. Thus,

$$
\begin{aligned}
\int_{0}^{4}|\sqrt{x}-1| d x & =\int_{0}^{1}(1-\sqrt{x}) d x+\int_{1}^{4}(\sqrt{x}-1) d x=\left[x-\frac{2}{3} x^{3 / 2}\right]_{0}^{1}+\left[\frac{2}{3} x^{3 / 2}-x\right]_{1}^{4} \\
& =\left(1-\frac{2}{3}\right)-0+\left(\frac{16}{3}-4\right)-\left(\frac{2}{3}-1\right)=\frac{1}{3}+\frac{16}{3}-4+\frac{1}{3}=6-4=2
\end{aligned}
$$

41. Let $u=1+\sin x$. Then $d u=\cos x d x$, so
$\int \frac{\cos x d x}{\sqrt{1+\sin x}}=\int u^{-1 / 2} d u=2 u^{1 / 2}+C=2 \sqrt{1+\sin x}+C$.

42. Let $u=x^{2}+1$. Then $x^{2}=u-1$ and $x d x=\frac{1}{2} d u$, so

$$
\begin{aligned}
\int \frac{x^{3}}{\sqrt{x^{2}+1}} d x & =\int \frac{(u-1)}{\sqrt{u}}\left(\frac{1}{2} d u\right)=\frac{1}{2} \int\left(u^{1 / 2}-u^{-1 / 2}\right) d u \\
& =\frac{1}{2}\left(\frac{2}{3} u^{3 / 2}-2 u^{1 / 2}\right)+C=\frac{1}{3}\left(x^{2}+1\right)^{3 / 2}-\left(x^{2}+1\right)^{1 / 2}+C \\
& =\frac{1}{3}\left(x^{2}+1\right)^{1 / 2}\left[\left(x^{2}+1\right)-3\right]+C=\frac{1}{3} \sqrt{x^{2}+1}\left(x^{2}-2\right)+C
\end{aligned}
$$

43. From the graph, it appears that the area under the curve $y=x \sqrt{x}$ between $x=0$ and $x=4$ is somewhat less than half the area of an 8×4 rectangle, so perhaps about 13 or 14 . To find the exact value, we evaluate
$\int_{0}^{4} x \sqrt{x} d x=\int_{0}^{4} x^{3 / 2} d x=\left[\frac{2}{5} x^{5 / 2}\right]_{0}^{4}=\frac{2}{5}(4)^{5 / 2}=\frac{64}{5}=12.8$.

INST"RU'CTMORUSE ONLY

58
44. From the graph, it seems as though $\int_{0}^{2 \pi} \cos ^{2} x \sin x d x$ is equal to 0 . To evaluate the integral, let $u=\cos x \Rightarrow d u=-\sin x d x$. Thus, $I=\int_{1}^{1} u^{2}(-d u)=0$.

45. $F(x)=\int_{0}^{x} \frac{t^{2}}{1+t^{3}} d t \Rightarrow F^{\prime}(x)=\frac{d}{d x} \int_{0}^{x} \frac{t^{2}}{1+t^{3}} d t=\frac{x^{2}}{1+x^{3}}$
46. $F(x)=\int_{x}^{1} \sqrt{t+\sin t} d t=-\int_{1}^{x} \sqrt{t+\sin t} d t \Rightarrow F^{\prime}(x)=-\frac{d}{d x} \int_{1}^{x} \sqrt{t+\sin t} d t=-\sqrt{x+\sin x}$
47. Let $u=x^{4}$. Then $\frac{d u}{d x}=4 x^{3}$. Also, $\frac{d g}{d x}=\frac{d g}{d u} \frac{d u}{d x}$, so

$$
g^{\prime}(x)=\frac{d}{d x} \int_{0}^{x^{4}} \cos \left(t^{2}\right) d t=\frac{d}{d u} \int_{0}^{u} \cos \left(t^{2}\right) d t \cdot \frac{d u}{d x}=\cos \left(u^{2}\right) \frac{d u}{d x}=4 x^{3} \cos \left(x^{8}\right) .
$$

48. Let $u=\sin x$. Then $\frac{d u}{d x}=\cos x$. Also, $\frac{d g}{d x}=\frac{d g}{d u} \frac{d u}{d x}$, so

$$
g^{\prime}(x)=\frac{d}{d x} \int_{1}^{\sin x} \frac{1-t^{2}}{1+t^{4}} d t=\frac{d}{d u} \int_{1}^{u} \frac{1-t^{2}}{1+t^{4}} d t \cdot \frac{d u}{d x}=\frac{1-u^{2}}{1+u^{4}} \cdot \frac{d u}{d x}=\frac{1-\sin ^{2} x}{1+\sin ^{4} x} \cdot \cos x=\frac{\cos ^{3} x}{1+\sin ^{4} x}
$$

49. $y=\int_{\sqrt{x}}^{x} \frac{e^{t}}{t} d t=\int_{\sqrt{x}}^{1} \frac{e^{t}}{t} d t+\int_{1}^{x} \frac{e^{t}}{t} d t=-\int_{1}^{\sqrt{x}} \frac{e^{t}}{t} d t+\int_{1}^{x} \frac{e^{t}}{t} d t \Rightarrow$

$$
\frac{d y}{d x}=-\frac{d}{d x}\left(\int_{1}^{\sqrt{x}} \frac{e^{t}}{t} d t\right)+\frac{d}{d x}\left(\int_{1}^{x} \frac{e^{t}}{t} d t\right) . \text { Let } u=\sqrt{x} . \text { Then }
$$

$$
\frac{d}{d x} \int_{1}^{\sqrt{x}} \frac{e^{t}}{t} d t=\frac{d}{d x} \int_{1}^{u} \frac{e^{t}}{t} d t=\frac{d}{d u}\left(\int_{1}^{u} \frac{e^{t}}{t} d t\right) \frac{d u}{d x}=\frac{e^{u}}{u} \cdot \frac{1}{2 \sqrt{x}}=\frac{e^{\sqrt{x}}}{\sqrt{x}} \cdot \frac{1}{2 \sqrt{x}}=\frac{e^{\sqrt{x}}}{2 x}
$$

so $\frac{d y}{d x}=-\frac{e^{\sqrt{x}}}{2 x}+\frac{e^{x}}{x}=\frac{2 e^{x}-e^{\sqrt{x}}}{2 x}$.
50. $y=\int_{2 x}^{3 x+1} \sin \left(t^{4}\right) d t=\int_{2 x}^{0} \sin \left(t^{4}\right) d t+\int_{0}^{3 x+1} \sin \left(t^{4}\right) d t=\int_{0}^{3 x+1} \sin \left(t^{4}\right) d t-\int_{0}^{2 x} \sin \left(t^{4}\right) d t \quad \Rightarrow$ $y^{\prime}=\sin \left[(3 x+1)^{4}\right] \cdot \frac{d}{d x}(3 x+1)-\sin \left[(2 x)^{4}\right] \cdot \frac{d}{d x}(2 x)=3 \sin \left[(3 x+1)^{4}\right]-2 \sin \left[(2 x)^{4}\right]$
51. If $1 \leq x \leq 3$, then $\sqrt{1^{2}+3} \leq \sqrt{x^{2}+3} \leq \sqrt{3^{2}+3} \Rightarrow 2 \leq \sqrt{x^{2}+3} \leq 2 \sqrt{3}$, so $2(3-1) \leq \int_{1}^{3} \sqrt{x^{2}+3} d x \leq 2 \sqrt{3}(3-1) ;$ that is, $4 \leq \int_{1}^{3} \sqrt{x^{2}+3} d x \leq 4 \sqrt{3}$.
52. If $3 \leq x \leq 5$, then $4 \leq x+1 \leq 6$ and $\frac{1}{6} \leq \frac{1}{x+1} \leq \frac{1}{4}$, so $\frac{1}{6}(5-3) \leq \int_{3}^{5} \frac{1}{x+1} d x \leq \frac{1}{4}(5-3)$; that is, $\frac{1}{3} \leq \int_{3}^{5} \frac{1}{x+1} d x \leq \frac{1}{2}$.
53. $0 \leq x \leq 1 \Rightarrow 0 \leq \cos x \leq 1 \Rightarrow x^{2} \cos x \leq x^{2} \Rightarrow \quad \int_{0}^{1} x^{2} \cos x d x \leq \int_{0}^{1} x^{2} d x=\frac{1}{3}\left[x^{3}\right]_{0}^{1}=\frac{1}{3} \quad$ [Property 7].
54. On the interval $\left[\frac{\pi}{4}, \frac{\pi}{2}\right], x$ is increasing and $\sin x$ is decreasing, so $\frac{\sin x}{x}$ is decreasing. Therefore, the largest value of $\frac{\sin x}{x}$ on $\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$ is $\frac{\sin (\pi / 4)}{\pi / 4}=\frac{\sqrt{2} / 2}{\pi / 4}=\frac{2 \sqrt{2}}{\pi}$. By Property 8 with $M=\frac{2 \sqrt{2}}{\pi}$ we get $\int_{\pi / 4}^{\pi / 2} \frac{\sin x}{x} d x \leq \frac{2 \sqrt{2}}{\pi}\left(\frac{\pi}{2}-\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}$.
55. $\cos x \leq 1 \Rightarrow e^{x} \cos x \leq e^{x} \Rightarrow \int_{0}^{1} e^{x} \cos x d x \leq \int_{0}^{1} e^{x} d x=\left[e^{x}\right]_{0}^{1}=e-1$
56. For $0 \leq x \leq 1,0 \leq \sin ^{-1} x \leq \frac{\pi}{2}$, so $\int_{0}^{1} x \sin ^{-1} x d x \leq \int_{0}^{1} x\left(\frac{\pi}{2}\right) d x=\left[\frac{\pi}{4} x^{2}\right]_{0}^{1}=\frac{\pi}{4}$.
57. $\Delta x=(3-0) / 6=\frac{1}{2}$, so the endpoints are $0, \frac{1}{2}, 1, \frac{3}{2}, 2, \frac{5}{2}$, and 3 , and the midpoints are $\frac{1}{4}, \frac{3}{4}, \frac{5}{4}, \frac{7}{4}, \frac{9}{4}$, and $\frac{11}{4}$.

The Midpoint Rule gives
$\int_{0}^{3} \sin \left(x^{3}\right) d x \approx \sum_{i=1}^{6} f\left(\bar{x}_{i}\right) \Delta x=\frac{1}{2}\left[\sin \left(\frac{1}{4}\right)^{3}+\sin \left(\frac{3}{4}\right)^{3}+\sin \left(\frac{5}{4}\right)^{3}+\sin \left(\frac{7}{4}\right)^{3}+\sin \left(\frac{9}{4}\right)^{3}+\sin \left(\frac{11}{4}\right)^{3}\right] \approx 0.280981$.
58. (a) Displacement $=\int_{0}^{5}\left(t^{2}-t\right) d t=\left[\frac{1}{3} t^{3}-\frac{1}{2} t^{2}\right]_{0}^{5}=\frac{125}{3}-\frac{25}{2}=\frac{175}{6}=29.1 \overline{6}$ meters
(b) Distance traveled $=\int_{0}^{5}\left|t^{2}-t\right| d t=\int_{0}^{5}|t(t-1)| d t=\int_{0}^{1}\left(t-t^{2}\right) d t+\int_{1}^{5}\left(t^{2}-t\right) d t$

$$
=\left[\frac{1}{2} t^{2}-\frac{1}{3} t^{3}\right]_{0}^{1}+\left[\frac{1}{3} t^{3}-\frac{1}{2} t^{2}\right]_{1}^{5}=\frac{1}{2}-\frac{1}{3}-0+\left(\frac{125}{3}-\frac{25}{2}\right)-\left(\frac{1}{3}-\frac{1}{2}\right)=\frac{177}{6}=29.5 \text { meters }
$$

59. Note that $r(t)=b^{\prime}(t)$, where $b(t)=$ the number of barrels of oil consumed up to time t. So, by the Net Change Theorem, $\int_{0}^{8} r(t) d t=b(8)-b(0)$ represents the number of barrels of oil consumed from Jan. 1, 2000, through Jan. 1, 2008.
60. Distance covered $=\int_{0}^{5.0} v(t) d t \approx M_{5}=\frac{5.0-0}{5}[v(0.5)+v(1.5)+v(2.5)+v(3.5)+v(4.5)]$

$$
=1(4.67+8.86+10.22+10.67+10.81)=45.23 \mathrm{~m}
$$

61. We use the Midpoint Rule with $n=6$ and $\Delta t=\frac{24-0}{6}=4$. The increase in the bee population was

$$
\begin{aligned}
\int_{0}^{24} r(t) d t \approx M_{6} & =4[r(2)+r(6)+r(10)+r(14)+r(18)+r(22)] \\
& \approx 4[50+1000+7000+8550+1350+150]=4(18,100)=72,400
\end{aligned}
$$

62. $A_{1}=\frac{1}{2} b h=\frac{1}{2}(2)(2)=2, A_{2}=\frac{1}{2} b h=\frac{1}{2}(1)(1)=\frac{1}{2}$, and since $y=-\sqrt{1-x^{2}}$ for $0 \leq x \leq 1$ represents a quarter-circle with radius 1 , $A_{3}=\frac{1}{4} \pi r^{2}=\frac{1}{4} \pi(1)^{2}=\frac{\pi}{4}$. So

$$
\int_{-3}^{1} f(x) d x=A_{1}-A_{2}-A_{3}=2-\frac{1}{2}-\frac{\pi}{4}=\frac{1}{4}(6-\pi)
$$

63. Let $u=2 \sin \theta$. Then $d u=2 \cos \theta d \theta$ and when $\theta=0, u=0$; when $\theta=\frac{\pi}{2}, u=2$. Thus, $\int_{0}^{\pi / 2} f(2 \sin \theta) \cos \theta d \theta=\int_{0}^{2} f(u)\left(\frac{1}{2} d u\right)=\frac{1}{2} \int_{0}^{2} f(u) d u=\frac{1}{2} \int_{0}^{2} f(x) d x=\frac{1}{2}(6)=3$.
64. (a) C is increasing on those intervals where C^{\prime} is positive. By the Fundamental Theorem of Calculus, $C^{\prime}(x)=\frac{d}{d x}\left[\int_{0}^{x} \cos \left(\frac{\pi}{2} t^{2}\right) d t\right]=\cos \left(\frac{\pi}{2} x^{2}\right)$. This is positive when $\frac{\pi}{2} x^{2}$ is in the interval $\left(\left(2 n-\frac{1}{2}\right) \pi,\left(2 n+\frac{1}{2}\right) \pi\right)$, n any integer. This implies that $\left(2 n-\frac{1}{2}\right) \pi<\frac{\pi}{2} x^{2}<\left(2 n+\frac{1}{2}\right) \pi \quad \Leftrightarrow \quad 0 \leq|x|<1$ or $\sqrt{4 n-1}<|x|<\sqrt{4 n+1}$, n any positive integer. So C is increasing on the intervals $(-1,1),(\sqrt{3}, \sqrt{5}),(-\sqrt{5},-\sqrt{3}),(\sqrt{7}, 3),(-3,-\sqrt{7}), \ldots$
(b) C is concave upward on those intervals where $C^{\prime \prime}>0$. We differentiate C^{\prime} to find $C^{\prime \prime}: C^{\prime}(x)=\cos \left(\frac{\pi}{2} x^{2}\right) \Rightarrow$ $C^{\prime \prime}(x)=-\sin \left(\frac{\pi}{2} x^{2}\right)\left(\frac{\pi}{2} \cdot 2 x\right)=-\pi x \sin \left(\frac{\pi}{2} x^{2}\right)$. For $x>0$, this is positive where $(2 n-1) \pi<\frac{\pi}{2} x^{2}<2 n \pi, n$ any positive integer $\Leftrightarrow \sqrt{2(2 n-1)}<x<2 \sqrt{n}, n$ any positive integer. Since there is a factor of $-x$ in $C^{\prime \prime}$, the intervals of upward concavity for $x<0$ are $(-\sqrt{2(2 n+1)},-2 \sqrt{n}), n$ any nonnegative integer. That is, C is concave upward on $(-\sqrt{2}, 0),(\sqrt{2}, 2),(-\sqrt{6},-2),(\sqrt{6}, 2 \sqrt{2}), \ldots$.
(c)

(d)

The graphs of $S(x)$ and $C(x)$ have similar shapes, except that S 's flattens out near the origin, while C 's does not. Note that for $x>0, C$ is increasing where S is concave up, and C is decreasing where S is concave down. Similarly, S is increasing where C is concave down, and S is decreasing where C is concave up. For $x<0$, these relationships are reversed; that is, C is increasing where S is concave down, and S is increasing where C is concave up. See Example 5.3.3 and Exercise 5.3.65 for a discussion of $S(x)$.
65. Area under the curve $y=\sinh c x$ between $x=0$ and $x=1$ is equal to $1 \Rightarrow$ $\int_{0}^{1} \sinh c x d x=1 \Rightarrow \frac{1}{c}[\cosh c x]_{0}^{1}=1 \quad \Rightarrow \quad \frac{1}{c}(\cosh c-1)=1 \Rightarrow$ $\cosh c-1=c \Rightarrow \cosh c=c+1$. From the graph, we get $c=0$ and $c \approx 1.6161$, but $c=0$ isn't a solution for this problem since the curve $y=\sinh c x$ becomes $y=0$ and the area under it is 0 . Thus, $c \approx 1.6161$.

66. Both numerator and denominator approach 0 as $a \rightarrow 0$, so we use l'Hospital's Rule. (Note that we are differentiating with respect to a, since that is the quantity which is changing.) We also use FTC1:

$$
\lim _{a \rightarrow 0} T(x, t)=\lim _{a \rightarrow 0} \frac{C \int_{0}^{a} e^{-(x-u)^{2} /(4 k t)} d u}{a \sqrt{4 \pi k t}} \stackrel{\mathrm{H}}{=} \lim _{a \rightarrow 0} \frac{C e^{-(x-a)^{2} /(4 k t)}}{\sqrt{4 \pi k t}}=\frac{C e^{-x^{2} /(4 k t)}}{\sqrt{4 \pi k t}}
$$

67. Using FTC1, we differentiate both sides of the given equation, $\int_{1}^{x} f(t) d t=(x-1) e^{2 x}+\int_{1}^{x} e^{-t} f(t) d t$, and get $f(x)=e^{2 x}+2(x-1) e^{2 x}+e^{-x} f(x) \Rightarrow f(x)\left(1-e^{-x}\right)=e^{2 x}+2(x-1) e^{2 x} \Rightarrow f(x)=\frac{e^{2 x}(2 x-1)}{1-e^{-x}}$.
68. The second derivative is the derivative of the first derivative, so we'll apply the Net Change Theorem with $F=h^{\prime}$. $\int_{1}^{2} h^{\prime \prime}(u) d u=\int_{1}^{2}\left(h^{\prime}\right)^{\prime}(u) d u=h^{\prime}(2)-h^{\prime}(1)=5-2=3$. The other information is unnecessary.
69. Let $u=f(x)$ and $d u=f^{\prime}(x) d x$. So $2 \int_{a}^{b} f(x) f^{\prime}(x) d x=2 \int_{f(a)}^{f(b)} u d u=\left[u^{2}\right]_{f(a)}^{f(b)}=[f(b)]^{2}-[f(a)]^{2}$.
70. Let $F(x)=\int_{2}^{x} \sqrt{1+t^{3}} d t$. Then $F^{\prime}(2)=\lim _{h \rightarrow 0} \frac{F(2+h)-F(2)}{h}=\lim _{h \rightarrow 0} \frac{1}{h} \int_{2}^{2+h} \sqrt{1+t^{3}} d t$, and $F^{\prime}(x)=\sqrt{1+x^{3}}$, so

$$
\lim _{h \rightarrow 0} \frac{1}{h} \int_{2}^{2+h} \sqrt{1+t^{3}} d t=F^{\prime}(2)=\sqrt{1+2^{3}}=\sqrt{9}=3
$$

71. Let $u=1-x$. Then $d u=-d x$, so $\int_{0}^{1} f(1-x) d x=\int_{1}^{0} f(u)(-d u)=\int_{0}^{1} f(u) d u=\int_{0}^{1} f(x) d x$.
72. $\lim _{n \rightarrow \infty} \frac{1}{n}\left[\left(\frac{1}{n}\right)^{9}+\left(\frac{2}{n}\right)^{9}+\left(\frac{3}{n}\right)^{9}+\cdots+\left(\frac{n}{n}\right)^{9}\right]=\lim _{n \rightarrow \infty} \frac{1-0}{n} \sum_{i=1}^{n}\left(\frac{i}{n}\right)^{9}=\int_{0}^{1} x^{9} d x=\left[\frac{x^{10}}{10}\right]_{0}^{1}=\frac{1}{10}$

The limit is based on Riemann sums using right endpoints and subintervals of equal length.
73. The shaded region has area $\int_{0}^{1} f(x) d x=\frac{1}{3}$. The integral $\int_{0}^{1} f^{-1}(y) d y$ gives the area of the unshaded region, which we know to be $1-\frac{1}{3}=\frac{2}{3}$.

So $\int_{0}^{1} f^{-1}(y) d y=\frac{2}{3}$.

PROBLEMS PLUS

1. Differentiating both sides of the equation $x \sin \pi x=\int_{0}^{x^{2}} f(t) d t$ (using FTC1 and the Chain Rule for the right side) gives $\sin \pi x+\pi x \cos \pi x=2 x f\left(x^{2}\right)$. Letting $x=2$ so that $f\left(x^{2}\right)=f(4)$, we obtain $\sin 2 \pi+2 \pi \cos 2 \pi=4 f(4)$, so $f(4)=\frac{1}{4}(0+2 \pi \cdot 1)=\frac{\pi}{2}$.
2. The area A under the curve $y=x+1 / x$ from $x=a$ to $x=a+1.5$ is given by $A(a)=\int_{a}^{a+1.5}\left(x+\frac{1}{x}\right) d x$.

To find the minimum value of A, we'll differentiate A using FTC1 and set the derivative equal to 0 .

$$
\begin{gathered}
\begin{aligned}
& A^{\prime}(a)=\frac{d}{d a} \int_{a}^{a+1.5}\left(x+\frac{1}{x}\right) d x \\
&=\frac{d}{d a} \int_{a}^{1}\left(x+\frac{1}{x}\right) d x+\frac{d}{d a} \int_{1}^{a+1.5}\left(x+\frac{1}{x}\right) d x \\
&=-\frac{d}{d a} \int_{1}^{a}\left(x+\frac{1}{x}\right) d x+\frac{d}{d a} \int_{1}^{a+1.5}\left(x+\frac{1}{x}\right) d x \\
&=-\left(a+\frac{1}{a}\right)+\left(a+1.5+\frac{1}{a+1.5}\right)=1.5+\frac{1}{a+1.5}-\frac{1}{a} \\
& A^{\prime}(a)=0 \Leftrightarrow 1.5+ \frac{1}{a+1.5}-\frac{1}{a}=0 \quad \Leftrightarrow \quad 1.5 a(a+1.5)+a-(a+1.5)=0 \quad \Leftrightarrow \\
& 1.5 a^{2}+2.25 a-1.5=0 \quad\left[\text { multiply by } \frac{4}{3}\right] \quad \Leftrightarrow \quad 2 a^{2}+3 a-2=0 \quad \Leftrightarrow \quad(2 a-1)(a+2)=0 \quad \Leftrightarrow \quad a=\frac{1}{2} \text { or } \\
& a=-2 . \text { Since } a>0, a
\end{aligned} \\
A\left(\frac{1}{2}\right)=A_{1 / 2}^{2}\left(x+\frac{1}{x}\right) d x=\left[\frac{1}{2} x^{2}+\ln |x|\right]_{1 / 2}^{2}=(2+\ln 2)-\left(\frac{1}{8}-\ln 2\right)=\frac{15}{8}+2 \ln 2 \text { is the minimum value of } A .
\end{gathered}
$$

3. For $I=\int_{0}^{4} x e^{(x-2)^{4}} d x$, let $u=x-2$ so that $x=u+2$ and $d x=d u$. Then $I=\int_{-2}^{2}(u+2) e^{u^{4}} d u=\int_{-2}^{2} u e^{u^{4}} d u+\int_{-2}^{2} 2 e^{u^{4}} d u=0[$ by 5.5.7(b) $]+2 \int_{0}^{4} e^{(x-2)^{4}} d x=2 k$.
4. (a)

From the graph of $f(x)=\frac{2 c x-x^{2}}{c^{3}}$, it appears that the areas are equal; that is, the area enclosed is independent of c.
(b) We first find the x-intercepts of the curve, to determine the limits of integration: $y=0 \quad \Leftrightarrow 2 c x-x^{2}=0 \quad \Leftrightarrow \quad x=0$ or $x=2 c$. Now we integrate the function between these limits to find the enclosed area:

$$
A=\int_{0}^{2 c} \frac{2 c x-x^{2}}{c^{3}} d x=\frac{1}{c^{3}}\left[c x^{2}-\frac{1}{3} x^{3}\right]_{0}^{2 c}=\frac{1}{c^{3}}\left[c(2 c)^{2}-\frac{1}{3}(2 c)^{3}\right]=\frac{1}{c^{3}}\left[4 c^{3}-\frac{8}{3} c^{3}\right]=\frac{4}{3}, \text { a constant. }
$$

(c)

The vertices of the family of parabolas seem to determine a branch of a hyperbola.
(d) For a particular c, the vertex is the point where the maximum occurs. We have seen that the x-intercepts are 0 and $2 c$, so by symmetry, the maximum occurs at $x=c$, and its value is $\frac{2 c(c)-c^{2}}{c^{3}}=\frac{1}{c}$. So we are interested in the curve consisting of all points of the form $\left(c, \frac{1}{c}\right), c>0$. This is the part of the hyperbola $y=1 / x$ lying in the first quadrant.
5. $f(x)=\int_{0}^{g(x)} \frac{1}{\sqrt{1+t^{3}}} d t$, where $g(x)=\int_{0}^{\cos x}\left[1+\sin \left(t^{2}\right)\right] d t$. Using FTC1 and the Chain Rule (twice) we have
$f^{\prime}(x)=\frac{1}{\sqrt{1+[g(x)]^{3}}} g^{\prime}(x)=\frac{1}{\sqrt{1+[g(x)]^{3}}}\left[1+\sin \left(\cos ^{2} x\right)\right](-\sin x)$. Now $g\left(\frac{\pi}{2}\right)=\int_{0}^{0}\left[1+\sin \left(t^{2}\right)\right] d t=0$, so
$f^{\prime}\left(\frac{\pi}{2}\right)=\frac{1}{\sqrt{1+0}}(1+\sin 0)(-1)=1 \cdot 1 \cdot(-1)=-1$.
6. If $f(x)=\int_{0}^{x} x^{2} \sin \left(t^{2}\right) d t=x^{2} \int_{0}^{x} \sin \left(t^{2}\right) d t$, then $f^{\prime}(x)=x^{2} \sin \left(x^{2}\right)+2 x \int_{0}^{x} \sin \left(t^{2}\right) d t$, by the Product Rule and FTC1.
7. By l'Hospital's Rule and the Fundamental Theorem, using the notation $\exp (y)=e^{y}$,

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\int_{0}^{x}(1-\tan 2 t)^{1 / t} d t}{x} & \stackrel{\mathrm{H}}{=} \lim _{x \rightarrow 0} \frac{(1-\tan 2 x)^{1 / x}}{1}=\exp \left(\lim _{x \rightarrow 0} \frac{\ln (1-\tan 2 x)}{x}\right) \\
& \stackrel{\mathrm{H}}{=} \exp \left(\lim _{x \rightarrow 0} \frac{-2 \sec ^{2} 2 x}{1-\tan 2 x}\right)=\exp \left(\frac{-2 \cdot 1^{2}}{1-0}\right)=e^{-2}
\end{aligned}
$$

8. The area $A(t)=\int_{0}^{t} \sin \left(x^{2}\right) d x$, and the area $B(t)=\frac{1}{2} t \sin \left(t^{2}\right)$. Since $\lim _{t \rightarrow 0^{+}} A(t)=0=\lim _{t \rightarrow 0^{+}} B(t)$, we can use 1'Hospital's Rule:

$$
\begin{aligned}
\lim _{t \rightarrow 0^{+}} \frac{A(t)}{B(t)} & \stackrel{\mathrm{H}}{=} \lim _{t \rightarrow 0^{+}} \frac{\sin \left(t^{2}\right)}{\frac{1}{2} \sin \left(t^{2}\right)+\frac{1}{2} t\left[2 t \cos \left(t^{2}\right)\right]} \quad \text { [by FTC1 and the Product Rule] } \\
& \stackrel{\mathrm{H}}{=} \lim _{t \rightarrow 0^{+}} \frac{2 t \cos \left(t^{2}\right)}{t \cos \left(t^{2}\right)-2 t^{3} \sin \left(t^{2}\right)+2 t \cos \left(t^{2}\right)}=\lim _{t \rightarrow 0^{+}} \frac{2 \cos \left(t^{2}\right)}{3 \cos \left(t^{2}\right)-2 t^{2} \sin \left(t^{2}\right)}=\frac{2}{3-0}=\frac{2}{3}
\end{aligned}
$$

9. $f(x)=2+x-x^{2}=(-x+2)(x+1)=0 \quad \Leftrightarrow \quad x=2$ or $x=-1 . \quad f(x) \geq 0$ for $x \in[-1,2]$ and $f(x)<0$ everywhere else. The integral $\int_{a}^{b}\left(2+x-x^{2}\right) d x$ has a maximum on the interval where the integrand is positive, which is $[-1,2]$. So $a=-1, b=2$. (Any larger interval gives a smaller integral since $f(x)<0$ outside $[-1,2]$. Any smaller interval also gives a smaller integral since $f(x) \geq 0$ in $[-1,2]$.)
10. This sum can be interpreted as a Riemann sum, with the right endpoints of the subintervals as sample points and with $a=0, b=10,000$, and $f(x)=\sqrt{x}$. So we approximate

$$
\sum_{i=1}^{10,000} \sqrt{i} \approx \lim _{n \rightarrow \infty} \frac{10,000}{n} \sum_{i=1}^{n} \sqrt{\frac{10,000 i}{n}}=\int_{0}^{10,000} \sqrt{x} d x=\left[\frac{2}{3} x^{3 / 2}\right]_{0}^{10,000}=\frac{2}{3}(1,000,000) \approx 666,667 .
$$

Alternate method: We can use graphical methods as follows:
From the figure we see that $\int_{i-1}^{i} \sqrt{x} d x<\sqrt{i}<\int_{i}^{i+1} \sqrt{x} d x$, so
$\int_{0}^{10,000} \sqrt{x} d x<\sum_{i=1}^{10,000} \sqrt{i}<\int_{1}^{10,001} \sqrt{x} d x$. Since
$\int \sqrt{x} d x=\frac{2}{3} x^{3 / 2}+C$, we get $\int_{0}^{10,000} \sqrt{x} d x=666,666 . \overline{6}$ and
$\int_{1}^{10,001} \sqrt{x} d x=\frac{2}{3}\left[(10,001)^{3 / 2}-1\right] \approx 666,766$.

Hence, $666,666 . \overline{6}<\sum_{i=1}^{10,000} \sqrt{i}<666,766$. We can estimate the sum by averaging these bounds:
$\sum_{i=1}^{10,000} \approx \frac{666,666 \cdot \overline{6}+666,766}{2} \approx 666,716$. The actual value is about $666,716.46$.
11. (a) We can split the integral $\int_{0}^{n} \llbracket x \rrbracket d x$ into the sum $\sum_{i=1}^{n}\left[\int_{i-1}^{i} \llbracket x \rrbracket d x\right]$. But on each of the intervals $[i-1, i)$ of integration, $\llbracket x \rrbracket$ is a constant function, namely $i-1$. So the i th integral in the sum is equal to $(i-1)[i-(i-1)]=(i-1)$. So the original integral is equal to $\sum_{i=1}^{n}(i-1)=\sum_{i=1}^{n-1} i=\frac{(n-1) n}{2}$.
(b) We can write $\int_{a}^{b} \llbracket x \rrbracket d x=\int_{0}^{b} \llbracket x \rrbracket d x-\int_{0}^{a} \llbracket x \rrbracket d x$.

Now $\int_{0}^{b} \llbracket x \rrbracket d x=\int_{0}^{\llbracket b \rrbracket} \llbracket x \rrbracket d x+\int_{\llbracket b \rrbracket}^{b} \llbracket x \rrbracket d x$. The first of these integrals is equal to $\frac{1}{2}(\llbracket b \rrbracket-1) \llbracket b \rrbracket$,
by part (a), and since $\llbracket x \rrbracket=\llbracket b \rrbracket$ on $[\llbracket b \rrbracket, b]$, the second integral is just $\llbracket b \rrbracket(b-\llbracket b \rrbracket)$. So
$\int_{0}^{b} \llbracket x \rrbracket d x=\frac{1}{2}(\llbracket b \rrbracket-1) \llbracket b \rrbracket+\llbracket b \rrbracket(b-\llbracket b \rrbracket)=\frac{1}{2} \llbracket b \rrbracket(2 b-\llbracket b \rrbracket-1)$ and similarly $\int_{0}^{a} \llbracket x \rrbracket d x=\frac{1}{2} \llbracket a \rrbracket(2 a-\llbracket a \rrbracket-1)$.
Therefore, $\int_{a}^{b} \llbracket x \rrbracket d x=\frac{1}{2} \llbracket b \rrbracket(2 b-\llbracket b \rrbracket-1)-\frac{1}{2} \llbracket a \rrbracket(2 a-\llbracket a \rrbracket-1)$.
12. By FTC $1, \frac{d}{d x} \int_{0}^{x}\left(\int_{1}^{\sin t} \sqrt{1+u^{4}} d u\right) d t=\int_{1}^{\sin x} \sqrt{1+u^{4}} d u$. Again using FTC1,
$\frac{d^{2}}{d x^{2}} \int_{0}^{x}\left(\int_{1}^{\sin t} \sqrt{1+u^{4}} d u\right) d t=\frac{d}{d x} \int_{1}^{\sin x} \sqrt{1+u^{4}} d u=\sqrt{1+\sin ^{4} x} \cos x$.
13. Let $Q(x)=\int_{0}^{x} P(t) d t=\left[a t+\frac{b}{2} t^{2}+\frac{c}{3} t^{3}+\frac{d}{4} t^{4}\right]_{0}^{x}=a x+\frac{b}{2} x^{2}+\frac{c}{3} x^{3}+\frac{d}{4} x^{4}$. Then $Q(0)=0$, and $Q(1)=0$ by the given condition, $a+\frac{b}{2}+\frac{c}{3}+\frac{d}{4}=0$. Also, $Q^{\prime}(x)=P(x)=a+b x+c x^{2}+d x^{3}$ by FTC1. By Rolle's Theorem, applied to Q on $[0,1]$, there is a number r in $(0,1)$ such that $Q^{\prime}(r)=0$, that is, such that $P(r)=0$. Thus, the equation $P(x)=0$ has a root between 0 and 1 .

More generally, if $P(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}$ and if $a_{0}+\frac{a_{1}}{2}+\frac{a_{2}}{3}+\cdots+\frac{a_{n}}{n+1}=0$, then the equation $P(x)=0$ has a root between 0 and 1 . The proof is the same as before:

Let $Q(x)=\int_{0}^{x} P(t) d t=a_{0} x+\frac{a_{1}}{2} x^{2}+\frac{a_{2}}{3} x^{3}+\cdots+\frac{a_{n}}{n+1} x^{n}$. Then $Q(0)=Q(1)=0$ and $Q^{\prime}(x)=P(x)$. By
Rolle's Theorem applied to Q on $[0,1]$, there is a number r in $(0,1)$ such that $Q^{\prime}(r)=0$, that is, such that $P(r)=0$.
14.

Let x be the distance between the center of the disk and the surface of the liquid. The wetted circular region has area $\pi r^{2}-\pi x^{2}$ while the unexposed wetted region (shaded in the diagram) has area $2 \int_{x}^{r} \sqrt{r^{2}-t^{2}} d t$, so the exposed wetted region has area $A(x)=\pi r^{2}-\pi x^{2}-2 \int_{x}^{r} \sqrt{r^{2}-t^{2}} d t, 0 \leq x \leq r$. By FTC1, we have $A^{\prime}(x)=-2 \pi x+2 \sqrt{r^{2}-x^{2}}$.

Now $A^{\prime}(x)>0 \Rightarrow-2 \pi x+2 \sqrt{r^{2}-x^{2}}>0 \Rightarrow \sqrt{r^{2}-x^{2}}>\pi x \Rightarrow r^{2}-x^{2}>\pi^{2} x^{2} \Rightarrow$
$r^{2}>\pi^{2} x^{2}+x^{2} \Rightarrow r^{2}>x^{2}\left(\pi^{2}+1\right) \Rightarrow x^{2}<\frac{r^{2}}{\pi^{2}+1} \Rightarrow x<\frac{r}{\sqrt{\pi^{2}+1}}$, and we'll call this value x^{*}.
Since $A^{\prime}(x)>0$ for $0<x<x^{*}$ and $A^{\prime}(x)<0$ for $x^{*}<x<r$, we have an absolute maximum when $x=x^{*}$.
15. Note that $\frac{d}{d x}\left(\int_{0}^{x}\left[\int_{0}^{u} f(t) d t\right] d u\right)=\int_{0}^{x} f(t) d t$ by FTC1, while

$$
\begin{aligned}
\frac{d}{d x}\left[\int_{0}^{x} f(u)(x-u) d u\right] & =\frac{d}{d x}\left[x \int_{0}^{x} f(u) d u\right]-\frac{d}{d x}\left[\int_{0}^{x} f(u) u d u\right] \\
& =\int_{0}^{x} f(u) d u+x f(x)-f(x) x=\int_{0}^{x} f(u) d u
\end{aligned}
$$

Hence, $\int_{0}^{x} f(u)(x-u) d u=\int_{0}^{x}\left[\int_{0}^{u} f(t) d t\right] d u+C$. Setting $x=0$ gives $C=0$.
16. The parabola $y=4-x^{2}$ and the line $y=x+2$ intersect when
$4-x^{2}=x+2 \Leftrightarrow x^{2}+x-2=0 \quad \Leftrightarrow \quad(x+2)(x-1)=0 \quad \Leftrightarrow$ $x=-2$ or 1 . So the point A is $(-2,0)$ and B is $(1,3)$. The slope of the line $y=x+2$ is 1 and the slope of the parabola $y=4-x^{2}$ at x-coordinate x is $-2 x$. These slopes are equal when $x=-\frac{1}{2}$, so the point C is $\left(-\frac{1}{2}, \frac{15}{4}\right)$.

The area A_{1} of the parabolic segment is the area under the parabola from
 $x=-2$ to $x=1$, minus the area under the line $y=x+2$ from -2 to 1 . Thus,

$$
\begin{aligned}
A_{1} & =\int_{-2}^{1}\left(4-x^{2}\right) d x-\int_{-2}^{1}(x+2) d x=\left[4 x-\frac{1}{3} x^{3}\right]_{-2}^{1}-\left[\frac{1}{2} x^{2}+2 x\right]_{-2}^{1} \\
& =\left[\left(4-\frac{1}{3}\right)-\left(-8+\frac{8}{3}\right)\right]-\left[\left(\frac{1}{2}+2\right)-(2-4)\right]=9-\frac{9}{2}=\frac{9}{2} .
\end{aligned}
$$

The area A_{2} of the inscribed triangle is the area under the line segment AC plus the area under the line segment CB minus the area under the line segment AB . The line through A and C has slope $\frac{15 / 4-0}{-1 / 2+2}=\frac{5}{2}$ and equation $y-0=\frac{5}{2}(x+2)$, or $y=\frac{5}{2} x+5$. The line through C and B has slope $\frac{3-15 / 4}{1+1 / 2}=-\frac{1}{2}$ and equation $y-3=-\frac{1}{2}(x-1)$, or $y=-\frac{1}{2} x+\frac{7}{2}$. Thus,

$$
\begin{aligned}
A_{2} & =\int_{-2}^{-1 / 2}\left(\frac{5}{2} x+5\right) d x+\int_{-1 / 2}^{1}\left(-\frac{1}{2} x+\frac{7}{2}\right) d x-\int_{-2}^{1}(x+2) d x=\left[\frac{5}{4} x^{2}+5 x\right]_{-2}^{-1 / 2}+\left[-\frac{1}{4} x^{2}+\frac{7}{2} x\right]_{-1 / 2}^{1}-\frac{9}{2} \\
& =\left[\left(\frac{5}{16}-\frac{5}{2}\right)-(5-10)\right]+\left[\left(-\frac{1}{4}+\frac{7}{2}\right)-\left(-\frac{1}{16}-\frac{7}{4}\right)\right]-\frac{9}{2}=\frac{45}{16}+\frac{81}{16}-\frac{72}{16}=\frac{54}{16}=\frac{27}{8}
\end{aligned}
$$

Archimedes' result states that $A_{1}=\frac{4}{3} A_{2}$, which is verified in this case since $\frac{4}{3} \cdot \frac{27}{8}=\frac{9}{2}$.
17.

Let c be the nonzero x-intercept so that the parabola has equation $f(x)=k x(x-c)$, or $y=k x^{2}-c k x$, where $k<0$. The area A under the parabola is

$$
\begin{aligned}
A & =\int_{0}^{c} k x(x-c) d x=k \int_{0}^{c}\left(x^{2}-c x\right) d x=k\left[\frac{1}{3} x^{3}-\frac{1}{2} c x^{2}\right]_{0}^{c} \\
& =k\left(\frac{1}{3} c^{3}-\frac{1}{2} c^{3}\right)=-\frac{1}{6} k c^{3}
\end{aligned}
$$

The point (a, b) is on the parabola, so $f(a)=b \quad \Rightarrow \quad b=k a(a-c) \Rightarrow$ $k=\frac{b}{a(a-c)}$. Substituting for k in A gives $A(c)=-\frac{b}{6 a} \cdot \frac{c^{3}}{a-c} \Rightarrow$

$$
A^{\prime}(c)=-\frac{b}{6 a} \cdot \frac{(a-c)\left(3 c^{2}\right)-c^{3}(-1)}{(a-c)^{2}}=-\frac{b}{6 a} \cdot \frac{c^{2}[3(a-c)+c]}{(a-c)^{2}}=-\frac{b c^{2}(3 a-2 c)}{6 a(a-c)^{2}}
$$

Now $A^{\prime}=0 \Rightarrow c=\frac{3}{2} a$. Since $A^{\prime}(c)<0$ for $a<c<\frac{3}{2} a$ and $A^{\prime}(c)>0$ for $c>\frac{3}{2} a$, so A has an absolute minimum when $c=\frac{3}{2} a$. Substituting for c in k gives us $k=\frac{b}{a\left(a-\frac{3}{2} a\right)}=-\frac{2 b}{a^{2}}$, so $f(x)=-\frac{2 b}{a^{2}} x\left(x-\frac{3}{2} a\right)$, or $f(x)=-\frac{2 b}{a^{2}} x^{2}+\frac{3 b}{a} x$. Note that the vertex of the parabola is $\left(\frac{3}{4} a, \frac{9}{8} b\right)$ and the minimal area under the parabola is $A\left(\frac{3}{2} a\right)=\frac{9}{8} a b$.
18.

We restrict our attention to the triangle shown. A point in this triangle is closer to the side shown than to any other side, so if we find the area of the region R consisting of all points in the triangle that are closer to the center than to that side, we can multiply this area by 4 to find the total area. We find the equation of the set of points which are equidistant from the center and the side: the distance of the point (x, y) from the side is $1-y$, and its distance from the center is $\sqrt{x^{2}+y^{2}}$.

So the distances are equal if $\sqrt{x^{2}+y^{2}}=1-y \quad \Leftrightarrow \quad x^{2}+y^{2}=1-2 y+y^{2} \quad \Leftrightarrow \quad y=\frac{1}{2}\left(1-x^{2}\right)$. Note that the area we are interested in is equal to the area of a triangle plus a crescent-shaped area. To find these areas, we have to find the y-coordinate h of the horizontal line separating them. From the diagram, $1-h=\sqrt{2} h \quad \Leftrightarrow \quad h=\frac{1}{1+\sqrt{2}}=\sqrt{2}-1$. We calculate the areas in terms of h, and substitute afterward.

The area of the triangle is $\frac{1}{2}(2 h)(h)=h^{2}$, and the area of the crescent-shaped section is

$$
\int_{-h}^{h}\left[\frac{1}{2}\left(1-x^{2}\right)-h\right] d x=2 \int_{0}^{h}\left(\frac{1}{2}-h-\frac{1}{2} x^{2}\right) d x=2\left[\left(\frac{1}{2}-h\right) x-\frac{1}{6} x^{3}\right]_{0}^{h}=h-2 h^{2}-\frac{1}{3} h^{3} .
$$

So the area of the whole region is

$$
\begin{aligned}
4\left[\left(h-2 h^{2}-\frac{1}{3} h^{3}\right)+h^{2}\right] & =4 h\left(1-h-\frac{1}{3} h^{2}\right)=4(\sqrt{2}-1)\left[1-(\sqrt{2}-1)-\frac{1}{3}(\sqrt{2}-1)^{2}\right] \\
& =4(\sqrt{2}-1)\left(1-\frac{1}{3} \sqrt{2}\right)=\frac{4}{3}(4 \sqrt{2}-5)
\end{aligned}
$$

19. $\lim _{n \rightarrow \infty}\left(\frac{1}{\sqrt{n} \sqrt{n+1}}+\frac{1}{\sqrt{n} \sqrt{n+2}}+\cdots+\frac{1}{\sqrt{n} \sqrt{n+n}}\right)$

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty} \frac{1}{n}\left(\sqrt{\frac{n}{n+1}}+\sqrt{\frac{n}{n+2}}+\cdots+\sqrt{\frac{n}{n+n}}\right) \\
& =\lim _{n \rightarrow \infty} \frac{1}{n}\left(\frac{1}{\sqrt{1+1 / n}}+\frac{1}{\sqrt{1+2 / n}}+\cdots+\frac{1}{\sqrt{1+1}}\right) \\
& =\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} f\left(\frac{i}{n}\right) \quad\left[\text { where } f(x)=\frac{1}{\sqrt{1+x}}\right] \\
& =\int_{0}^{1} \frac{1}{\sqrt{1+x}} d x=[2 \sqrt{1+x}]_{0}^{1}=2(\sqrt{2}-1)
\end{aligned}
$$

20. Note that the graphs of $(x-c)^{2}$ and $[(x-c)-2]^{2}$ intersect when $|x-c|=|x-c-2| \Leftrightarrow$ $c-x=x-c-2 \Leftrightarrow x=c+1$. The integration will proceed differently depending on the value of c.

Case 1: $-2 \leq c<-1$
In this case, $f_{c}(x)=(x-c-2)^{2}$ for $x \in[0,1]$, so

$$
\begin{aligned}
g(c) & =\int_{0}^{1}(x-c-2)^{2} d x=\frac{1}{3}\left[(x-c-2)^{3}\right]_{0}^{1}=\frac{1}{3}\left[(-c-1)^{3}-(-c-2)^{3}\right] \\
& =\frac{1}{3}\left(3 c^{2}+9 c+7\right)=c^{2}+3 c+\frac{7}{3}=\left(c+\frac{3}{2}\right)^{2}+\frac{1}{12}
\end{aligned}
$$

This is a parabola; its maximum value for $-2 \leq c<-1$ is $g(-2)=\frac{1}{3}$, and its minimum value is $g\left(-\frac{3}{2}\right)=\frac{1}{12}$.

Case 2: $-1 \leq c<0$
In this case, $f_{c}(x)= \begin{cases}(x-c)^{2} & \text { if } 0 \leq x \leq c+1 \\ (x-c-2)^{2} & \text { if } c+1<x \leq 1\end{cases}$
Therefore,

$$
\begin{aligned}
g(c) & =\int_{0}^{1} f_{c}(x) d x=\int_{0}^{c+1}(x-c)^{2} d x+\int_{c+1}^{1}(x-c-2)^{2} d x \\
& =\frac{1}{3}\left[(x-c)^{3}\right]_{0}^{c+1}+\frac{1}{3}\left[(x-c-2)^{3}\right]_{c+1}^{1}=\frac{1}{3}\left[1+c^{3}+(-c-1)^{3}-(-1)\right] \\
& =-c^{2}-c+\frac{1}{3}=-\left(c+\frac{1}{2}\right)^{2}+\frac{7}{12}
\end{aligned}
$$

Again, this is a parabola, whose maximum value for $-1 \leq c<0$ is $g\left(-\frac{1}{2}\right)=\frac{7}{12}$, and whose minimum value on this c-interval is $g(-1)=\frac{1}{3}$.
\qquad

Case 3: $0 \leq c \leq 2$
In this case, $f_{c}(x)=(x-c)^{2}$ for $x \in[0,1]$, so

$$
\begin{aligned}
g(c) & =\int_{0}^{1}(x-c)^{2} d x=\frac{1}{3}\left[(x-c)^{3}\right]_{0}^{1}=\frac{1}{3}\left[(1-c)^{3}-(-c)^{3}\right] \\
& =c^{2}-c+\frac{1}{3}=\left(c-\frac{1}{2}\right)^{2}+\frac{1}{12}
\end{aligned}
$$

This parabola has a maximum value of $g(2)=\frac{7}{3}$ and a minimum value of $g\left(\frac{1}{2}\right)=\frac{1}{12}$.

We conclude that $g(c)$ has an absolute maximum value of $g(2)=\frac{7}{3}$, and absolute minimum values of $g\left(-\frac{3}{2}\right)=g\left(\frac{1}{2}\right)=\frac{1}{12}$.

