Fall 2016 Math 2B
 Suggested Homework Problems Solutions

Sections	Topics covered	Problems
5.1	Area and distances	$1,2,5,13,18,21$
5.2	The definite integral	$1,3,5,7,18,20,21,24,34,38,40,53,58,63,64$
5.3	Fundamental theorem of calculus	$2,8,10,12,14,16,18,22,24,26,29,30,34,36,41$, $43,60,62,74,75$

Area and distances

Exercise 1: Correction at the end of your book
Exercise 2: (a) We have in our case

$$
\Delta x=\frac{12-0}{6}=2 .
$$

(i) The left endpoints are $x_{0}=0, x_{1}=0+\Delta x=2, x_{2}=4, x_{3}=6, x_{4}=8$ and $x_{5}=10$. Therefore

$$
\begin{aligned}
L_{6} & =2 f(0)+2 f(2)+2 f(4)+2 f(6)+2 f(8)+2 f(10) \\
& =2 \cdot 9+2 \cdot 8.8+2 \cdot 8.2+2 \cdot 7.3+2 \cdot 6+2 \cdot 4 \\
& =86.6 .
\end{aligned}
$$

(ii) The right endpoints are $x_{1}=0+\Delta x=2, x_{2}=4, x_{3}=6, x_{4}=8, x_{5}=10$ and $x_{6}=12$. Therefore

$$
\begin{aligned}
R_{6} & =2 f(2)+2 f(4)+2 f(6)+2 f(8)+2 f(10)+2 f(12) \\
& =2 \cdot 8.8+2 \cdot 8.2+2 \cdot 7.3+2 \cdot 6+2 \cdot 4+2 \cdot 1 \\
& =70.6 .
\end{aligned}
$$

(iii) The midpoints are $\bar{x}_{1}=1, \bar{x}_{2}=3, \bar{x}_{3}=5, \bar{x}_{4}=7, \bar{x}_{5}=9$ and $\bar{x}_{6}=11$. Therefore

$$
\begin{aligned}
M_{6} & =2 f(1)+2 f(3)+2 f(5)+2 f(7)+2 f(9)+2 f(11) \\
& =2 \cdot 8.9+2 \cdot 8.5+2 \cdot 7.8+2 \cdot 6.6+2 \cdot 5+2 \cdot 2.8 \\
& =79.2
\end{aligned}
$$

(b) Since f is decreasing, L_{6} is an overestimate of the true area.
(c) Since f is decreasing, R_{6} is an underestimate of the true area.
(d) Draw the rectangles. M_{6}.

Exercise 5: Correction at the end of your book.

Exercise 6 : (a)

(b) We have in our case

$$
\Delta x=\frac{5-1}{4}=1
$$

The right endpoints are $x_{1}=1+\Delta x=2, x_{2}=3, x_{3}=4$, and $x_{4}=5$. Therefore

$$
\begin{aligned}
R_{4} & =f(2)+f(3)+f(4)+f(5) \\
& =(2-2 \ln (2))+(3-2 \ln (3))+(4-2 \ln (4))+(5-2 \ln (5))
\end{aligned}
$$

$$
\approx 4.4
$$

The midpoints are $m_{1}=1.5, m_{2}=2.5, m_{3}=3.5$, and $m_{4}=4.5$. Therefore

$$
\begin{aligned}
M_{4} & =f(1.5)+f(2.5)+f(3.5)+f(4.5) \\
& =(1.5-2 \ln (1.5))+(2.5-2 \ln (2.5))+(3.5-2 \ln (3.5))+(4.5-2 \ln (4.5)) \\
& \approx 3.8
\end{aligned}
$$

(c) We have in our case

$$
\Delta x=\frac{5-1}{8}=0.5 .
$$

The right endpoints are $x_{1}=1+\Delta x=1.5, x_{2}=2, x_{3}=2.5, \ldots$, and $x_{8}=5$. Therefore

$$
\begin{aligned}
R_{8} & =\frac{1}{2}[f(1.5)+f(2)+\ldots+f(5)] \\
& =\frac{1}{2}[(1.5-2 \ln (1.5))+(2-2 \ln (2))+\ldots+(5-2 \ln (5))] \\
& \approx 4.1
\end{aligned}
$$

The midpoints are $m_{1}=1.25, m_{2}=1.75, \ldots$, and $m_{8}=4.75$. Therefore

$$
\begin{aligned}
M_{8} & =\frac{1}{2}[f(1.25)+f(1.75)+\ldots+f(4.75)] \\
& =\frac{1}{2}[(1.25-2 \ln (1.25))+(1.75-2 \ln (1.75))+\ldots+(4.75-2 \ln (4.75))] \\
& \approx 3.9 .
\end{aligned}
$$

Exercise 13 : Since v is an increasing function, L_{6} will give us a lower estimate and R_{6} an upper estimate.

$$
\begin{gathered}
L_{6}=0.5[0+6.2+10.8+14.9+18.1+19.4]=34.7 \\
R_{6}=0.5[6.2+10.8+14.9+18.1+19.4+20.2]=44.8
\end{gathered}
$$

Exercise 18 : We use M_{6} to get an estimate. Here

$$
\Delta t=\frac{30-0}{6}=5=\frac{5}{3600}=\frac{1}{720} .
$$

Therefore

$$
M_{6}=\frac{1}{720}[v(2.5)+v(7.5)+v(12.5)+v(17.5)+v(22.5)+v(27.5)] \approx 0.725 \mathrm{~km}
$$

Exercise 21 : Here

$$
\Delta x=\frac{3-1}{n}=\frac{2}{n}
$$

and,

$$
x_{i}=1+i \Delta x=1+\frac{2 i}{n}
$$

for $1 \leq i \leq n$. Therefore

$$
R_{n}=\Delta x \sum_{i=1}^{n} f\left(x_{i}\right)=\frac{2}{n} \sum_{i=1}^{n} \frac{2(1+2 i / n)}{(1+2 i / n)^{2}+1},
$$

and,

$$
\mathcal{A}=\lim _{n \rightarrow \infty} R_{n}
$$

Definite integral

Exercise 1: Correction at the end of your book.

Exercise 3 :

Here

$$
\Delta x=\frac{3-0}{6}=\frac{1}{2} .
$$

Since we are using midpoints, $x_{i}^{*}=\frac{x_{i-1}+x_{i}}{2}$.

$$
\begin{aligned}
M_{6} & =\Delta x \sum_{i=1}^{6} f\left(x_{i}\right)=\frac{1}{2}\left[f\left(\frac{1}{4}\right)+f\left(\frac{3}{4}\right)+f\left(\frac{5}{4}\right)+f\left(\frac{7}{4}\right)+f\left(\frac{9}{4}\right)+f\left(\frac{11}{4}\right)\right] \\
& =-\frac{49}{16} .
\end{aligned}
$$

The Riemann sum represents the sum of the areas of the two rectangles above the x-axis minus the sum of the areas of the three rectangles below the x-axis, that is the net area of the rectangles with respect to the x-axis.

Exercise 5 : Correction at the end of your book.
Exercise 7 : Correction at the end of your book.
Exercise 18 : $\int_{2}^{5} x \sqrt{1+x^{3}} d x$.
Exercise 20 : $\int_{1}^{3} \frac{x}{x^{2}+4} d x$.
Exercise 21 : Here

$$
\Delta x=\frac{5-2}{n}=\frac{3}{n},
$$

and for $0 \leq i \leq n$,

$$
x_{i}=2+i \Delta x=2+\frac{3 i}{n} .
$$

Therefore

$$
\begin{aligned}
R_{n} & =\Delta x \sum_{i=1}^{n} f\left(x_{i}\right)=\frac{3}{n} \sum_{i=1}^{n}\left[4-2\left(2+\frac{3 i}{n}\right)\right] \\
& =\frac{3}{n} \sum_{i=1}^{n}-\frac{6 i}{n}=-\frac{18}{n^{2}} \sum_{i=1}^{n} i \\
& =-\frac{18}{n^{2}} \frac{n(n+1)}{2}=-9 \frac{n(n+1)}{n^{2}}=-9\left(1+\frac{1}{n}\right)
\end{aligned}
$$

And then

$$
\int_{2}^{5}(4-2 x) d x=\lim _{n \rightarrow \infty} R_{n}=-9 .
$$

Exercise 24 : Here

$$
\Delta x=\frac{2-0}{n}=\frac{2}{n},
$$

and for $0 \leq i \leq n$,

$$
x_{i}=0+i \Delta x=\frac{2 i}{n} .
$$

Therefore

$$
\begin{aligned}
R_{n} & =\Delta x \sum_{i=1}^{n} f\left(x_{i}\right)=\frac{2}{n} \sum_{i=1}^{n}\left[2\left(\frac{2 i}{n}\right)-\left(\frac{2 i}{n}\right)^{3}\right] \\
& =\frac{2}{n} \sum_{i=1}^{n} \frac{4 i}{n}-\frac{2}{n} \sum_{i=1}^{n} \frac{8 i^{3}}{n^{3}}=\frac{8}{n^{2}} \sum_{i=1}^{n} i-\frac{16}{n^{4}} \sum_{i=1}^{n} i^{3} \\
& =\frac{8}{n^{2}} \frac{n(n+1)}{2}-\frac{16}{n^{4}} \frac{n^{2}(n+1)^{2}}{4} \\
& =4 \frac{n(n+1)}{n^{2}}\left[1-\frac{n(n+1)}{n^{2}}\right]=4\left(1+\frac{1}{n}\right)\left[1-\left(1+\frac{1}{n}\right)\right] \\
& =-4\left(1+\frac{1}{n}\right) \frac{1}{n} .
\end{aligned}
$$

And then

$$
\int_{0}^{2}\left(2 x-x^{3}\right) d x=\lim _{n \rightarrow \infty} R_{n}=0
$$

Exercise 34 : (a) $\int_{0}^{2} g(x) d x=\frac{4 * 2}{2}=4$. (Area of a triangle)
(b) $\int_{2}^{6} g(x) d x=-\frac{1}{2} \pi 2^{2}=-2 \pi$. (Negative of the area of a semi-circle)
(c) $\int_{6}^{7} g(x) d x=\frac{1 * 1}{2}=\frac{1}{2}$. (Area of a triangle)

Exercise 38 :

$$
\int_{-5}^{5}\left(x-\sqrt{25-x^{2}}\right) d x=\int_{-5}^{5} x d x-\int_{-5}^{5} \sqrt{25-x^{2}} d x
$$

By symmetry, the value of the first integral is 0 , since the blue area above the x-axis equals the blue area under the x-axis.

The second integral can be interpreted as one half the area of a circle with radius 5 , that is $\frac{25 \pi}{2}$. Thus the value of the original integral is $0-\frac{25 \pi}{2}=-\frac{25 \pi}{2}$.

Exercise 40 :

The integral can be interpreted as the sum of the two blue areas, that is

$$
2 * \frac{1 * 0.5}{2}=0.5
$$

Exercise 53 : We have

$$
\int_{-4}^{2}(f(x)+2 x+5) d x=\int_{-4}^{2} f(x) d x+2 \int_{-4}^{2} x d x+\int_{-4}^{2} 5 d x
$$

The first integral is equal to $-3+3-3=-3$. The second integral is equal to $-\frac{4 * 4}{2}+\frac{2 * 2}{2}=-6$.

The third integral is equal to $5(2-(-4))=30$. Thus the original integral equals $-3+2 *(-6)+30=15$.

Exercise 58 : For all $\frac{\pi}{6} \leq x \leq \frac{\pi}{3}$, we have

$$
\sin \left(\frac{\pi}{6}\right) \leq \sin (x) \leq \sin \left(\frac{\pi}{3}\right)
$$

because $x \mapsto \sin (x)$ is an increasing function on $\left[0, \frac{\pi}{2}\right]$.
Therefore for all $\frac{\pi}{6} \leq x \leq \frac{\pi}{3}, \frac{1}{2} \leq \sin (x) \leq \frac{\sqrt{3}}{2}$.
We apply the Property 8 and get :

$$
\frac{1}{2}\left(\frac{\pi}{3}-\frac{\pi}{6}\right) \leq \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \sin (x) d x \leq \frac{\sqrt{3}}{2}\left(\frac{\pi}{3}-\frac{\pi}{6}\right)
$$

This gives us our result.
Exercise 63 : Let $f(x)=x e^{-x}$ for all $0 \leq x \leq 2$. f is differentiable on $[0,2]$ and we have, for all $0 \leq x \leq 2$,

$$
f^{\prime}(x)=e^{-x}-x e^{-x}=e^{-x}(1-x) .
$$

For all $0 \leq x \leq 2, e^{-x}>0$. Therefore we have the following table of variations for f :

	0	1	2
f^{\prime}	+	-	
f	\nearrow	\searrow	

We have also $f(0)=0$ and $f(2)=2 e^{-2}>0$. So this absolute minimum value of f on $[0,2]$ is 0 and the absolute maximum is $f(1)=e^{-1}$. For all $0 \leq x \leq 2$, we thus have :

$$
0 \leq x e^{-x} \leq e^{-1}
$$

By Property 8, this gives us :

$$
0 \leq \int_{0}^{2} x e^{-x} d x \leq 2 e^{-1}
$$

Exercise 64 : Let $f(x)=x-2 \sin (x)$ for all $\pi \leq x \leq 2 \pi$. f is differentiable on [$\pi, 2 \pi]$ and we have, for all $\pi \leq x \leq 2 \pi$,

$$
f^{\prime}(x)=1-2 \cos (x)
$$

On $[\pi, 2 \pi], f^{\prime}(x)=0 \Leftrightarrow \cos (x)=\frac{1}{2} \Leftrightarrow x=\frac{5 \pi}{3}$. Therefore we have the following table of variations for f :

	$5 \pi / 3$			2π
f^{\prime}	+	-		
f	\nearrow	\searrow		

We have also $f(\pi)=\pi$ and $f(2 \pi)=2 \pi$. So this absolute minimum value of f on $[0,2]$ is π and the absolute maximum is

$$
f\left(\frac{5 \pi}{3}\right)=\frac{5 \pi}{3}-2 \sin \left(\frac{5 \pi}{3}\right)=\frac{5 \pi}{3}-2 \sin \left(-\frac{\pi}{3}\right)=\frac{5 \pi}{3}+\sqrt{3} .
$$

For all $\pi \leq x \leq 2 \pi$, we thus have :

$$
\pi \leq f(x) \leq \frac{5 \pi}{3}+\sqrt{3}
$$

By Property 8, this gives us :

$$
\pi(2 \pi-\pi) \leq \int_{\pi}^{2 \pi} f(x) d x \leq\left(\frac{5 \pi}{3}+\sqrt{3}\right)(2 \pi-\pi)
$$

that is,

$$
\pi^{2} \leq \int_{\pi}^{2 \pi} f(x) d x \leq \frac{5 \pi^{2}}{3}+\sqrt{3} \pi
$$

Fundamental theorem of Calculus

Exercice 2: (a) $g(0)=\int_{0}^{0} g(x) d x=0$.

$$
\begin{aligned}
g(1) & =\int_{0}^{1} g(x) d x=\frac{1 * 1}{2}=\frac{1}{2} . \\
g(2) & =\int_{0}^{2} g(x) d x=\int_{0}^{1} g(x) d x+\int_{1}^{2} g(x) d x=g(1)-\frac{1 * 1}{2}=0 . \\
g(3) & =\int_{0}^{3} g(x) d x=g(2)+\int_{2}^{3} g(x) d x=0-\frac{1 * 1}{2}=-\frac{1}{2} . \\
g(4) & =g(3)+\frac{1 * 1}{2}=0 . \\
g(5) & =g(4)+\frac{3}{2}=\frac{3}{2} . \\
g(6) & =g(5)+\frac{5}{2}=4 . \\
\text { (b) } g(7) & =g(6)+\int_{6}^{7} g(x) d x \approx 4+2.2=6.2 .
\end{aligned}
$$

(c) f is the derivative of g. So the sign of f gives us the variations of g.

	0	1	3	7
f	+	-	+	
g	\nearrow	\searrow	\nearrow	

A change of sign of f gives a local minimum or maximum for g. When f goes from positive to negative values, we have a maximum for g at the point where $f=0$. When f goes from negative values to positive values, we have a minimum for g at the point where $f=0$. In our example, g has a local maximum at $x=1$ and a minimum at $x=3$. From the answers to part (a) and (b) g is maximum at $x=7$.

Exercice 8: For $x \in(-\infty, \infty), g^{\prime}(x)=\ln \left(1+x^{2}\right)$.
Exercice 10 : For $u \in(0, \infty), h^{\prime}(u)=\frac{\sqrt{u}}{u+1}$.

Exercice 12 : For $y \in(-\infty, \infty), R^{\prime}(y)=-y^{3} \sin y$.
Exercice 14 : Let $g(x)=\int_{1}^{x} \frac{z^{2}}{z^{4}+1} d z$ for $x \in(-\infty, \infty)$.
The function h defined for $x \in[0, \infty)$ can be written as $h(x)=g(\sqrt{x})$. Let $u(x)=\sqrt{x}$, for $x \geq 0$. We then have $h(x)=g(u(x))$, for all $x \geq 0$. For all $x \in(0, \infty)$, we have by the chain rule

$$
\begin{aligned}
\frac{d}{d x} h(x) & =\frac{d}{d x} g(u(x))=\left(\frac{d}{d u} g(u)\right)\left(\frac{d u}{d x}\right) \\
& =\frac{u^{2}}{u^{4}+1} \times \frac{1}{2 \sqrt{x}} \\
& =\frac{x}{x^{2}+1} \times \frac{1}{2 \sqrt{x}} .
\end{aligned}
$$

Exercice 16 : For $x \in(-\infty, \infty)$, we have by the chain rule

$$
y^{\prime}(x)=4 x^{3} \cos ^{2}\left(x^{4}\right)
$$

Exercice 18 : For $x \in(-\infty, \infty)$, we have by the chain rule

$$
y^{\prime}(x)=-\cos x \sqrt{1+\sin ^{2} x}
$$

Exercice 22 :

$$
\int_{0}^{1}\left(1-8 v^{3}+16 v^{7}\right) d v=\left[v-2 v^{4}+2 v^{8}\right]_{0}^{1}=1
$$

Exercice 24 :

$$
\int_{1}^{8} x^{-2 / 3}=\left[3 x^{1 / 3}\right]_{1}^{8}=3
$$

Exercice 26 :

$$
\int_{-5}^{5} e d x=[e x]_{-5}^{5}=10 e
$$

Exercice 29 :

$$
\int_{1}^{4} \frac{2+x^{2}}{\sqrt{x}} d x=\int_{1}^{4} \frac{2}{\sqrt{x}}+x^{3 / 2} d x=\left[4 \sqrt{x}+\frac{2}{5} x^{5 / 2}\right]_{1}^{4}=\frac{82}{5} .
$$

Exercice 30 :

$$
\int_{-1}^{2}(3 u-2)(u+1) d u=\int_{-1}^{2}\left(3 u^{2}+u-2\right) d u=\left[u^{3}+\frac{u^{2}}{2}-2 u\right]_{-1}^{2}=\frac{9}{2} .
$$

Exercice 34 :

$$
\int_{0}^{3}\left(2 \sin (x)-e^{x}\right) d x=\left[-2 \cos (x)-e^{x}\right]_{0}^{3}=3-2 \cos 3-e^{3}
$$

Exercice 36 :

$$
\int_{1}^{18} \sqrt{\frac{3}{z}} d z=\sqrt{3} \int_{1}^{18} \frac{1}{\sqrt{z}} d z=\sqrt{3}\left[2 z^{1 / 2}\right]_{1}^{18}=2 \sqrt{3}(3 \sqrt{2}-1)
$$

Exercice 41 :

$$
\int_{0}^{4} 2^{s} d s=\left[\frac{2^{s}}{\ln 2}\right]_{0}^{4}=\frac{15}{\ln 2} .
$$

Exercice 43 :

$$
\int_{0}^{\pi} f(x) d x=\int_{0}^{\pi / 2} \sin x d x+\int_{\pi / 2}^{\pi} \cos x d x=[-\cos x]_{0}^{\pi / 2}+[\sin x]_{\pi / 2}^{\pi}=0
$$

Exercice 60 : For all $x \in(-\infty,+\infty)$, we have :

$$
\begin{aligned}
g(x)=\int_{1-2 x}^{1+2 x} t \sin t d t & =\int_{1-2 x}^{0} t \sin t d t+\int_{0}^{1+2 x} t \sin t d t \\
& =-\int_{0}^{1-2 x} t \sin t d t+\int_{0}^{1+2 x} t \sin t d t
\end{aligned}
$$

We use the chain rule to differentiate g and find that for all $x \in(-\infty,+\infty)$,

$$
\begin{aligned}
g^{\prime}(x) & =-(1-2 x) \sin (1-2 x) \times(-2)+(1+2 x) \sin (1+2 x) \times 2 \\
& =2(1-2 x) \sin (1-2 x)+2(1+2 x) \sin (1+2 x) .
\end{aligned}
$$

Exercice 62 : For all $x \in[0,+\infty)$, we have :

$$
\begin{aligned}
F(x)=\int_{\sqrt{x}}^{2 x} \arctan t d t & =\int_{\sqrt{x}}^{1} \arctan t d t+\int_{1}^{2 x} \arctan t d t \\
& =-\int_{1}^{\sqrt{x}} \arctan t d t+\int_{1}^{2 x} \arctan t d t
\end{aligned}
$$

We use the chain rule to differentiate F and find that for all $x \in(0,+\infty)$,

$$
F^{\prime}(x)=-\frac{1}{2 \sqrt{x}} \arctan (\sqrt{x})+2 \arctan (2 x)
$$

Exercice 74 : (a) By the fundamental theorem of Calculus part 1, we know that f is the derivative of g . So g admits local minima and maxima when f equals to zero and
change sign. At $x=2$ and $x=6$, f changes from positive to negative, so g has local maxima at these points. At $x=4$ and $x=8, \mathrm{f}$ changes from negative to positive so g has local minima at these points.
(b) We can see from the graph that

$$
\left|\int_{0}^{2} f(t) d t\right|>\left|\int_{2}^{4} f(t) d t\right|>\left|\int_{4}^{6} f(t) d t\right|>\left|\int_{6}^{8} f(t) d t\right|>\left|\int_{8}^{10} f(t) d t\right| .
$$

We have also :

$$
\begin{gathered}
g(2)=\left|\int_{0}^{2} f(t) d t\right| \\
g(6)=\int_{0}^{6} f(t) d t=g(2)-\left|\int_{2}^{4} f(t) d t\right|+\left|\int_{4}^{6} f(t) d t\right|
\end{gathered}
$$

and

$$
g(10)=\int_{0}^{10} f(t) d t=g(6)-\left|\int_{6}^{8} f(t) d t\right|+\left|\int_{8}^{10} f(t) d t\right| .
$$

Thus, $g(2)>g(6)>g(10)$, and so the absolute maximum of $g(x)$ occurs at $x=2$.
(c) g is concave downward on those intervals where $g^{\prime \prime}<0$. But $g^{\prime \prime}=f^{\prime}$, which is negative when f is decreasing that is on $[1,3],[5,7]$ and $[9,10]$. So g is concave downward on these intervals.

Exercice 75 :

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{i^{4}}{n^{5}}+\frac{i}{n^{2}}=\lim _{n \rightarrow \infty} \frac{1-0}{n} \sum_{i=1}^{n}\left(\frac{i}{n}\right)^{4}+\frac{i}{n}=\int_{0}^{1} x^{4}+x d x=\left[\frac{x^{5}}{5}+\frac{x^{2}}{2}\right]_{0}^{1}=\frac{7}{10} .
$$

