Math 2B multiple choice sample questions, Spring 2017

1. (Section 4.9) The function $F(x)$ satisfies $F^{\prime}(x)=3 x(x-2)$ and $F(0)=1$. What is $F(1)$?
a. -3
b. $-3 / 2$
c. -1
d. 0
e. $3 / 2$

Figure 1. This shows the graph of a function $f(x)$ referred to in Questions 2 and 3.
2. (Section 4.9) Let $F(x)$ denote an antiderivative of $f(x)$, where $y=f(x)$ is shown in Figure 1. Which of the following can we deduce about $F(-5)$?
a. We have $F(-5)>0$, because $f(-5)>0$.
b. We have $F(-5)<0$, because $f^{\prime}(-5)<0$.
c. We have $F(-5)>0$, because $f^{\prime}(-5)>0$.
d. We cannot deduce any information about whether $F(-5)$ is positive or negative.
3. (Section 5.2) Figure 1 shows the graph of a function $y=f(x)$. Imagine we estimate both of the integrals $\int_{-6}^{-4} f(x) d x$ and $\int_{2}^{4} f(x) d x$ using Riemann sums with 20 rectangles and left endpoints. Which of the following is true?
a. The estimate of $\int_{-6}^{-4} f(x) d x$ is an under-estimate and the estimate of $\int_{2}^{4} f(x) d x$ is an overestimate.
b. The estimate of $\int_{-6}^{-4} f(x) d x$ is an over-estimate and the estimate of $\int_{2}^{4} f(x) d x$ is an underestimate.
c. The estimates of $\int_{-6}^{-4} f(x) d x$ and $\int_{2}^{4} f(x) d x$ are both over-estimates.
d. The estimates of $\int_{-6}^{-4} f(x) d x$ and $\int_{2}^{4} f(x) d x$ are both under-estimates.
4. (Section 5.2) Define the numbers A and B as follows:

$$
A=\int_{0}^{10}\left|x^{2}-10 x+3\right| d x \text { and } B=\int_{0}^{10}\left|x^{2}+10 x-3\right| d x
$$

Which of the following statements is true?
a. $A \geq 0$ and $B \leq 0$
b. $A \leq 0$ and $B \leq 0$
c. $A \geq 0$ and $B \geq 0$
d. $A \leq 0$ and $B \leq 0$
5. (Section 5.3) Let $f(x)=\int_{x}^{3} \sin (2 t) d t$. Compute $f^{\prime}(x)$.
a. $f^{\prime}(x)=-\sin (2 x)$
b. $f^{\prime}(x)=\sin (6)-\sin (2 x)$
c. $f^{\prime}(x)=-2 \cos (2 x)$
d. $f^{\prime}(x)=\frac{1}{2} \cos (2 x)$
6. (Section 5.4) A wolf population begins with 100 wolves and increases at a rate of $n^{\prime}(t)$ wolves per week. What does the quantity

$$
100+\int_{0}^{8} n^{\prime}(t) d t
$$

represent? No explanation is necessary.
a. The average number of wolves in the population during the first 8 weeks.
b. The average rate of change of the wolf population over the first 8 weeks.
c. The total number of wolves in the wolf population after the first 8 weeks.
d. The number of wolves gained by the wolf population during the first 8 weeks.
7. (Section 5.5) Compute $\int \frac{1 / 2}{x+1} d x$.
a. $\ln (x+1)+\frac{1}{2}+C$
b. $\frac{1}{2} \ln (x)+C$
c. $\ln \sqrt{x+1}+C$
d. $\frac{-1}{2(x+1)^{2}}+C$
8. (Section 5.5) Compute $\int_{0}^{1} e^{x+e^{x}} d x$.
a. $e\left(e^{e-1}-1\right)$
b. $e^{e^{e^{e}}}$
c. e^{e-1}
d. e^{e}
e. $(e-1) e^{e-1}$
9. (Section 6.1) Which of the following represents the area between the two curves $y=\sin (x)$ and $y=\cos (x)$ in the interval $0 \leq x \leq \frac{\pi}{2}$?
a. $\int_{0}^{\pi / 2}(\sin (x)-\cos (x)) d x$
b. $\int_{0}^{\pi / 2}(\cos (x)-\sin (x)) d x$
c. $\frac{1}{\pi / 2} \int_{0}^{\pi / 2}(\sin (x)+\cos (x)) d x$
d. $\int_{0}^{\pi / 4}(\cos (x)-\sin (x)) d x+\int_{\pi / 4}^{\pi / 2}(\sin (x)-\cos (x)) d x$
10. (Section 6.2) The definite integral $\int_{0}^{4} \pi y d y$ represents the volume of which of the following solids?
a. The region bounded by the y-axis, $y=x^{2}$, and $y=2$, rotated about the y-axis
b. The region bounded by the y-axis, $y=x^{2}$, and $y=4$, rotated about the y-axis
c. The region bounded by the x-axis, $y=\sqrt{x}$, and $x=2$, rotated about the x-axis
d. The region bounded by the x-axis, $y=\sqrt{x}$, and $x=16$, rotated about the x-axis
11. (Section 6.5) Which of the following represents the average of the function $f(x)=\cos ^{2}\left(x^{2}\right)$ over the interval from $x=0$ to $x=\pi / 2$?
a. $\frac{2}{\pi} \int_{0}^{\pi / 2} f(x) d x$
b. $\int_{0}^{\pi / 2} f^{\prime}(x) d x$
c. $\frac{f(\pi / 2)-f(0)}{\pi / 2}$
d. $\sqrt{f(\pi / 2) f(0)}$
12. (Section 7.1) Using integration by parts, we see that $\int x \ln x d x$ is equal to which of the following?
a. $\frac{x^{2} \ln x}{2}-\int \frac{x}{2} d x$
b. $\frac{x^{3}}{2}-\int \frac{x^{2}}{2} d x$
c. $\frac{x^{3} \ln x}{2}-\int 1 d x$
d. $\frac{x^{2}}{2}-\int \ln x d x$
13. (Section 7.3) While solving a trigonometric substitution question, we find $x=\tan \theta$, where $0<\theta<\pi / 2$. Which of the following is equal to $\cos (\theta)$?
a. $\sqrt{x^{2}-1}$
b. $\frac{1}{x}+\frac{1}{x+1}$
c. $\frac{1}{\sqrt{x^{2}+1}}$
d. $\frac{x^{2}-1}{\sqrt{2}}$
14. (Section 7.3) To compute the definite integral $\int_{0}^{2} \sqrt{9-x^{2}} d x$, which of the following substitutions could be used?
a. $x=3 \sin (\theta)$ and $d x=3 \cos (\theta) d \theta$
b. $x=3 \tan (\theta)$ and $d x=3 \sec ^{2}(\theta) d \theta$
c. $x=3 \sec (\theta)$ and $d x=3 \sec (\theta) \tan (\theta) d \theta$
d. $x=9-\theta^{2}$ and $d x=-2 \theta d \theta$
15. (Section 7.8) What is wrong with the computation

$$
\left.\int_{-1}^{1} \frac{1}{x} d x=\ln |x|\right]_{-1}^{1}=\ln (1)-\ln (1)=0 ?
$$

a. The function $\ln |x|$ is not an antiderivative of $\frac{1}{x}$.
b. The function $\frac{1}{x}$ has an asymptote at $x=0$ so we should have used an improper integral.
c. We are missing a " $+C$ ", so the final answer should be $0+C=C$.
d. The value $\ln (1)$ is not defined, so we can't say $\ln (1)-\ln (1)=0$.
16. (Section 11.4) Consider the series

$$
A: \sum_{k=1}^{\infty} \frac{1}{2 k-1} \text { and } B: \sum_{k=1}^{\infty} \frac{1}{3 k+1}
$$

Which of the following is the true statement?
a. Both series converge.
b. Both series diverge.
c. Series A converges and series B diverges.
d. Series A diverges and series B converges.
17. (Section 11.8) What is the interval of convergence of $\sum_{k=1}^{\infty} \frac{1}{2 k} x^{k}$?
a. $x=0$
b. $-2<x \leq 2$
c. $-2 \leq x<2$
d. $-1<x \leq 1$
e. $-1 \leq x<1$
18. (Section 11.8) What is the interval of convergence of $\sum_{k=0}^{\infty} \frac{k}{7^{k}} x^{k}$?
a. $x=0$
b. $-7<x<7$
c. $-7 \leq x<7$
d. $-7<x \leq 7$
e. $-7 \leq x \leq 7$
19. (Section 11.9) Which of the following is the power series representation of $\frac{2}{2+x}$?
a. $\sum_{n=0}^{\infty}\left(\frac{x}{2}\right)^{n}$
b. $\sum_{n=0}^{\infty}\left(\frac{-x}{2}\right)^{n}$
c. $\sum_{n=0}^{\infty} 2\left(\frac{x}{2}\right)^{n}$
d. $\sum_{n=0}^{\infty} \frac{(-x)^{n}}{2}$
20. (Section 11.10) Determine the value of $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!}$.
a. 0
b. $-e$
c. $\frac{1}{e}$
d. $\cos (e)$

