
MATH CIRCLE ACTIVITY: GROUP THEORY

1. The Symmetric Groups

We call Sn the set of all possible shuffles on n cards. There is a natural way to combine shuffles,

namely perform one shuffle after the other. We call this operation “composition”. It is easy to

check that the composition is an associative operation. Moreover, there is a trivial shuffle (the “do

nothing”, which does not move any card) and every shuffle has an inverse (in the sense that it can

be undone). Hence the set of all shuffles with the operation of composition forms a group, which

we denote by Sn.

Before we begin, we will let n represent a card with the number n written on it.

Problem 1.1 (Counting the elements of Sn.). In how many ways can we shuffle n cards?

1 2 3 · · · n .
Equivalently, how many ways can we rearrange the numbers 1, 2, . . . , n?

This will be solved using the table on the following page. Here are the instructions:

• To be accurate, fix a number to which will be the first card, and then switch around the
following (see the table for an example). The first two have been done for you.

• Remember to use strategies for counting earlier arrangements to count later ones. Once
you discover the rule, fill in the last row.

• For notational simplicity, we will write the notation to note the group of cards
m n o 7→ (mno).
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(number of cards) possible arrangements how many? total number

1 Start with 1: (1) 1 1

2 Start with 1: (1 2) 1 2

Start with 2: (2 1) 1 2

3 Start with 1: (1 2 3) 2 3 · 2 = 6
(1 3 2)

Start with 2: (2 · ·) 2

: (2 · ·)
Start with 3: (3 · ·) 2

: (3 · ·)

4 Start with 1: (1 · · ·)

Start with 2: (2 · · ·)

Start with 3: (3 · · ·)

Start with 4: (4 · · ·)

n
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Problem 1.2 (2-Row Notations.). We denote the shuffle below by the 2-row notation
(
1 2 3 4 5 6
3 6 1 5 2 4

)
.

1 2 3 4 5 6

↓

3 6 1 5 2 4 ,

Write down all the shuffles of the 3 cards using 2-row notation.

Problem 1.3 (Shuffle orders). The “easiest shuffle” we can do on the set of n cards

1 2 3 · · · n ,
is to leave them exactly as they are. We call the “do nothing operation” the identity.

Given a way to shuffle the cards, we say the order of the shuffle is the smallest number of times

I need to perform the identity to go back to the identity. For example, if you have 5 cards, the

operation

1 > 1 > 1 1 1

< ⟳ ⟳
∧

∨

(where here ⟳ means do not move this card) has order 3. To see this, look:
1 2 3 4 5 −→

do operation once
3 1 2 4 5

−→
do operation twice

2 3 1 4 5

−→
do operation thrice

1 2 3 4 5 .

So after we do the operation 3 times, the cards are back in their original positions (as if we have

operated the identity).
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Compute the orders of the following shuffles.

(1)
>

1 1

∧

1 1

∨

1

⟳ ⟳ ⟳

<

∧

∨

(2)

1 1 > 1 > 1 > 1

⟳ <

∧
∨

(3)
> >

1

∧

1 1

∨
∧

1 1

∨

⟳ ⟳

<

∧

∨
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Show that if you have a total of n cards, you can find a shuffle of order 1,2,3 all the way up

to n.

For instance, if you have 6 cards, draw examples of shuffles of each order. The first one has

been completed for you.

Order of shuffle Example

Order 1
1 1 1 1 1

⟳ ⟳ ⟳ ⟳ ⟳

Order 2 1 1 1 1 1

Order 3 1 1 1 1 1

Order 4 1 1 1 1 1

Order 5 1 1 1 1 1

Order 6 1 1 1 1 1
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2. The Cyclic Groups

Problem 2.1 (The cyclic group). Consider an upside down pyramid whose base is a regular polygon

with n sides.

n = 3 n = 4 n = 5 n = 6

There is a trivial symmetry, which does not move the pyramid at all, and every symmetry can be

undone (e.g.) to undo a 90◦ clockwise rotation, simply notate the pyramid 90◦ counter clockwise.
Hence the set of symmetries of an n-pyramid forms a group, which we will call Cn, the nth cyclic

group.

A symmetry of an n-pyramid is a rigid motion that brings the pyramid back to itself. An example

is the 90◦ clock-wise rotation of the square pyramid:

1

2

4

3

90◦

4

1

2

3

−→

Notice that we can combine symmetries by performing one rigid motion after another, and the

result is again a symmetry of the pyramid. (result from page 5).

Note that every symmetry of the n-pyramid leads to a shuffle of the n vertices of the base of

the pyramid (the polygon), hence can be described in the same 2-row notation for the shuffles of

n-cards. In our previous example, the 90◦ clockwise rotation can be written as the shuffle
(
1 2 3 4
4 1 2 3

)
.

If R is our basic 90◦ clockwise rotation, let R6 be the symmetry resulting by rotation the pyramids
90◦-clockwise 6 times. (In general, for numbers k ≥ 1, Rk is defined similarly).
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Problem 2.2 (The cyclic group C4). List the symmetries of a square pyramid. For each of the

symmetries listed below, complete the picture by labeling the vertices of the base, and write down

the 2-row notation. Also, write the order of the symmetry. An example is provided.

Description of the symmetry Diagram 2-row notation Order

90◦ clockwise rotation

1

2

4

3 4

1

2

3

−→

(
1 2 3 4
4 1 2 3

)
4

180◦ clockwise rotation

1

2

4

3

−→

(
1 2 3 4
· · · ·

)

270◦ clockwise rotation

1

2

4

3

−→

(
1 2 3 4
· · · ·

)

360◦ clockwise rotation

1

2

4

3

−→

(
1 2 3 4
· · · ·

)
You may wonder whether this is the list of symmetries of the 4-pyramid.
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Describe R6 and R203. Are they listed in the table on the previous page? (Hopefully you will

agree that our list of symmetries of the square pyramid is complete ,).
Problem 2.3. We have noticed that every symmetry of the square can be represented in 2-row

rotation as a shuffle of 4 vertices (cards).

How many possible shuffles of 4 vertices exist? Does every shuffle rise to a symmetry of the

pyramid?



MATH CIRCLE ACTIVITY: GROUP THEORY 9

3. The Dihedral Groups

Problem 3.1 (The dihedral group Dn). Let’s now look at the symmetries of polygons. A regular

n-polygon is full of symmetries. Not only can we rotate the polygon by any multiple of 360
◦

n (for

n = 4, 90◦, 180◦, 270◦, 360◦), but we can also flip the polygon along a line of symmetry

Lines of symmetry of a triangle (n = 3) Lines of symmetry of a square (n = 4)

Once again, every symmetry of the n-polygon gives rise to a shuffle of the vertices hence can

be described in 2-rows.

Example 3.2. The flip below can be described as the shuffle
(
1 2 3
2 1 3

)
.

1

2

3 13

2

−→
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Describe the symmetries of the square. Label the vertices as appropriate, complete the

2-row notation and compute the order. A few examples are provided.

Symmetry Picture 2-row notation Order

“Do nothing”

−→

4

1 2

3 4

1 2

3 1

90◦-clockwise rotation

−→

4

1 2

3

90◦ (
1 2 3 4
1 2 3 4

)
1

180◦-clockwise rotation

−→

4

1 2

3

180◦ (
1 2 3 4
· · · ·

)

270◦-clockwise rotation

−→

4

1 2

3 1

2 3

4

270◦ (
1 2 3 4
· · · ·

)

horizontal flip 4

1 2

3 1

4 3

2

−→ (
1 2 3 4
· · · ·

)
2

vertical flip 4

1 2

3

−→ (
1 2 3 4
· · · ·

)
2

diagonal flip 4

1 2

3

−→ (
1 2 3 4
· · · ·

)

other diagonal flip 4

1 2

3

−→ (
1 2 3 4
· · · ·

)
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Problem 3.3 (Symmetries of mandalas). The symmetry groups of these mandalas are dihedral

groups.

For each mandala below, find n so that the symmetry group of the mandala is a dihedral

group.
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4. Putting it all together

Problem 4.1. The mandala below is full of symmetries (the symmetry group is of type D12). We

can “destroy” some of the symmetry by coloring certain parts of the mandala.

For each shaded version below, identify the symmetry group. Hint: if may be cyclic (if it

only has rotations) or dihedral (if it has both rotations and flips).

Problem 4.2 (Tricky). Note that the mandalas below, uncolored, have the symmetry D12.

(1) Color appropriately to get C6, C2, D6, D4.

(2) Can you get C5, C7 or C8? Why not?
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