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0.1. Introduction. In this activity set we are going to introduce a notion from Algebraic Topology

called ‘simplicial homology’. The main goal of this activity is to learn how to construct certain

topological invariants of different objects using simplicial complexes. These are visual, mathematical

structures that represent shapes we know well but that we are able to perform computations on. To

outline, we will be

(1) Discussing simplices, these are the “building blocks” to create our complexes. We’ll be

exploring how to define, construct, and write down these structures in different ways.

(2) We then extend to building and simplicial complexes. This will take some tinkering and

definitions, and activities to get comfortable.

(3) Then we begin relating these complexes to structures we know. We will look at objects and

see how they can be approximated from a simplical complex. We show how we can use the

gluing operation to create objects from our simplicial complexes.

(4) We introduce the boundary operator, ∂, which you can use to mathematically compute the

boundary of a given surface or object (you can show, for example, that the boundary of a ball

is most definitely a sphere!).

1. A SIMPLEX

An n-simplex is a geometric object with (n+1) vertices which lives in an n-dimensional space (and

cannot fit in any space of smaller dimension). The vertices of the simplex “generate” the simplex

through a simple geometric construction which we illustrate below. The idea is easy: one vertex

generates a point, two vertices generate a segment (by connecting the two points), three vertices

generate a triangle (by connecting every pair of points with segments and filling the space in between)

and so on. Notice how (n + 1) vertices are needed to generate an object of dimension n. Also note

that because we want an n-simplex to be an object of dimension n, a bit of care must be exercised in

the choice of its (n+1) generating vertices. For example, three points which belong to the same line

have no hope to generate a 2-dimensional object!

We now outline the steps for building an n-simplex (for n = 0, 1, 2, 3). These are the only simplexes

we can visualize. The construction generalizes to simplices of bigger dimension, but we will need to

rely on our imagination to picture the actual geometric objects. Using precise mathematical notation

facilitates the abstraction and helps you think about higher dimensional structures or concepts that

often can’t even be visualized.

Definition 1.1 (n-simplexes, for n = 0, 1, 2, 3).

Start out with the 3-D space and draw three coordinate axes. Your axes do not necessarily have to

be perpendicular to each other, just make sure they do not crush into a plane.

We will be denoting a general simplex by ‘σ’ and, in particular, an n-simplex by σn.

• 0-simplex (a simplex ⟨p0⟩ generated by one point, p0)
A 0-simplex is a point; for example, the origin or another point in the coordinate axis σ0 = ⟨p0⟩.
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Step 1

build ⟨p0⟩

p0

For simplicity, we will always take p0 to be at the origin of our coordinate axes.

• 1-simplex (a simplex ⟨p0, p1⟩ generated by two points, p0 and p1)
A 1-symplex is a line segment (including its end-points). To build one, take the origin and 1

other point which lies on a coordinate axis. This construction, produces two 0-subsimplices.

Next, connect the two points to get your 1-simplex σ1 = ⟨p0, p1⟩.

Step 1 Step 2

build ⟨p0⟩, ⟨p1⟩ build ⟨p0, p1⟩

p0p0

p1

p0

p1

• 2-simplex (a simplex ⟨p0, p1, p2⟩ generated by three points, p0, p1, p2)
A 2-simplex is a solid triangle (including its border). To build one, take the origin and 2 other

points which lie on two different coordinate axis. So far, this gives you three 0-subsimplices.

Next, connect all possible pairs of two points, to get three 1-subsimplices. Finally, fill in the

resulting triangle to obtain your 2-simplex σ2 = ⟨p0, p1, p2⟩.

Step 1 Step 2 Step 3

build ⟨p0⟩, ⟨p1⟩, ⟨p2⟩ build ⟨p0, p1⟩, ⟨p0, p2⟩, ⟨p1, p2⟩ build ⟨p0, p1, p2⟩

p1

p0

p2

p2

p1

p0

p3

a

b

c

e
d

p0

p1

p2

p2

p1

p0

p3

p0

p1

p2

• 3-simplex (a simplex ⟨p0, p1, p2, p4⟩ generated by three points, p0, p1, p2, p4)
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Task 1. Fill in the blanks and complete the pictures below.:

A 3-simplex is a solid tetrahedron (including its border). To build one, take the origin and

other points which lie on different coordinate axis. This construction produces

. Next, connect all possible pairs of two points, to get 1-

subsimplices. The next step is to , to obtain

. Finally, fill in the resulting to obtain

your -simplex, σ3.

Step 1 Step 2 Step 3 Step 4

Definition 1.2 (n-simplex). To construct an n-simplex for n > 3, iterate this construction.

A simplex, mathematically, doesn’t have any fixed shape or size, or orientation. In particular, the

following

(1) Rigid motions. (Rotate, translate, dilate) We can move or rotate the simplex to anywhere

we desire, and it still counts as the same simplex.

(2) Stretch. We can stretch out generating points away from each other (and change the con-

nected structures too).

However, you cannot crush simplices- you cannot turn an n-simplex into an (n − 1)-simplex by de-
forming it.
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1.0.1. A remarks about simplices. The order in which we list the vertices generating a simplex does

not matter, for example:

⟨a, b, c⟩ = ⟨c, a, b⟩ = ⟨b, c, a⟩ .

This fact holds true for any n-simplex (later, we’ll be adding orientation to these structures, then the

order will matter!).

Task 2. What do the following structures need to become simplexes? What will be the dimension of

each resulting simplex? We have included axes for your convenience!. First label the points and write

out the components using the notation we have shown above to help see what you are missing.

Definition 1.3 (face). Let σ = ⟨p0, p1, . . . , pn⟩ be an n-dimensional simplex. A face of σ is a sub-
simplex of σ, namely, the simplex generated by a subset of the vertices of σ. To get a face of σ of

dimension m ≤ n, choose m + 1 points among p0, p1, . . . , pn and take the corresponding simplex.

Task 3. Count the number of m-simplexes needed to construct an n-simplex. An example is provided.
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# of m-simplexes contained

in an n-simplex
m = 0 m = 1 m = 2 m = 3 m = 4

n = 0 0 0 0 0

n = 1 0 0 0

n = 2 3 3 1 0 0

n = 3

n = 4

Question 1.4 (Challenge question). Can you think of a general rule for these formulas?

Example 1.5. ⟨p1, p3⟩ is a 1-dimensional face of ⟨p0, p1, p2, p3⟩:

p2

p1

p0

p3

Similarly, ⟨p0, p3, p2⟩ is a 2-dimensional face of ⟨p0, p1, p2, p3⟩:

p2

p1

p0

p3
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2. A SIMPLICIAL COMPLEX

Definition 2.1 (simplicial complex). A simplicial complex K is a collection of simplices such that

(1) If K contains a simplex σ, then K also contains every face of σ.

(2) If two simplices in K intersect, then their intersection is a face of each of them.

Remark 2.2. When we write a simplex K, we use set notation (that is, squiggly brackets containing

all of the simplexes which are included in the simplicial complex: K = {σ1, . . . , σn} ).
In comparison to a simplex, we think about a simplicial complex as a set with a visual representation.

The simplex is a building block to create the simplicial complex.

Example 2.3. Here are some examples (and a nonexample) of a simplex, including both the diagram

and set notation.

Ex 1

K =

{
⟨p0, p1, p2, p3⟩ , ⟨p1, p2, p3⟩ , ⟨p0, p2, p3⟩ , ⟨p0, p1, p3⟩ , ⟨p0, p1, p2⟩ ,
⟨p0, p1⟩ , ⟨p0, p2⟩ , ⟨p0, p3⟩ , ⟨p1, p2⟩ , ⟨p1, p3⟩ , ⟨p2, p3⟩ , ⟨p0⟩ , ⟨p1⟩ , ⟨p2⟩ , ⟨p3⟩ .

p2

p1

p0

p3

Ex 2

K =

{
⟨p0, p1, p2⟩ , ⟨p0, p1⟩ , ⟨p0, p2⟩ , ⟨p1, p2⟩ , ⟨p2, p3⟩ , ⟨p2, p4⟩ , ⟨p3, p4⟩ , ⟨p4, p5⟩ ,
⟨p0⟩ , ⟨p1⟩ , ⟨p2⟩ , ⟨p3⟩ , ⟨p4⟩ , ⟨p5⟩ .

p0

p1

p2

p3

p4
p5

Ex 3 These are a few NON-EXAMPLES, which we will denote by J (they aren’t simplicial com-

plexes).

Task 4. In the spaces below explain why these sets J are not simplicial complexes and how

you would fix them (Draw J first, then add the appropriate simplex pieces to turn J into a

simplicial complex K). For simplicity, we will use distinct letters from the alphabet to label

the points. Check with your neighbor on what you drew- do these look correct?
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(Example) J = {⟨a, b, c⟩ , ⟨a, b⟩ , ⟨a, c⟩ , ⟨d, e⟩}
Solution:

a

b

c

e
d

J 7→ K

K = {⟨a, b, c⟩ , ⟨a, b⟩ , ⟨a, c⟩ , ⟨b, c⟩ , ⟨d, e⟩ , ⟨a⟩ , ⟨b⟩ , ⟨c⟩ , ⟨d⟩ , ⟨e⟩}
Note that this ‘corrected simplicial complex’ K has two disjoint pieces. This is

okay! It still satisfies the definition of a simplicial complex.

J = {⟨a, b, c⟩ , ⟨b, c⟩ , ⟨c, d⟩ , ⟨a⟩ , ⟨b⟩ , ⟨c⟩}
Solution:

K =

J = {⟨a, b, c, d⟩ , ⟨d, e, f ⟩}
Solution:

K =

2.1. Skeletons. Now that we have some examples of simplexes, we are discuss how to sort and

consider the various pieces which constitute the simplex. In particular, their ‘skeletons!’ .

Definition 2.4 (p-skeleton). The p-skeleton of a simplicial complex K is denoted by K(p) and is the

set of all of the simplices in K of dimension p or less.

Example 2.5. We give lists of the skeletons corresponding to Ex 1 and Ex 2 above. Fill in the gaps.
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p2

p1

p0

p3

Ex 1

K(0) = {⟨p0⟩ , ⟨p1⟩ , ⟨p2⟩ , ⟨p3⟩} (the vertices)

K(1) = { }
(the vertices and the edges)

K(2) = {⟨p0, p1, p2, p3⟩ , ⟨p1, p2, p3⟩ , ⟨p0, p2, p3⟩ , ⟨p0, p1, p3⟩ , ⟨p0, p1, p2⟩ ,
⟨p0, p1⟩ , ⟨p0, p2⟩ , ⟨p0, p3⟩ , ⟨p1, p2⟩ , ⟨p1, p3⟩ , ⟨p2, p3⟩ , ⟨p0⟩ , ⟨p1⟩ , ⟨p2⟩ , ⟨p3⟩}
(the vertices, the edges and the triangles)

K(3) = K (the vertices, the edges, the triangles and the tetrahedron).

Task 5. Draw K(n) for each n listed. Does the name ‘skeleton’ make sense?

K(0) K(1) K(2) K(3)

p0

p1

p2

p3

p4
p5

Ex 2 List the elements in each set:

K(0) = { }

K(1) = { }

K(2) = { }

Task 6. Draw K(n) for each n listed.
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K(0) K(1) K(2) K(3)

Question 2.6. Argue whether each of these claims is true or false.

• For all n, K(n) ⊂ K(n+1).
• If n = dim(K), K(n) = K.
• If n > dim(K), K(n) = ∅ (the empty set).
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2.2. Model complexes.

Task 7. Create simplicial complexes which model the following real life objects, including both a (1)

labeled diagram and (2) set notation, as we did in examples above.

Object Diagram Set notation

chair

bottle

balloon
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Question 2.7 (Challenge Question). How many faces would you need for a comb with n bristles?

Or a brush with n bristles? (Here we have only added a few bristles to the comb and one to the brush,

these are colored in purple)
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3. GLUING

Task 8. Using the grids on the next page, create the following objects

(1) Cylinder

(2) Möbius strip

(3) Torus
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Task 9 (Challenge question). The structure you will get from this is a four dimensional surface is the

Klein bottle. Using this grid, draw a sketch of how you think this will look (you can draw it with sides

intersecting).



14 CASEY KELLEHER AND ALESSANDRA PANTANO

a

b

cc

a

d e
a

c

b

a
de

ih

f

g

Sketch:

ORIENTATION

Now we are going to add orientation to our simplicial complex. It may seem strange at first, but it

will help later with both gluing and appropriately defining out boundary operator.
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Definition 3.1 (oriented simplex). σ⃗ is an oriented p-simplex if it is a p-simplex and has a fixed

orientation (that is, the order of the vertexes is fixed). To denote an oriented simplex, we will use

brackets [·] instead of ⟨·⟩ symbols around the generating vertices.

These oriented simplices come with the property that[
p0, p1, . . . , pi , . . . , pj , . . . pn−1, pn

]
= −

[
p0, p1, . . . , pj , . . . , pi , . . . pn−1, pn

]
.

(Switching two vertices introduces a minus sign)

To draw oriented simplices, we will only consider n-simplices for n ∈ [1, 2, 3]

Example 3.2. Here are pictures of 1-oriented simplices, and 2-oriented simplices.

[a, b] [b, a]
ba ab

[a, b, c ] [a, c, b]

a b

c

a b

c

Finally, for a 3 simplex, we would draw [a, b, c, d ] as follows.

a b

c

d

Task 10. There are 6 orderings of the vertices of a triangle. However, there are only 2 oriented

2-simplices: [a, c, b] and [a, b, c ]. For example:

[c, a, b] = − [a, c, b] = [a, b, c ] .
Similarly, a tetrahedron would only have two orientations: [a, c, b, d ] and [a, b, c, d ]. Which of these

two is equivalent to [c, d, a, b]?
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Definition 3.3 (p-chain). We can ‘add‘ p-simplices with integer coefficients to form a chain.

Remark 3.4. In a way, you can think or an oriented simplex as representing an action. [a, b] represents

moving from a to b, so if you move from a to b and then from b to a, then the 2-chain representing

this is the same as ‘adding‘ the movements:

[a, b] + [b, a] = [a, b]− [a, b] = 0.
Which is saying, mathematically, ‘you didn’t get anywhere’ !

Similarly, 2-simplices are like ‘turns’ in different directions, so adding [a, b, c ] to [a, c, b] also van-

ishes. However, these keep track of how many ‘total’ spins made (so even if you add up many turns

in the same direction they never cancel out each other).

Definition 3.5 (Oriented simplicial complex). An oriented simplicial complex is a simplicial complex

where all of its chains are oriented. If a simplicial complex K has oriented subsimplices, it is an oriented

simplicial complex and denoted by K⃗.

Example 3.6. Here are some oriented simplicial complexes. Note that we have taken our nonoriented

examples from before and put an orientation on them.

K⃗ =

{
[p0, p1, p2] , [p0, p1] , [p0, p2] , [p1, p2] , [p2, p3] , [p2, p4] , [p3, p4] , [p4, p5] ,

[p0] , [p1] , [p2] , [p3] , [p4] , [p5] .

A key point is it doesn’t matter which way you orient each subsimplex, as long as you orient them!

Now remember, the direction that you orient them does effect what they are equal to.

For example, (we’ve underlined the change):

K⃗′ =

{
[p0, p1, p2] , [p1, p0], [p0, p2] , [p1, p2] , [p2, p3] , [p2, p4] , [p3, p4] , [p4, p5] ,

[p0] , [p1] , [p2] , [p3] , [p4] , [p5] .

As only simplicial complexes, K is equal to K′, but as oriented simplicial complexes they are not equal.

Definition 3.7 (Simplicial complex chains). The set of all possible p-chains generated from an oriented

simplicial complex K⃗ is denoted by Cp

(
K⃗
)
.

Example 3.8. Here are some examples of p-chains in K:

• (1-chain): c1 = [p0, p1] + 3 [p2, p3],
• (1-chain): c1 = −2 [p2, p4] + 3 [p0, p2],
• (2-chain): c2 = 4 [p0, p1, p2].

Question 3.9. For the two examples above, how does Cp

(
K⃗
)
compare to Cp

(
K⃗′

)
? (Hint: how does

a negative sign help?). Can you say something in general about oriented simplicial complexes formed

from the same simplicial complexes?
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BOUNDARY

Now we can finally define the boundary operator.

Definition 3.10 (Boundary operator). ∂ acts on oriented p-simplices as follows

∂ [p0, . . . , pn] =

n∑
i=1

(−1)n [p0, . . . , p̂i , . . . , pn] ,

∂ [pi ] = 0.

(Here the hat p⃗i means we take pi out from the simplex.) The main point is we go through writing

the (p − 1)-simplices where the ith entry is taken out, but with alternating signs.

Since this definition can be confusing, let’s pause to give an example.

Example 3.11.

∂ [a, b, c ] = (−1)0 [â, b, c ] + (−1)1
[
a, b̂, c

]
+ (−1)2 [a, b, ĉ ]

= [b, c ]− [a, c ] + [a, b]
= [b, c ] + [c, a] + [a, b]

Here is a visual, you can visually see how it literally computed the boundary of the shape!

[a, b, c ] ∂ [a, b, c ]

a b

c

∂7→ a b

c

Task 11. Compute ∂ [a, b, c, d ] using the formula, then sketch your results as we did in the example

(use the space in the next page).

Definition 3.12. To extend ∂ to a p-chain, we just make it ‘hit’ all of the simplices and ignore signs

and constants in between.

∂ (cσ⃗) = c∂σ⃗, where c is a scalar, and σ is a simplex

∂ (σ⃗1 + σ⃗2) = ∂σ⃗1 + ∂σ⃗2, where σ1, σ2 are two simplices.

Example 3.13 (Boundary of a chain). Consider the bowtie below, given by

c⃗ = [a, b, c ] + [c, d, e]

if we compute the boundary we have

∂ ([a, b, c ] + [c, d, e]) = ∂ [a, b, c ] + ∂ [c, d, e]

= [b, c ]− [a, c ] + [a, b] + [d, e]− [c, e] + [d, e] .
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Now if we compute ∂ again using what we computed above, we have

∂2 ([a, b, c ] + [c, d, e]) = ∂ (∂ ([a, b, c] + [c, d, e]))

= ∂ ([b, c ]− [a, c ] + [a, b] + [d, e]− [c, e] + [d, e])
= ∂ [b, c ]− ∂ [a, c ] + ∂ [a, b] + ∂ [d, e]− ∂ [c, e] + ∂ [c, d ]
= (b − c)− (a − c) + (a − b) + (d − e)− (c − e) + (c − d)
= 0.

Task 12. Compute ∂2 (that is, operate ∂ twice) on the following simplicial complexes.

(1) σ = [a, b] + [b, c ],

(2) σ = [a, b, c ] (use the work from Example 3.11),

(3) σ = [a, b, c, d ] (use your work from Task 11).

In fact, we always have that for every chain σ, we have that ∂2σ ≡ 0.

Task 13. Now that you have computed a sufficient amount of boundaries, try to use your intuition

to determine the coefficients of the vertices in the boundary of the following 1-chains:
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c d

fe

hg

i j

ba

b c

d e

f g

h

a

SIMPLICIAL COLLAPSE

Definition 3.14 (maximal element). Let K be a simplicial complex. A face a of K is called a maximal

element of K if it is not a face of any simplex of K, except itself.

The simplicial complex pictured below has 5 maximal elements: the tetrahedron ⟨B,E, F, G⟩, the
triangle ⟨A,E,H⟩ and the three segments ⟨B,C⟩, ⟨C,D⟩ and ⟨B,D⟩. The triangle ⟨B,G,E⟩ is not
maximal because it is a face of the tetrahedron.

Definition 3.15 (free face). If a is a maximal element of a simplicial complex K, a face b of a is called

a free face if b ̸= a and b is not contained in any other simplex of K.

In our example, the segment ⟨B,C⟩ has no free faces, while the triangle ⟨A,E,H⟩ has three free
faces (its edges).

Task 14. In the simplicial complex K pictured below, identify six different pairs (a, b) where a is a

maximal element of K and b is a free face of a.

Question 3.16 (Challenge Question). True or false? If a is a free face of a maximal element b,

then a has codimension 1. That is, the dimension is the simplex a is 1 less than the dimension of the

simplex b.

Definition 3.17 (simplicial collapse). Let K be a simplicial complex. Suppose that a is a maximal

element of K and b is a free face of a. The act of removing the faces {a, b}, replacing K by the
simplicial complex K − {a, b} is called simplicial collapse.
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You can think of a simplicial collapse as a removal of maximal element of K and its free face, by

pushing in the free face, until the entire maximal simplex disappears. Note: all the remaining faces of

the maximal element remain.

Several examples of simplical collapses are shown in the pictures below. We iterate the construction

until no more free faces are found (thus reducing the original simplicial complex to its bone structure.)

Task 15. Collapse the open book, until there are no free faces left.
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