HS Math Circle

Notations:
(i) denote the greatest common divisor of a and b by (a, b).
(ii) write $a \equiv b \bmod m$ if the remainder of a and b divided by m are equal.

Problem 1. (Level: $\star \star$)

(a) Find all pairs of integers (a, b) which satisfy

$$
a b-2 a-4 b=5 .
$$

Hint: there are several ways to do this problem. One way is to change the equation to

$$
(\cdots) \times(\cdots)=\text { constant }
$$

(b) Find all positive pairs of integers (a, b) which satisfy

$$
\frac{1}{a}+\frac{1}{b}=\frac{1}{6} .
$$

(c) Find all positive pairs of integers (a, b, c) which satisfy

$$
\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1
$$

Hint: this is difficult. First, notice that without loss of generality we can assume that $a \leq b \leq c$. Then a cannot be very large. Why? :)
(d) Find all positive integer n such that

$$
\sqrt{n^{2}+99}
$$

is an integer.
Hint: letting $\sqrt{n^{2}+99}=m$ and \ldots what?
(e) Find all positive integer n such that

$$
\sqrt{n^{2}+n+14}
$$

is an integer.
Hint: the same as (d), but then you need to c...

Problem 2. (Level: $\star \star \star$)

(a) Compute

$$
x=1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{\ddots}}}}
$$

(b) Similarly, compute

$$
y=1+\frac{1}{2+\frac{1}{2+\frac{1}{2+\frac{1}{\ddots}}}}
$$

(c) Conversely, can you express, for example $\sqrt{14}$, in the above ways?
(d) Let us write

$$
\frac{a_{1}}{b_{1}}=1, \quad \frac{a_{2}}{b_{2}}=1+\frac{1}{1}, \quad \frac{a_{3}}{b_{3}}=1+\frac{1}{1+\frac{1}{1}}, \quad \frac{a_{4}}{b_{4}}=1+\frac{1}{1+\frac{1}{1+\frac{1}{1}}}, \quad \frac{a_{5}}{b_{5}}=1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1}}}},
$$

and so on, where a_{n} and b_{n} are positive integers with $\left(a_{n}, b_{n}\right)=1$. Compute a_{n} and b_{n} for $n=1,2,3,4,5$. Do you see any patterns? If so, can you prove it?
(e) Similarly, let us write

$$
\frac{p_{1}}{q_{1}}=1, \quad \frac{p_{2}}{q_{2}}=1+\frac{1}{2}, \quad \frac{p_{3}}{q_{3}}=1+\frac{1}{2+\frac{1}{1}}, \frac{p_{4}}{q_{4}}=1+\frac{1}{2+\frac{1}{1+\frac{1}{1}}}, \quad \frac{p_{5}}{q_{5}}=1+\frac{1}{2+\frac{1}{1+\frac{1}{1+\frac{1}{1}}}},
$$

and so on, where p_{n} and q_{n} are positive integers with $\left(p_{n}, q_{n}\right)=1$.
(i) Compute p_{n} and q_{n} for $n=1,2,3,4,5$. Do you see any patterns? If so, can you prove it?
(ii) Consider

$$
x^{2}-2 y^{2}= \pm 1
$$

Find nonnegative integer solutions (there are infinitely many). Do you see any patterns? Can you prove it?

Problem 3. (Level: $\star \star \star \star$)

(a) Compute

$$
5 \cdot i \bmod 8
$$

for $i=1,2, \cdots, 7$.
(b) Compute

$$
8 \cdot i \bmod 6
$$

for $i=1,2, \cdots, 5$.
(c) What can we say from (a) and (b)? Can you formulate any theorem? Can you prove it?
(d) Let us assume that $(a, b)=1$. Compute

$$
\left[\frac{a}{b}\right]+\left[\frac{2 a}{b}\right]+\cdots+\left[\frac{(b-1) a}{b}\right] .
$$

Hint: this problem is difficult. First, compute

$$
\frac{a}{b}+\frac{2 a}{b}+\cdots+\frac{(b-1) a}{b} .
$$

(e) Is it possible to compute (d) in a different way? :)
(f) Let p be a prime number, and assume that $(a, p)=1$. Show that

$$
a^{p-1} \equiv 1 \quad \bmod p .
$$

