
Functional equations � 1.

What is a function?

Technically speaking, it would be rather impossible to give a proper notion of a function. We
will need to use other words, such as 'relation', 'map' or other, which are just synonyms of a
word function and need to be properly de�ned.

Question: What we can do? We will get understanding of not what the object is, but
how we can work with it.

Assume, we have two sets, call them A and B, and the aim is to describe a function,
which maps A on B. We will just say, that for exery x from set A there is a choice of an
element y from set B. This element y we will denote as f(x), it's called the image of x.

Notation: f : A −→ B; y = f(x) or f : x 7→ y

Composition of functions.

De�nition. Let us have two functions y = f(x), g : A −→ B and z = g(y), f : B −→ C.
Then a function z = F (x) = g(f(x)), F : A −→ C is called a composition of functions g
and f . Notation: F = g ◦ f .

Remark 1. There can be a composition of more than two functions, i. e. :

z = F (x) = f1 ◦ f2 ◦ . . . ◦ fn = f1(f2(f3 . . . (fn(x)) . . .)).

Remark 2. Note, that g ◦ f and f ◦ g are di�erent functions.

Example 1. Let g(x) = x2, f(y) = cos y.Then F (x) = (f ◦ g)(x) = cos x2.

Example 2. Let ϕ(x) = x3. Then (ϕ ◦ ϕ)(x) = (x3)
3
= x9.

Example 3. Let ψ(x) =
2x+ 3

3x+ 1
. Then (ψ ◦ ψ)(x) =

2 2x+3
3x+1

+ 3

3 2x+3
3x+1

+ 1
=

13x+ 9

9x+ 10
.

1. Let f(x) =
x2 + 1

x− 1
, g(x) =

x+ 1

x− 1
. Find f ◦ g.

2. Let ϕ(x) =
√
16− (x+ 5)2 − 5, x ∈ [−5;−1]. Find ϕ ◦ ϕ.

3. Let f(x) =
x+ 1

1− x
. Find:

a) f ◦ f ; b) f ◦ f ◦ f ; c) f ◦ f ◦ f ◦ f ; d) f ◦ f ◦ f ◦ f ◦ f .

Homework

4. Find (ϕ ◦ ϕ) (x), if
a) ϕ(x) = −x; b) ϕ(x) =

1

x
; c) ϕ(x) = −1

x
; d) ϕ(x) =

x

x− 1
.

5. Let ϕ(x) =
1

1− x
. Find (ϕ ◦ ϕ ◦ ϕ) (x).

6. Let ϕ(x) =
x

2
. Find ϕ ◦ ϕ ◦ . . . ◦ ϕ︸ ︷︷ ︸

n times

.
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The simplest functional equations

Functional equations are equations where unknown is a function. Generally, those functions
are connected with well-known functions using composition.

Examples of functional equations: f(x + 5) − 2 f(x + 3) + f(3x) = 0 or f(x − y) =
f(x) + f(2y), where f(x) is unknown, and the aim is to �nd f(x).

De�nition. Function f(x) is called a soultion of a functional equation on set M , if it
satis�es this equation for all values of variable x in the set M .

Problems

1. Prove that a function f(x) = A · 2x +B · 3x, where A and B some constant numbers, is a
solution of f(x+ 2)− 5 f(x+ 1) + 6 f(x) = 0.
2. Proof, that a function f(x) = Cx, where C is some constant, is a solution of f(x + y) =
f(x) + f(y).
3. Prove, that f(x) = xα for any α is a solution of f(x · y) = f(x) · f(y).
4. Prove, that f(x) = sgn(x) is a solution of f(x · y) = f(x) · f(y).
Remark. Last two tasks show, that di�erent functions may be solutions of the same equation.
To solve a functional equation means to �nd all of the solutions or prove that they do not
exist.

5. Prove, that f(x) = g

(
x2 + 1

x− 1

)
, where g is any function, is a solution of f

(
x+ 1

x− 1

)
= f(x).

6. Find all functions f(x) de�ned on the set of real numbers, such that 3 f(x)−f 2(1)+5x−1 =
0 for any real x.
7. Find all functions f(x) and g(x) satisfying next condition for all x 6= 0

f(2x) + 2g(2x) =
2x2 + x+ 1

x
,

f

(
1

x

)
+ g

(
1

x

)
=
x2 + x+ 1

x
.

8. Find all functions f de�ned on the set of all real numbers, such that for all real x and y
this function satis�es

sinx+ cos y = f(x) + f(y) + g(x)− g(y).

Homework

9. Prove, that a function f(x) = ax for any a > 0 is a solution of
f(x+ y) = f(x) · f(y).

10. Find all functions f(x) de�ned on real numberssatisfying for any real x

f(x) = f(0) · sinx− f
(π
2

)
· cosx+ x.

11. Find all functions f(x) and g(x) de�ned on real numbers, such that for any real numbers
x and y the following holds

f(x) + f(y) + g(x)− g(y) = x3 + 3
√
y.

12. A function f(n) from integers to integers satis�es the condition:

f(n) =

{
n− 10, if n > 100,

f (f (n+ 11)) , if n ≤ 100.
Prove that f(n) = 91 for all n ≤ 100.
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Functional equations-3. Substituion in equations without

free variables

1. Find all functions f(x), such that for every x 6= ±1 it satis�es

f

(
x

x+ 1

)
= x2.

2. Find all functions f(x), such that for every x 6= 0 it satis�es

f(x)− 2f

(
1

x

)
= 2x.

3. Find all functions f(x), such that for every x 6= 1, x 6= 0 it satis�es

f(x) + f

(
1

1− x

)
= x.

4. Find all functions f(x), such that for every x 6= −1 it satis�es

f

(
x

x+ 1

)
+ 2f(x+ 1) = x+ 1.

5. Let a, b, c be some constant numbers, a2 6= b2. Find all functions f(x) satisfying
af(x− 1) + bf(1− x) = cx.

6. Find all functions f(x), such that for every x 6= 0 it satis�es

3f(−x) + f

(
1

x

)
+ f(x) = x.

7. Find all functions f(x), such that for every x 6= 0, x 6= −1 it satis�es

f

(
x− 1

x+ 1

)
+ f

(
−1

x

)
+ f(x) =

x3 + 2x2 − 2x− 1

x (x+ 1)
.

Homework

8. Find all functions f(x), satisfying f (2x+ 1) = x2.
9. Let a, c, k be some constant numbers and a 6= c. Find all functions f(x), such that for

every x 6= −c, x 6= 1 it satis�es f

(
a+ x

c+ x

)
= kx.

10. Let a 6= ±1. Find all functions f(x), such that for every x 6= 0 it satis�es

af(x) + f

(
1

x

)
= ax.

11. Find all functions f(x), such that for every x 6= 0 it satis�es

(x+ 1) f(x) + f

(
1

x

)
= 1.

12. Let a 6= ±1 and let g(x) be some function. Find all functions f(x), such that for every
x 6= 1 it satis�es

f

(
x

x− 1

)
− af(x) = g(x).

13. Find all functions f(x), such that for every −5 ≤ x ≤ −1 it satis�es

f

(√
16− (x+ 5)2 − 5

)
+ xf(x) = x.

14. Let a 6= 0 be some constant number. Find all functions f(x), such that for every x 6= 0,
x 6= a it satis�es

f(x) + f

(
a2

a− x

)
= x.
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15. Find all functions f(x), such that for every x 6= ±1

3
it satis�es

f

(
x+ 1

1− 3x

)
+ f(x) = x.

16. Let a and b be some constant numbers, a 6= 0, a2 6= b2. Find all functions f(x), such that
for every x 6= ±1 it satis�es

af(x+ 2) + bf

(
x+ 2

x+ 1

)
= x2.

17. Let a and b be some constant real numbers, a 6= ±1, and let n be a natural number. Find
all functions f(x), satisfying

af(xn) + f (−xn) = bxn.
18. Let a be some constant number, a 6= ±1. Find all functions f(x), such that for every
x 6= 0 è x 6= ±1 it satis�es

f

(
x

x+ 1

)
+ af

(
x+ 1

x

)
= x+ 2.
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Rules

Setup

1. The board consists of a grid of 8× 8 squares.
2. Squares are adjacent horizontally, vertically or diagonally.
3. The game is played by two or four players.
4. Each of the player has his own camp: a 3×3 square adjoint to a corner of the whole board.
5. Each player has a set of pieces in a distinct color, of the same number as squares in each
camp.
6. The board starts with all the squares of each player's camp occupied by a piece of that
player's color.

Objective

The winning objective is to be the �rst player to race all one's pieces into the opposing
camp � the camp diagonally opposite one's own.

Play sequence

1. Players randomly determine who will move �rst.
2. Pieces can move in eight possible directions (up, down, left, right and diagonally).
3. Each player's turn consists of moving a single piece of one's own color in one of the following
plays:

3a. One move to an empty square:
Place the piece in an empty adjacent square. This move ends the play.
3b. One or more jumps over adjacent pieces:
An adjacent piece of any color can be jumped if there is an adjacent empty square on

the directly opposite side of that piece. Place the piece in the empty square on the opposite
side of the jumped piece. The piece which was jumped over is una�ected and remains on the
board. After any jump, one may make further jumps using the same piece, or end the play.
4. Then the other player makes his step in the same way.

First set of tasks

0. Play as many as possible games, to understand game mechanics and simplest rules of the
game. Try to see logical connections, and try to distinguish somehow good moves and bad
moves. The more you play, the deeper you understand how to play this game.
1. To �nish the rules you need to write down when the game ends.
2. To make the game proper you need to add up extra rules, so the game will always end
up somehow (one of the players winning or draw). Also you need to express properly the
winning conditions.
3. Find ways to measure moves of each player to describe which move (sequence of moves) is
better. Can you do it numerically?
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Symmetric polynomials (2 variables case)

Theorem (Vieta). Let x1, x2 be roots of polynomial x2 + px+ q. Then{
x1 + x2 = −p;
x1x2 = q.

Both x1 + x2 and x1x2 are polynomials over variables x1 and x2 and moreover those
polynomials do not change, if one replace x1 with x2 and x2 with x1. We will study such
polynomials.

De�nition. Polynomial f(x, y), which does not change if one exchange variables x and y are
called symmetric

Example. Polynomial f1 (x, y) = x2y + xy2 is symmetric, while f2 (x, y) = x3 − 3y2 is
not.

De�nition. Polynomials σ1 = x + y and σ2 = xy are called elementary symmetric
polynomials over two variables.

Aside of σ1 and σ2 we will be using polynomials x2 + y2, x3 + y3,. . ., xn + yn, which are
called power sums and we will denote them as Sn:

Sn = xn + yn.
We will try to express �rst several of Sn using σ1 and σ2:

S2 = x2 + y2 = (x+ y)2 − 2xy = σ2
1 − 2σ2;

S3 = x3 + y3 = (x+ y)
(
x2 − xy + y2

)
= σ3

1 − 3σ1σ2;

S4 = x4 + y4 =
(
x2 + y2

)2 − 2x2y2 = σ4
1 − 4σ2

1σ2 + 2σ2
2.

From that you may assume, that it will hold for any n, which is your �rst task:

Lemma. Every power sum Sn = xn + yn can be represented as a polynomial over σ1 and σ2.

I hope your soultion for the �rst task was constructive (so it gives you way to construct
that polynomial over sigma1 and sigma2), so you will easily show us such representation for
S5, S6 and S7.

Extra task: There also direct formulas for Sn, which you may try to prove (or at least
to show that those formulas are equal to each other):

Sn = xn + yn =

(
σ1 +

√
σ2
1 − 4σ2

2

)n

+

(
σ1 −

√
σ2
1 − 4σ2

2

)n

(1)

Sn =
1

2n−1

[n2 ]∑
m=0

(
n

2m

)
σn−2m
1

(
σ2
1 − 4σ2

)m
. (2)

Sn = n ·
[n2 ]∑
m=0

(−1)m (n−m− 1)!

m! (n− 2m)!
σn−2m
1 σm

2 , (3)

where
[
n
2

]
means the biggest integer less than n

2
.

The third formula was constructed by Edward Waring in 1779.
Using the proven lemma, one can extend it to the proof of the main theorem about

symmetric polynomials
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Theorem (Main). Any symmetric plynomial over two variables can be represented as a
polynomial over σ1, σ2.

This the main task to prove the main theorem. Aso one can show that such representaion
is unique (it does not depend on the way we obtain this representation, we will always end
up with the same thing).
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