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BOUNDS ON THE DENSITY OF STATES FOR SCHRODINGER
OPERATORS

JEAN BOURGAIN AND ABEL KLEIN

ABSTRACT. We establish bounds on the density of states of Schrédinger op-
erators. These are deterministic results that do not require the existence of
the integrated density of states. The results are stated in terms of a ”density
of states outer-measure” that always exists. We prove log-Hélder continuity
for the density of states in one, two, and three dimensions for Schrédinger
operators, and in any dimension for discrete Schrédinger operators.

1. INTRODUCTION

We study the density of states of the Schrédinger operator
H=-A+V on L*R%), (1.1)

where A is the Laplacian operator and V is a bounded potential. The density of
states measure of an interval “gives the number of states per unit volume” with
energy in the interval; its cumulative distribution function is the integrated density
of states. Finite volume density of states measures, i.e., density of states measures
for restrictions of the Schrodinger operator to finite volumes, are always well defined.
The density of states measure is given by appropriate limits of finite volume density
of states measures, when such limits exist. These limits are known to exist for
Schrodinger operators where the potential V' is in some sense uniform in space (e.g.,
periodic potentials, ergodic Schrédinger operators), but not for general Schrodinger
operators; the density of states measure and the corresponding integrated density
of states cannot be defined for general Schrodinger operators. For this reason we
introduce the density of states outer-measure, which always exists, and provide an
upper bound for the density of states measure, when it exists. We prove upper
bounds on the density of states outer-measure of small intervals, establishing log-
Holder continuity in one, two, and three dimensions for Schrédinger operators, and
in any dimension for discrete Schrédinger operators.
We let

Ap(z) ::x—I—]—%,%[d:{yeRd; ly—z|, <%} (1.2)
denote the (open) box of side L centered at x € R?. By a box Az, we will mean a
box Ar(x) for some x € RL. We write |[o|| = [|¢], for ¢ € L2(R?) or ¢ € L2(A).
We set Vo = ||V||,, the norm of the bounded potential V. By xp we denote
the characteristic function of the set B. Constants such as Cy 4, ... will always be
finite and depending only on the parameters or quantities a,b,...; they will be
independent of other parameters or quantities in the equation. Note that Cg ..
may stand for different constants in different sides of the same inequality.
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Given a finite box A C RY, we let Hf\ and A% be the restriction of H and A
to L2(A) with # boundary condition, where § = D (Dirichlet), N (Neumann), or P
(periodic). We define finite volume density of states measures 7, 4 on Borel subsets
B of R by

Nag(B) = %tr {XB(H%)} for $#=D,N,P, (1.3)
Ma,oo(B) = a7 tr {Xp(H)Xa}.
Note that for for all Borel subsets B C| — oo, E| we have
nag(B) < Cqv,, g <oo for §=o00,D,N,P. (1.4)

Moreover, given f € C.(R) and 6 > 0, there exists L(d, Vi, 0, f) such that for all
L > L(d, Vs, 6, f) and 2o € R? we have

1AL (o)1 () = ML (o) (f)| <6 for 1,82 = 00, D, N, P. (1.5)

(This can be extracted from [DoIM, see Theorem 3.6, Theorem 6.2, and their
proofs].) The finite volume integrated density of states are the corresponding cu-
mulative distribution functions:

N 3(E) :=na (] — oo, E]). (1.6)

For periodic and ergodic Schrodinger operators, density of states measures 7
can be defined as weak limits of the finite volume density of states measures na 4
for sequences of boxes A — R? in an appropriate sense. In this case, the integrated
density of states Ny(E) := ny(] — 00, E]) satisfies Ny(E) = limp_,ga Na 4(E) except
for a countable set of energies. Moreover, they all coincide, so we define the density
of states measure 1 and the integrated density of states N(E) by n(B) := ny(B)
and N(E) := Ny(E) for § = 00, D, N, P. (See [KM, PF, CL, DoIM, NJ.)

Since infinite volume density of states measures and integrated density of states
cannot be defined for general Schrodinger operators, we define density of states
outer-measures on Borel subsets B of R? by

n5.4(B) := sup na, (2)4(B)
rER4

. ) . , f=o00,D,N,P. (1.7)
up (B) := 11msup77L7ﬁ(B)

L—oo

These are always finite on bounded sets in view of (1.4). (They are indeed outer-
measures, so we call them outer-measures for lack of a better name.) Moreover, it
follows from (1.5) that for all Fy, Es € R, £y < Es, and § > 0 we have

ngl([ElvEQ]) Sngz([El _57E2+6]) for all ﬁlah? :OOaDaNaP' (18)
We will say that we have continuity of the density of states outer-measures ny if

lim 7 ([ —¢e,E+¢]) =0 forall EeR. (1.9)
e—0

In view of (1.8), continuity of n; for some value of § implies

Moo ([E1, E2]) = np ([E1, Ba]) = ny([E1, Ea]) = np([Er, E2)) (1.10)

for all Eq, F5 € R, Ey < FEs. In this case we will say that we have continuity of the
density of states outer-measures, and set

0" ([Er, Ez) :=ny ([E1, E])  for §=o00,D,N,P. (1.11)



BOUNDS ON THE DENSITY OF STATES FOR SCHRODINGER OPERATORS 3

We are ready state our main result. Note that if the density of states measure
7y exists, we always have

ns(B) <y (B) for all Borel sets B C RY, (1.12)

and continuity of the density of states outer-measures implies continuity of the
integrated density of states

Theorem 1.1. Let H be a Schrddinger operator as in (1.1), where d = 1,2,3.
Then we have continuity of the density of states outer-measures. Moreover, given
FEyeR, forall E< FEy and e < % we have

C
n*([E,E +¢]) < %, where k1 =1, kg = i, K3 = é. (1.13)
(log £)
We also prove a similar result for discrete Schrodinger operators, i.e., for
H=-A+V on *Z%), (1.14)
where V' is a bounded potential and A is the centered discrete Laplacian,
Ap(x)= Y Yy for zez” (1.15)

yeLY; lz—y|=1
(Our results are still valid if we take A to be any translation invariant finite range
self-adjoint operator on ¢2(Z4).) In Z% we define the box of side L centered at
x € 74 by
A:AL(x):{yEZd; ly—z| <%}, (1.16)

and define finite volume operators Hjﬁ\ and Ag\ as the restriction of H and A to
£2(A) with # boundary condition, where # = D (Dirichlet, i.e., simple boundary
condition) or P (periodic). We define finite volume density of states measures 1 4
as in (1.3) and density of states outer-measures 77 ,,n; as in (1.7) for § = o0, D, P.
In the discrete case it is easy to see that we also have (1.8), and hence continuity
of n; for some value of § implies (1.10), in which case we define n* as in (1.11).

Theorem 1.2. Let H be a discrete Schrodinger operator as in (1.14). Then for
alld=1,2,... we have continuity of the density of states outer-measures, and for
all E €R and e < % we have

Cav..
log %

We are not aware of previous results in the generality of Theorems 1.1 and 1.2.
Published results appear to be restricted to cases where we have existence of the
integrated density of states. For periodic potentials, continuity of the the integrated
density of states is equivalent to the nonexistence of eigenvalues, a nontrivial result
proved by Thomas [T]. For ergodic Schrédinger operators, continuity of the the
integrated density of states is equivalent to the nonexistence of energies that are
eigenvalues of infinite multiplicity with probability one (see [CL, Lemma V.2.1]).
Although Schrédinger operators can have eigenvalues of infinite multiplicity (see
[ThE]), it is hard to imagine how a fixed energy can be an eigenvalue of infinite
multiplicity for almost all realizations of an ergodic Schrédinger operator.

Craig and Simon proved log-Holder continuity (with exponent 1) of the inte-
grated density of states for one-dimensional ergodic Schrédinger operators [CrS1|
and for ergodic discrete Schrodinger operators in any dimension [CrS2]. Delyon

n"([E,E+e]) < (1.17)
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and Souillard [DS] provided a simple proof of continuity of the integrated density
of states in the discrete case. But continuity of the the integrated density of states
for multi-dimensional (continuous) ergodic Schrodinger operators, albeit expected,
has been hard to prove in full generality. It is Problem 14 in [S2], where it was
called (in 2000) a 15 year old open problem.

For random Schrodinger operators continuity of the integrated density of states
follows from a suitable Wegner estimate; the most general result is due to Combes,
Hislop and Klopp [CoHK] that proved that for the Anderson model, both contin-
uous and discrete, we always have continuity of the integrated density of states if
the single-site probability distribution has no atoms. (They show that the inte-
grated density of states has as much regularity as the concentration function of the
single-site probability distribution.) Germinet and Klein [GK2] proved log-Hélder
continuity of the integrated density of states for the continuous Anderson model
with arbitrary single-site probability distribution (e.g., Bernouilli) in the region of
localization. (More precisely, in the region of applicability of the multiscale analy-
sis; the log-Holder continuity of the integrated density of states is derived from the
conclusions of the multiscale analysis.)

The cases d =1 and d = 2,3 of Theorem 1.1 have separate proofs, the proof for
d = 1 being similar to the proof of Theorem 1.2. Note that it suffices to establish
(1.13) and (1.17) with Dirichlet boundary condition (f = D), since we would then
have (1.11). Thus in the following sections we assume Dirichlet boundary condition
and drop it from the notation.

Theorem 1.2 and the d = 1 case of Theorem 1.1 are proved in Section 2; they
are immediate consequences of Theorems 2.2 and 2.3, respectively.

Section 3 is devoted to multi-dimensional Schrodinger operators. We start by
studying the local behavior of approximate solutions of the stationary Schrodinger
equation in Subsection 3.1; see Theorem 3.1. Solutions of the stationary Schrodinger
equation admit a local decomposition into a homogeneous harmonic polynomial and
a lower order term [HW, BJ; in Lemma 3.2 we establish a quantitative version of
this decomposition with explicit estimates of the lower order term. This result
is extended to approximate solutions in Lemma 3.3, implying Theorem 3.1. We
then state and prove Theorem 3.4, a version of Bourgain and Kenig’s quantitative
unique continuation principle [BoK, Lemma 3.10], in which we make explicit the
dependence on the parameters relevant to this article. Finally, in Subsection 3.3
we prove Theorem 3.7, which implies the d = 2, 3 cases of Theorem 1.1.

The restriction to d = 1,2,3 in Theorem 1.1 is due to the present form of the
quantitative unique continuation principle (Theorem 3.4), where there is a term Q%
in the exponent on the left hand side of (3.59). If we had Q° in (3.59), we would be

able to prove Theorem 3.7, and hence Theorem 1.1, for dimensions d < % Since

8= %, we get d < 4. It is reasonable to expect that something like Theorem 3.4

holds with § = 14 (there are no counterexamples for real potentials), in which case

Theorem 1.1 would hold for all d, with kg = %ﬁﬁfl) =1— ford>2 in (1.13).
2. DISCRETE AND ONE-DIMENSIONAL SCHRODINGER OPERATORS

To prove Theorem 1.2 and the d = 1 case of Theorem 1.1, we will select a class
of approximate eigenfunctions for which we can establish a global upper bound,
and use Lemma 2.1 to pick an approximate eigenfunction for which we have a lower
bound for the global upper bound.
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2.1. A lower bound for the global upper bound.

Lemma 2.1. Let V be a finite dimensional linear subspace of L>°(2,P), where
(Q,P) is a probability space. Then there exists ¢ € V with ||¢||, = 1 such that

Y], = vdimV. (2.1)

This lemma is known to follow immediately from the theory of absolutely sum-
ming operators (e.g., [DiJA]). Denote by V, the linear space V viewed as subspace of
L? and let 77 be the identity map from V, to Vg, with mo(I7'?) being its 2-summing
norm. Then 72(1%?) = v/dim ), since it is the same as the Hilbert-Schmidt norm
of I*2. Factor %% = [2°°1°2 50 my(I*?) < |[I%°°|| m2(I°°%) by the the ideal
property. Since mo(1°°?) < 1 [DiJA, Example 2.9(d)], we have |[I%°°|| > v/dim V,
and the lemma follows.

This lemma can also be proved by a direct argument, as follows.

Proof of Lemma 2.1 . Using the the Gelfand-Neumark Theorem we can assume,
without loss of generality, that Q is a compact Hausdorff space and L*(Q,P) =

C(Q). Thus V is a finite dimensional linear subspace of C'(Q) C L*(Q,P). Let
N =dimV, and pick an orthonormal basis {¢, };Vzl for V. In particular,

N
Blay) = Y &(); (1) € C(O2), 22)

and we have

2 2
— [ o)) = [ 128D pag) < [ max{ 2EY | pag
N = [ o(e.o)Pa >/Q{ ¢<x,x>} P( >s/ﬂyeg{ W’x)} P(do).

(2.3)

Since P is a probability measure, there exists xg € 2 such that

max —2E0Y) o /5 (2.4)

yeQ ¢(Z‘0, l‘o)

Setting
é(xo, ") 1 N
- - / s 2.5
Y Vet Vet e
we have 1 € V, [[¢]l, = 1, and [|¢)]|, > V/N. .

2.2. Discrete Schrodinger operators. Theorem 1.2 is an immediate consequence
of the following theorem.

Theorem 2.2. Let H be a discrete Schriodinger operator as in (1.14). Let E € R
and 0 < e < % . Then for all boxes A = A with L > Lg v, log% we have

C
na (B E+e]) < —252 (2.6)
log <
Proof. Let A = Ap(zo) for some zg € Z?, E € R, € €]0,1]. We set P =
X[E,E+¢ (Ha, ), and note that
I(Hap, = E) ¥l < I(Ha, — E) ¥l < el forall ¢ € Ran P, (2.7)
since we have ||| < [|¢|| for all ¢ € £2(A).
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Suppose
nAL([E,EJra])_lA trP>p>0. (2.8)
We fix R € 2N, R < L, to be selected later, and pick G C Ay, such that
A A
Ap=JAr@y) and (3 <#g <2?fel (2.9)
yeg

Note that (L —1)? < |AL\ =25+ 1)d < (L+1)% and |Ag| = (R+1)% We set

Ar(y) = {z € Ar(y); v -yl € {§. & —1}}, (2.10)
and let
OrAL = | AR (). (2.11)
yeg
We have
02AR(Y)| < caR?, s [ORAL| < 2%eqRITHREL < 29¢ AL (2.12)
We now consider the vector space
F={yp€RanP; Y(z)=0 forall xe€drAr}. (2.13)
Taking (and just writing cq for 29 cy)
Re [f cay 2) 2N, (2.14)
we guarantee
dim F > p|Az| — [0rALl = Lo ALl (2.15)

Let ¢p € F with [|¢|| = 1 and y € G. It follows from (1.14), (1.15), and (2.7)
that if we know that |¢(z)| < C for all  with |z —y| = k+ 1,k + 2, then we
must have [ (z)] < C(2d -1+ ||V — E|| ) + ¢ for |z —y|, = k. Since ¢(z) = 0 if

T =yl = %, % — 1, we conclude that

R R
lp(z)| <eAd2 1PV <242 forall  z e Ag(y), (2.16)
where A =2d — 1+ ||V — EJ|_. Tt follows, using (2.9), that

R
V]|, <eA2 forall xe€A. (2.17)
We now use Lemma 2.1, obtaining ¢y € F, ||1o|| = 1, such that

1olloc = 4/ dfflf \r (2.18)

Combining (2.17), (2.18), and (2.14) we get
V1 p<eA? <cAZT (2.19)

which implies
Cav—
< W= Fl (2.20)
log <
as long as L is sufficiently large, namely L > C3R > %
Since o (Hp,) C [-2d — Voo, 2d + Vio|, we have na, ([E,E +¢]) = 0 unless
|E| < 2d+ Vi + 3, s0 we get (2.6) if L > Lqv, log L. O
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2.3. One-dimensional Schrodinger operators. The case d = 1 of Theorem 1.1
is an immediate consequence of the following theorem. Note that one dimensional
boxes are intervals.

Theorem 2.3. Let H be a Schrédinger operator as in (1.1) with d = 1. Given
Ey € R, there exists Ly, g, such that for all 0 < ¢ < %, open intervals A = Ap
with L > Ly _ g,log L and energies E < Ey, we have

e

mn (B, B +e]) < S (2.21)

Proof. Let A = Ap =lag,a0 + L[, E € R, € €]0,1]. We set P = X{p g1+ (Ha).

12
Recall that Ran Pxy C D(Ap) C CY(A), and note that we have

|(Hy — E)9| < e|l|| forall v € RanP. (2.22)

Given 0 < R< L,set aj =ap+ jR for j =1,2,..., f%] — 1. We introduce the
vector space

L
Fr = {w € RanP; ¢(aj) =4 (aj)=0forj=1,2,..., [R-‘ - 1} . (2.23)
Given ¥ € Frand j =1,..., [%-‘ — 1, it follows from Gronwall’s inequality (see

[Ho]), ¥(a;) = ¢'(a;) = 0, and (2.22) that for all x €]a; — R, a; + R[NA we have

()| < eKle=ail < (2K) 72 K Be ||y, (2.24)

/ "o Kluel (1, — B)b(y)| dy

J

where K = 1+||V — E||_,. Since A is the union of these intervals, we conclude that

1] < 2K) "% KB g forall o € Fr. (2.25)
We now assume that
na ([E,E+¢e])=1trP>p>0. (2.26)
If R > %, it follows from (2.26) that
dim Fr > pL — 2 ([ %] - 1) > pL — 2% > {pL. (2.27)
Applying Lemma 2.1, we obtain 1y € Fg, 19 # 0, such that
dim .FR
[Y0lloe = 7 ol = /3o [l (2.28)
Taking R = %7 it follows from (2.25) and (2.28) that
Vo < 2K)F KR = 2K) R e e, (2.29)
Thus, we get
8K
p< —i, (2.30)
log -
if L is sufficiently large, namely L > CR = 47.

Since o (Hp) C [~Voo, 00[, we have ny ([E,E +¢€]) = 0 unless E > —V — 1.
Thus, given Ey € R, there exists Ly g, such that, for all0 < e < %, open intervals
A=Ay with L > Ly_ glog 1, and energies E < Ey, we have (2.21). O
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3. MULTI-DIMENSIONAL SCHRODINGER OPERATORS

To prove Theorem 1.1 for d = 2,3, we will select a class of approximate eigen-
functions for which we can establish local upper bounds, pick an approximate eigen-
function for which we have a global lower bound for the global upper bound. The
local upper bounds will come from the local behavior of approximate solutions of
the stationary Schrédinger equation; the global upper bound will come from the
quantitative unique continuation principle.

Given z € R? and § > 0, we set B(z,6) := {y € R%; |y — z| < §}.

3.1. Local behavior of approximate solutions of the stationary Schrédinger
equation.

Theorem 3.1. Let Q = B(xg,rg) for some xg € R? and ro > 0, whered = 2,3,. ..,
and fiz a real valued function W € L (Q); Woo = [|[W ||y (q)- Let F denote a linear

subspace of H?(Q) with the following property:
[(=A+ W)Yoy < Crl[¥ll2) forall ¢ eF. (3.1)

Then there exists a constant v4 > 0 and 0 < 1 = r1 (d, Weo) < 10, with the property
that for all N € N there is a linear subspace Fn of F, with

dim Fy > dim F — g N4 1, (3.2)
such that for all ¢ € Fn we have

(@) < (Chw |2 = 20l + Cr) [l gy Jor @€ Blzo,m).  (3.3)

We take d = 2,3,..., and set Ny = {0} UN. We consider sites z € R¢, partial
derivatives 0; = % for j =1,2,...,d, multi-indices @ € N¢, and set
°J

d d d d
=[], D*=][9", lal=> lasl, al=]]a (3.4)
=1 j=1 =1 =1

We let H{ = H.m(R?) denote the vector space of homogenous harmonic polyno-
mials on R? of degree m € Ny, and recall that [ABR, Proposition 5.8 and exercises]

we have dim H\” =1, dim H\? = d, and, for m = 2,3,.. ,

d+m-—1 d+m—3
i (d) — _
) = (V1) (4 3) o
In particular, we have
dmH? =2 and dimHD =2m+1 for m=23,..., (3.6)
and dim #{Y < dim ’Hfﬂ_l for d > 2. Moreover
_ dim A 2
ng}noo 2 B for d>2. (3.7)

We also define H(gdz)v = EBTNn:o ’Hgff), the vector space of harmonic polynomials on
R? of degree < N. It follows from (3.7) that for d = 2,3, ... there exists a constant
~vq > 0 such that

N
dimHY, = Y dimHD <4uN? forall NeN. (3.8)

m=0
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We let
(d(d — 2)wq) " |z|""? i d=3,4,...

3.9
— 5 log |z if d=2 (3.9)

®(x) = ®y(x) := {

be the fundamental solution to Laplace’s equation; wy denotes the volume of the
unit ball in R?. In particular,

— A®(z) =d(x) on RY (3.10)
and
DO ()] < Cja ||~ F27100 (3.11)
We fix a real valued function W € L%, set Weo = [[W|| (), and consider the
the stationary Schrodinger equation

—Ap+Wep=0 ae on Q= B(xg,2r). (3.12)

We let £(Q) = & (2, W) denote the vector subspace formed by solutions ¢ €
H2(£2). We define linear subspaces

En(Q)) = {(b € &(Q); liﬁrtrisl%p lef(:c:co)\‘N < oo} for N eN. (3.13)
Note that & () = {¢ € E(Q); d(zo) = 0}, En(2) D En41(NQ) for all N € Ny, and
NF_oEn () = {0} by the unique continuation principle.

A solution of the equation (3.12) admits a local decomposition into a homoge-
neous harmonic polynomial and a lower order term [HW, B]. The following lemma
is a quantitative version of this decomposition; it gives an explicit estimate of the
lower order term.

Lemma 3.2. Let Q = B(x,2rq) for some g € R and rg >0, d =2,3,..., and
fix a real valued function W € L (Q). For all N € Ny there exists a linear map

YJS,Q): En(QY) — ’HS\?) such that for all ¢ € En(Q) we have

[6(2) = (YA70) (@ — o) (3.14)
d ~ N+1 (N+1)(N+2) _
<t (i Cuw ) () T (VDY e = w0l 6l e

for all x € B(x, ). As a consequence, for all N € Ng we have

Ent1(Q) =ker Y and dimEnyq(Q) > dimEn(Q) —dim K. (3.15)
In particular, if J is a vector subspace of Ey(S)) we have
dim J NExn41(Q) > dim T — ygN4! forall N €N, (3.16)
where 4 is the constant in (3.8).

Proof. We prove the lemma for Q = B(0,2); the general case then follows by
translating and dilating. We will generally drop € from the notation. We recall
that ¢ € & satisfies the following elliptic regularity estimates ([GiT, Theorem 8.17],
[GiT, Theorem 8.32]):

sup [¢(z)] < Cawe [9ll12(q) - (3.17)
a:GB(O,%)
sup  [Vo(y)| < Caw.. sup [o(z)]. (3.18)

y€B(0,1) zeB(0,3
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Given ¢ € & we consider its Newtonian potential given by

P(x) = — . W(y)o(y)®(x —y)dy for zeRL (3.19)
In view of (3.17), for all z € B(0, 2) we have
()] < Woo 8]l (50,2)) 1RlL1(B(0,3)) S Cawe Woo [0l L2(q) - (3.20)

It follows from (3.10) that Ay = W¢ weakly in Q. Thus, letting h = ¢ — ¢
we have Ah = 0 weakly in €, so we conclude that h is a harmonic function in
Q D B(0,1). In particular (see [ABR, Corollary 5.34 and its proof]), h is real
analytic in 2 and

o
h(z) = Z pm(x) for all z € B(0,1), (3.21)
m=0
where p,, € 7-[1(5) forall m=0,1,..., and for m =1,2,... we have
[pm ()] < Cygm®2|z|™  sup |h(y)| forall z <€ B(0,1). (3.22)
y€dB(0,1)

In addition, it follows from the mean value property that for all y € 9B(0,1) we
have

M)l < gy [ O < Caw olhsys (529
2 B(?hf)
ising (3.17) and (3.20). Thus, for all m = 1,2,... it follows from (3.22) that
|pm (2)] < Cdﬁwwmd_2||¢\|L2(Q) |z|™  for all =€ B(0,1). (3.24)
Setting hy = ZZ:O pm(x) € H(de)v, it follows that
h(z) ~ b (2)] < Cawe @l + D2 oY forall = € B(0,3). (325)

For each y € R%\ {0} we consider ®,(z) = ®(x — y), a harmonic function on
RY\ {y}. In particular, ®,(z) is real analytic in B(0, |y|), so, defining

Im(z,y) = Z LD*®(y)a* for zeR? (3.26)
aeNg, |a|=m

we have (see [ABR])
Bz —y) =Py(x) = Z Im(z,y) for all z € B(0,lyl|), (3.27)
m=0

the series converging absolutely and uniformly on compact subsets of B(0, |yl).

Moreover, Jo, (-, y) € H'?, and for all y € Z¢ and m = 1,2, .. we have (see [ABR,
Corollary 5.34 and its proof]) that

— m _ 4 m
[l )| < Cam®2 (G51)7 s @y ()] < Cam 2 (5f51) (3,
weoB(0,71yl)
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for all z € B (0,3 |y|). Setting ®, n(z) = Zfﬁ:o Im(z,y) € 7—[(;1)\,, it follows that
for z € B(0, § |y|) we have

)N-‘rl

[, (2) — @, ()| < Ca(N + 1) (1

®(4). (3.29)

We now proceed by induction. We define Yy: & — H(()d) by Yoo = ¢(0). Given
¢ € &, it follows from the mean value theorem and the elliptic regularity estimates
(3.17) and (3.18) that

6(x) = d(0)| < sup Vo)l |z] < Caw lllaq |zl for =€ B(0,1).

yeB(0,1)
(3.30)
Thus the lemma holds for N = 0.
We now let N € N and suppose that the lemma is valid for N — 1. If ¢ € &y, it
follows that ¢ € Ex_1 with Yy_1¢ = 0, so by the induction hypothesis

[6(2)] < Onl|@llz(ey e forall = € B0, 3), (3.31)
where
~ N(N+1)
COn =CPy (B8) 7 (N2, (3.32)

Using (3.28) and (3.31), we define

Une) = = | Woy)®y.x(w)dy € HL. (3.33)

We fix z € B(0, 1) and estimate
[9(e) = o @)] < W | 1001|350} . (334
where ®, - n(z) = ®,(x) — ®, v(r). Appealing to (3.29) and (3.31), we get

16(y)] @y, n ()] dy < CaCly [|8]l5 (N + 1)%2 () g N1

(3.35)

/B<o,§>\B<o,2|x|>

If y ¢ B(0,2|x|) we have |y| > 2|x| > 1, and hence, using (3.29),

[0(y)] |y >N ()] dy (3.36)

/sz'\(B<o,2z|>UB<o,§>)
— N+1
< Cuv+ 12 ()Y )l [ ot dy

L9 (a\N+1| N
< Ca(N+ 12 ()7 M 102y
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Using (3.28) and (3.31), we get

[, )] [By5()] dy (3.37)
B(0,3)NB(0,2]x))
N
< Culldlae [ 1" 18,5 v ()] dy
B(0,3)nB(0,2s])
N
<Caloll [, I 18— y)] dy
B(0,5)nB(©,2le])
N
_ m N m
+ CCxlolhaey 3 m** (G1a)” [, (1) ay
— B0 ,§>mB<o,2|w\)

< CaCn[|9llae) (1+Nd MO

where we used |z — y| < 3|z| for y € B(0,2]z|). (Note that we get ||V 2 if d >3
and |x\(N+2)_ if d =2.) Also using (3.28), we get

[ byl [ ewlBa -y (639
Q\B(0,3) \B(0,3)

+CdZm 4‘m| /Q/\O

B(0,3)

< Cullllaqey (1+ N2 (1)),

o)l lyl ™™ [@(5)] dy

where we used |z| < 3. Since |z| > 1 if y € B(0,2]z[) \ B(0, 3), we obtain

/(Q R LI (3.39)
N 2|z £

)
_ N+1 N+1
< Cllbllpaay (14+ N2 (3)™) 2

Putting together (3.34), (3.35), (3.36), (3.37), and (3.39), we conclude that for all
z € B(0,3) we have (Cy > 1)

() — ()] < CaCyWoo(N + 182 (1) 2N 6] . (3.40)

We now define Yn¢ = hy + ¢y € Hip). Since ¢ = h+ 1), for all = € B(0,1) it
follows from (3.25), (3.40), and (3.32), that

16(z) — (Ywd) (@) < [h() — hv(@)] + [$(2) — ¥ (@) (3.41)
< (Cawo + CaWeeOn) (N + 1)%2 (3) ¥ N4 g o
< Caw Cn(N + 12 (S9) Y 2N 6] o
< Gy (od e (19) <N!>H) (N + 122 (1) N g o

(N+1)(N+2)
2

(N+1)

< CNph (X) ((V + D02 2N 16

by choosing the constant éd,Woo in (3.32) large enough. This completes the induc-
tion.
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The lemma is proven, as (3.15) is an immediate consequence of (3.14), and (3.16)
follows from (3.15) and (3.8). O

Theorem 3.1 is an immediate consequence from the following lemma.
Lemma 3.3. Let Q2 = B(xq,r1) for some o € R and r1 > 0, and fiz a real valued
function W € L>°(Q). Let F denote a linear subspace of H?(Q) with the following

property:
(A + W)Yl ey < CF 1Yl forall ¢ e F. (3.42)

Then there exists 0 < ry = ra(d, We) < 11, where Wog = |[W||jw (q), with the
property that for all r €]0,rs] there is a linear map Z,: F — Eo(B(zo,7)) such that

14 = Zllroc (g, < CarCr[Pllzi)  where  lim Cq,p = 0. (3.43)
As a consequence, for all N € N there is a vector subspace Fn of F, with
dim Fy > dim F — ygNe 1, (3.44)

where 74 is the constant in (3.8), such that for all ¢ € Fn we have
@) < (CNFL L (N +1)"28Y o — gV + Cr) [y (3.45)
< (Cd,woo,rl |z — zo| T + CF) 911200
for all z € B(wo, 2).

Proof. It suffices to consider zo = 0. We set B, = B(0,7). Given 0 < r < 71 and
Y € F, we define Z,.1) € £ (B,) as the unique solution ¢ € H?(B,) to the Dirichlet
problem on B, given by

~A$p+W¢p=0 on B, (3.46)
. .

=1 on JB,
This map is well defined in view of [GiT, Theorem 8.3] and is clearly a linear map.
To prove (3.43) we will use the Green’s function G,(x,y) for the ball B,. We

recall that, abusing the notation by writing ®(|z|) instead of ®(z) (see [GiT, Sec-
tion 2.5]; note that with our definition ®(z) = —T'(|z]|)),

o y):{<1><|x—y|>—<1>(z oyl) iy A0
o ®(|z|) — ®(r) if y=0

Using Green'’s representation formula [GiT, Eq. (2.21)] for ¢ and Z,.¢), for all z € B,
we have

b@) =~ [ W(QaG(w,0)aS (¢ / WWGrlaydy  (3.48)

0B,

(3.47)

+ / (A + W()b(y)Co(, 9)dy,

Zob(e) = — [ 9(Q)0Cr(z, )AS(C / W () Zeb(y)Gr (2, y)dy,  (3.49)

dB,
where dS denotes the surface measure and 9, is the normal derivative. Since by an
explicit calculation we have, with ps = 2 and pg = %for d > 3, that for all z € B,

d(pg—1)

G (@, )L s,) < < O™ |G, WNrracs,y < Car v, (3.50)
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it follows that

|W - ZTwHLOO(B,,.) (351)
d(pg—1)
< Cgr vd (Woo 1Y = Z ¥l o,y + (A + WWHL%(B;)) :
d(pg—1)

Selecting ro €]0,71[ such that Cqry " (14 W) < 3, and using (3.42), we get
(3.43).
Now let J = Ran Z,,, a linear subspace of £y(B,,); note that

dim J + dimker Z,., = dim F. (3.52)

We set Iy = T NEN41(Br,) and Fy = Z*(JIn). It follows from (3.16) and (3.52)
that

dim Fy = dimker Z,,, + dim Jy > dim F — 44N, (3.53)
If ¢ € Fn, we have Z,,¢ € En41(Br,),

1Yl (,,) < 1Y = Zr¥llLee(s,,) T 12 YllLes,,) (3.54)
and hence (3.45) follows from (3.43) and (3.14). O

3.2. A quantitative unique continuation principle for approximate so-
lutions of the stationary Schrodinger equation. We state and prove a a
version of Bourgain and Kenig’s quantitative unique continuation principle [BoK,
Lemma 3.10], in which we make explicit the dependence on the parameters relevant
to this article. We give a proof following [GK2, Theorem A.1].

Given subsets A and B of R%, and a function ¢ on set B, we set ¢4 1= ©XanB-
In particular, given z € R? and 6 > 0 we write a5 = PB(x,5)-

Theorem 3.4. Let Q be an open subset of R? and consider a real measurable
function V' on Q with |V < K < co. Let ¢ € H?(Q) be real valued and let
¢ € L3(2) be defined by

—AY+Viyp=( ae on . (3.55)
Let © C Q be a bounded measurable set where |[Ygll, > 0. Set
Q(z,0):=suply —z| for ze€. (3.56)
yeEO
Consider xo € 2\ © such that
Q=Q(z0,0) >1 and B(x0,6Q +2) C Q. (3.57)
Then, given
0 < 6 < min {dist (z0,0), 57} » (3.58)

we have

[vells < |9s0.5l5 + 82 [1Call3 (3.59)

Q

where m > 0 is a constant depending only on d.

2 E I+l
( s >m<1+K3) <Q3 +log M)

We we will apply this theorem with § < 1 < Q.
The proof of this theorem is based on the the Carleman-type inequality estimate
given in [BoK, Lemma 3.15], [EV, Theorem 2|, We state it as in [GK2, Lemma A.5].
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Lemma 3.5. Given ¢ > 0, the function w,(z) = w(% |z|) on R?, where ¢(s) :=

s lieit . . . . . .
se~Jo Tt s q strictly increasing continuous function on [0, 0o, C°° on ]0, oo,

satisfying

&Q |z] <wy(z) < < |z| for x € B(0,0), where C;= o(1) 7" €]2,3[. (3.60)

1
0
Moreover, there exist positive constants Co and C5, depending only on d, such
that for all a > Cy and all real valued functions f € H?(B(0,0)) with supp f C
B(0,0) \ {0} we have

a3/ u}Q_l_Qo‘f2 dzr < Cj g4/ wz_zo‘(Af)2 dx. (3.61)
Rd Rd
Proof of Theorem 3.4. Let o € 2\ © satisfy (3.57), where C; is defined in (3.60).
For convenience we may assume zg = 0, in which case © C B(0,2C1Q), and take
Q = B(0, o), where o = 2C1Q + 2.

Let 0 be as in (3.58), and fix a function n € C°(R?) given by n(z) = &(|z|),
where £ is an even C* function on R, 0 < ¢ < 1, such that

E(s) =1if P <[s| <201Q, &(s) =0if [s| < for [s| >2C1Q+1,  (3.62)
D) < (@) iflsl <%, D) <2 it Is] 2 201Q, j=1,2

Note that [Vn(z)| < vd|¢'(|z])] and [An(z)| < d[€”(|z])]-

We will now apply Lemma 3.5 to the function ny. In what follows Cy,Csy, Cs
are the constants of Lemma 3.5, which depend only on d. By Cj, j = 4,5,..., we
will always denote an appropriate nonzero constant depending only on d.

Given « > Cy > 1 (without loss of generality we take Cy > 1), it follows from
(3.61) that

3

- —1-2a, 2.2 2—2a 2 2-20, 2 2
sogt [ tar < [ w @ < [ ud A

—2a 2 2 —2a
+4/ w22 |Vn|” [V dx+/ wy % (An)*y* dz, (3.63)
supp Vn supp V7

where supp Vn C {4 < |z| < 2} U {201Q < |z] < 201Q + 1}.
Using (3.55), recalling ||V||, < K, and noting that w, < 1 on suppn, we get

/ w222 (Agh)? du < 2K2/ wy 2% da + 2/ w2 da. (3.64)
Rd R4

Rd
We take
ap=ap s >0y (1 + K*) , (3.65)
ensuring « > Cy and
) (3.66)
3C30*  3Cs

As a consequence, using (3.60) and recalling (3.56), we obtain

1+2cx
[t ierar= (£) 0 Iweld 2 @00 juel. o)
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Combining (3.63), (3.64), (3.66), and (3.67), we conclude that

203
S 200 " a3 <4 [ wk |vaP VUl do (3.68)
903 supp Vn
+/ w2 (An)?y? dw+2/ w2 n? ¢ da.
supp Vn supp 7
‘We have

/ wy (4 Vnl* [V + (An)sz) da (3.69)
{201Q<2] <201 Q+1}

Clg >20¢2/ 2
< 4d? ( 4|VY|* +4?) do
26:@Q {201QS|:E\S201Q+1}( vl )

< Cs (201)2“/{ (2 + 1+ K)y?) do

20, Q—1<|z|<2C1 Q+2}
2a0—2
< G5 (300" (IGall} + (1 + K) lall3)

where we used an interior estimate (e.g., [GK1, Lemma A.2]). Similarly,

2720 (4 |Vn? |Vl + (An)*y?) d 3.70
/{wﬁ}% (4190 (012 + (An)?0?) d (3.70)

< 1642572 (4571 Ch o)™ / (4|vw\2 +w2) da
{4<|Z| <8

4

< C02 (4671 C10) > / (% + (K + 67 2)¢?) da
{J21<6}

< G2 (1607 C3Q)™ ™ (a3 + (K +672) 60,13
In addition,

o 20—2 20—2
/ w22 da < (4671 Cho) ™ alls < (16671C3Q)™  lIcall3 - (3.71)
supp 7
Thus, if we have
of ()™ lvell3 > Cx(1 + K) [all (3.72)
we obtain
51 )22 2 _ 120 1420 2
Cs (ZOl) (1+K) ‘WJQHQ < 59703 (2¢y) ||¢@||2 , (3.73)

so we conclude that

ad o _ _ 20—2 _

50 (200" well; < G2 (16571 CFQ)™ ™ (K +672) ol + lGall3)
(3.74)

where we used (3.58). Thus,

. _ 2a -~

ajQ* (817 8) " Ielly < Co (K +0672) Ibosl3 + Icall3) . (3.75)

which implies

6 4a+4
03@'(5) Mol < (0 ) lnsll + 8 al3). 370
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since % < 51 < &7 by (3.58).

We now choose a. Requiring (3.65), to satisfy (3.72) it suffices to also require

a>Chy (1 +log W’“”?) . (3.77)
1Yol
Thus we can satisfy (3.65) and (3.72) by taking
2\ (s [Pally
a=Cp(1+Ks3 (Q3 + lOg . (378)
( ) [Yell,

Combining with (3.76), and recalling @ > 1, we get

2\ (04 110, vl
(1+K%>3 (6)013(1+K3)<Q3+10g ”ZZ‘|2>

lvells (3.79)

Q
< Cua (14 K) ol + 82 1Gal3)

and hence,
2 4 llvally
5 m(1+K3) <Q3+log Tooll > ) ) )
(5) el < lnall + 8 Iall}. (380
where m > 0 is a constant depending only on d. O

We will apply Theorem 3.4 to approximate eigenfunctions of Schrodinger opera-
tors defined on a box A with Dirichlet boundary condition. In this case the second
condition in (3.57) seems to restrict the application of Theorem 3.4 to sites g € A
sufficiently far away from the boundary of A. But, as noted in [GK2, Corollary A.2],
in this case Theorem 3.4 can be extended to sites near the boundary of A as in the
following corollary.

Corollary 3.6. Consider the Schrédinger operator Hy := —Ap +V on L2(A),
where A = Ap(xo) is the open box of side L > 0 centered at xy € R4, Ay is
the Laplacian with either Dirichlet or periodic boundary condition on A, and V
a is bounded potential on A with |V]|e < K < oco. Let v € D(Ap) and fix a
bounded measurable set © C A where ||[Yell, > 0. Set Q(z,0) = sup,cq |y — 7|
for x € A, and consider zg € A\ © such that Q = Q(x9,0) > 1. Then, given
0 < 6 < min {dist (z0,0), 57} such that B(zo,0) C A, we have
2 4 bllo

(5 >m(1+m)(@s+log”;;|2)

el < l1teoslls + 62 | Hatl5, (3.81)

Q

where m > 0 is a constant depending only on d.
This corollary is proved exactly as [GK2, Corollary A.2].
3.3. Two and three dimensional Schrédinger operators.

Theorem 3.7. Let H be a Schrédinger operator as in (1.1), where d = 2,3. Given

Ey € R, there exists Lqv._ g, such that for all0 < e < %, open boxes A = A with

3
L > Lqyv.. g, (log %) ®, and energies &' < Ey, we have

na (B, B +e]) < SVl (3.82)
(log 2) =
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Proof. Let A = A (o) for some zo € R? and € €]0, 2. Since o(Hy) C [~Vao, 00, it
suffices to consider Fy > —Vo—1land £ € [~V —1, Eo]. Weset P = X(g g4 (Ha);
note that Ran P C D(A,) C H?(A) and

[(Hpn — E)¢| <elly|| forall 1 € RanP. (3.83)

Moreover, for ¢ € Ran P we have
6]l = [Jem Ve ttiat vy (3.84)

< ‘ e—(HA+voo)‘

L2(A)—Lee(A) "e<HA+Vw)w“ = CdeE0+Vm+1 HI/JH ’

where we used that for ¢t > 0
Heft(HAJrVw)

< 00.

(3.85)
Since P(Hpy — E)¢ = (Hy — E) Pyp = (Hpy — E) % for ¢ € Ran P, we conclude
that

(A)—Los(A) =

) < ||etAAHL2 < ||etA||L2(]Rd)—>L°Q(Rd)

L2(A)—Lo= (A

|(Hx — E)Y|l <eCav B |l¢0]| forall 1 € RanP. (3.86)
Suppose now that
ma([E,E+¢])=fztrP>p>0. (3.87)
We recall that tr P < Cy v, g, L% and hence we must have
p < Cav, B (3.88)
We fix 0 < R < L, to be selected later, and pick G C A such that
K={JRnly) and #ge[(£)".(3)]nN. (3.89)
yeG
We take )
N = {2 (,y%p) -1 RdflJ with g as in (3.8), (3.90)

where R (and L) are large enough so N > 1. (Since we want to prove (3.82), we
may assume a lower bound for p, say p > log %) Using (3.87), (3.86), and applying
Theorem 3.1 in succession at the sites in G, we conclude that there exists a vector
subspace Fr of Ran P and rg = ro(d, Vo, Eo) > 0, such that

dim Fg > pL* — ygN41 (22)" > 1p17, (3.91)
and for all ¢ € Fg and y € G we have

[y + )| < (C.lev*;,Eo (N + D)2 eV 4 acd,VwEo) ol it |z < ro.
(3.92)
We let Qi denote the orthogonal projection onto Fr. Since tr Qr = dim Fg,
it follows from (3.91) that that we can find a box A; = Aj(z1) C A such that
tr QrXa, > %p (we can take %p if L e N). But Qr = QrP = PQpr since Fr C
Ran P, and hence

%P <trQrXxa, = trxa, PQrXA, < |IXa, Pl |QrXA, |- (3.93)

We now recall that [|Xa, P||; = [[PXa,|l; < Cav.. . £, for all A. (This is [S1, Theo-
rem B.9.2] when A = R?. But by an argument similar to (3.85) the crucial estimate
[S1, Eq. (B11)] holds on finite boxes A with constants uniform in A, so a careful
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reading of the proof of [S1, Theorem B.9.2] shows that the result holds on finite
boxes A with constants uniform in A.). We thus conclude that

||QRXA1 H = ||QRXA1 H Z CZI,VOO,EOp’ (394)
so there exists g = Qrty with ||¢g]] = 1 such that
XA, %ol = yp,  where = 3Cqv. g, > 0. (3.95)

(Note that yp < ||¢]| =1.)
We then pick yg € G such that

B < dist (yo, A1 (21)) < RVd (3.96)
Taking 0 < § < 2 1> it follows from Corollary 3.6 that
s m<1+K§)(Réflog||onAl(w1)H2) ) 5 o
(ﬁ) |W0XA1(301)H2 < HZ/)OXB(?J075)H2 + 077,

(3.97)

with a constant m =mg > 0 and K = ||V — E|| . Making ¢ < r¢ and using (3.92)
and (3.95), we get
P m(1+K%) (R% —log(vp))
(Vi)
Using pR? > 274~ (it follows from (3.90) and N > 1), and noting that § <
d’%R7 we get

(’}/,0)2 < Cdcgém7E052(N+1)+d + Cd,Voo,Eo g2, (3.98)

4
MR3 2
(%) < Chlve 50N + Cav By €2 (3.99)
with M = Mg v, g > 0. We now choose § by
. -1
Cilv. =%, ie, 6=(Cv_mR) . (3.100)
obtaining
4
MRS N
()" < (8) + Cave o €%, (3.101)
We now take d = 2,3 and take R large enough so that
4
MR3
(L)Y <1(2) : (3.102)
which can always be done since for d = 2,3 we have 2 3 < ﬁ, SO
MR3 <N < {2 (i J p>Cave g R (3.103)

(Here we need d < 4, that is, for d = 2 and d = 3 since we assumed d > 2.)
It follows from (3.101) and (3.102) that taking R large enough we have

4
MR3
LT <Cuvem e (3.104)

Recalling (3.100),(3.90), and (3.88), we get

(Cave mRY) it <2Cq4 v, B € (3.105)

We now choose R by
d—4

p= Cd,Vm,EoRTa (3106)
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where the constant cq v g, is chosen so (3.103) holds. Combining (3.90), (3.105),
and (3.106), we get

MRS /R tatitd 2
e =e < Cava. B &, (3.107)
where M" = M}y, g . Thus
1 1 8 _ C&yvoano
g =< Cav. B, R3 = s ) (3.108)
pm
and hence s
P § Cd,VQQ,Eo (log %)7T, (3109)
3
as long as L is large enough, namely L > Lg v, £, (log %) 5. [
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