6) \(x_0 \in (a, b) \). Then every ball \(B(x_0, \varepsilon) \) contains points of \((a, b)\), for example, let \(\delta = \min \{ x_0 - a, b - x_0 \} \)

\[a \xrightarrow{\delta} x_0 \xrightarrow{\varepsilon} b \]

and let \(\delta' = \min \{ \delta, \varepsilon \} \).

Then \(B(x_0, \delta') \subseteq B(x_0, \varepsilon) \), and

\[x_0 + \frac{\delta'}{2} \in B(x_0, \delta'). \]

Therefore \(x_0 \in \) derived set of \((a, b)\).

To see that \(a \in \) derived set of \((a, b)\),

for any \(\varepsilon > 0 \), \(B(a, \varepsilon) \) contains \(a + \frac{1}{n} \) for \(n \) large enough, and for \(\frac{1}{n} < b - a \),

\[a < a + \frac{1}{n} < b \Rightarrow a + \frac{1}{n} \in B(a, \varepsilon). \]

7, 8, 9 | Already posted

10 | Properties 1) 2) 3) are trivial. For 4), observe that the inequality holds if \(x = z \) (since then, \(d(x, z) = 0 \)), and if \(x \neq z \), \(d(x, z) = 1 \), and for any \(y \in \mathbb{X} \),

either \(y \neq x \) or \(y \neq z \) (by transitivity of "\(= \)"),

in which \(d(x, y) + d(y, z) \geq 1 \).

12 | Since \(d(x, y) = 1 \) for \(x \neq y \), \(\mathbb{B}(x, \frac{1}{2}) = \{ x \} \), for every \(x \).

Therefore \(\mathcal{C} \) contains all singletons \(\{ x \} \), and

hence \(\mathcal{U} \) is the discrete topology on \(\mathbb{X} \).