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ABSTRACT. We show how different purity proper-
ties can be used to obtain new examples of Néron
models. As a direct application, we use Shimura va-
rieties of Hodge type to get in arbitrary mixed char-
acteristic, the very first examples of general nature
of projective Néron models whose generic fibres are
not finite schemes over abelian varieties.
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1. NERON MODELS

Let » be an integral Dedekind domain. Let K be the field
of fractions of p. Let xx be a smooth and separated K-scheme
of finite type.

1.1. DEFINITION. A Néron model of x,
over p is a smooth, separated »-scheme of fi-

nite type whose generic fibre is x, and which
has the following universal property:

(NMUP) for each smooth »-scheme v and

each x-morphism . : v - x«, there exists a
unique o-morphism ».v - x that extends .
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1.2. THEOREM (Néron 1964). Each abelian
variety over x has a Néron model over ».

1.3. Sentence from the book wnéwon mees [BLR, Ch.
I, p. 15]. “Although Néron models have been de-
fined within the setting of schemes, their importance
seems to be restricted to group schemes or, more
generally, to torsors under group schemes ...”.

1.4. OPERATIONS with Néron models.

(op1) the Néron models are stable under products;

(op2) a smooth scheme z over p which iS fnite OVer
a Néron model x, is itself a Néron model.

1.5. EXAMPLES.

(a) Each smooth, projective curve over p is a
Néron model of its generic fibre.

(b) Each étale cover of a Néron model is itself a
Néron model.

(c) Starting from the Néron models of abelian
varieties, using the operations (OP1) and (OP2), we
get Néron models of connected varieties x, over x
which admit fiite morphisms into abelian varieties (i.e.,

vslfqhossz albanese varieties have the same dimension as
them).



1.6. CRITERION. Suppose that x is a smooth, sep-
arated scheme over p which is of finite type as well
as a moduli space of some ciass of objects 0. Then x is a
Néron model of its generic fibre if and only if the
following two properties hold:

(@) (the purity property) for each smooth scheme v over
p and each open subscheme v of v which contains
v« and which has the property that the codimension
of v\v in v is at least two, all objects over v extend
uniquely to objects over v.

(b) (the good reduction property) for each discrete valuation
ring v which is the localization of a smooth p-algebra,
all objects over the field of fractions of v extend
uniquely to objects over v.

1.6.1. REMARK. If v is a proper scheme over p, then 1.6
(b) holds. On the other hand, if 1.6 (b) holds, then v is not
necessarily a proper scheme over D.

1.7. QUESTION: What should one search for, in
order to construct new classes of Néron models?

FIRST POSSIBLE ANSWER: good classes of
objects o whose moduli spaces are smooth, projective,
and which SatiSfy the purity property.

1.8. QUESTION: What if Sentence 1.3 is partially
true?

ANSWER: look for classes of objects o which inwvotve
group schemes. Mﬂne)S 1n81ght (1992) USE abelian schemes.



2. THE PURITY PART (i.e., PU-
RITY RESULTS)

Let v be a smooth and separated scheme over p. Let U
be an open subscheme of v that contains vx and such that the
complement v\ U has codimension at least two in v.

2.1. ZARISKI-NAGATA purity result (an-

cient). Each étale cover of v extends uniquely
to an étale cover of v.

CLASS OF OBJECTS: étale covers or (even better) finite
étale group schemes.

PROBLEM: not much communications between Galois spe-
cialists and moduli spaces specialists.

HOPES: the cycle of three conferences that has just started.

HERE IS ANOTHER REASON WHY OUR CONFER-
ENCE IS REALLY GREAT: it brings great communications

between the last two types of specialists.

2.2. COLLIQT-THELENE and SANSUC
purity result (1979). Suppose that v has di-

mension two. Then each reductive group
scheme over v extends uniquely to a reduc-

tive group scheme over v. [Strictly speak-
ing, their works implies the purity result
stated)].

CLASS OF OBJECTS: reductive group schemes.
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PROBLEMS: (a) dimension two assumption is NEEDED

but way too strong for our purposes and (b) no relevant moduli
spaces for reductive group schemes.

HOPES: none.

2.3. MORET-BAILLY purity result (1985).

Each smooth, projective curve of genus at
least two over v extends to a smooth, pro-
jective curve over v.

CLASS OF OBJECTS: Jacobians.
PROBLEM: their moduli spaces are not projective.

HOPES: not much, as not good moduli subspaces identi-
fied.

2.4. FALTINGS—VASIU purity result (1990—

2004). Suppose that x has characteristic

zero and that for each local ring v of » there
exists a prime , such that the following two
conditions hold:

(i) v has mixed characteristic ©.», and

(ii) v has an index of ramification which
1S at MOSt max{1,p-2).

Then each abelian scheme over v extends
uniquely to an abelian scheme over v.

CLASS OF OBJECTS: (polarized) abelian schemes.
PROBLEM: their moduli spaces are not projective.
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HOPES: yes, as they have many moduli subspaces which
are projective (Milne’s insight).

3. THE GOOD REDUCTION PART
(i.e., MUMFORD-TATE GROUPS

and MORITA CONJECTURE)

We begin with some notations.

3.1. NOTATIONS.

(a) Let s:= RescrGne be the two dimensional torus over r
with the property that s®r) is the multiplicative group of non-
zero complex numbers.

(b) Let E be a number field. Let or be the ring of integers
of E. We fix an embedding iz : E — C.

(c) Let A4 be an abelian variety over E. Let
L := H,(A(C),7)

be the first Betti homology group of the complex manifold 4(c)
with coefficients in z. Let w:= L®;Q. Let

h:S — GLL®ZR

be the homomorphism that defines the Hodge z—structure on
w. Over ¢ we have the Hodge decomposition

L®;,C=F10qF0-t

(d) Let ¢ be the Mumford-Tate group of Ac. We recall that ¢ is a
reductive group over @ and that ¢ is the smallest subgroup of
GLy with the property that » factors through Gi. Let

Gad
be the adjoint group of ¢ i.e., the quotient of ¢ by its center.
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We recall that a reductive group over a field is an affine,
connected group over that field which has no normal subgroup
isomorphic to G: for some s e N.

3.2. MORITA CONJECTURE (1975). If
the ¢—rank of ¢« is zero (i.e., if the adjoint
group ¢« has no subgroup isomorphic to e,.),

then there exists a finite field extension = of
r such that 4, extends to an abelian scheme

over o, (i.e., 4, has good reduction every-
where).

bigskip
3.2.1. REMARK. A Theorem of Borel and
Harish-Chandra says that the ¢—rank of ¢= is
o if and only if the Shlmura variety attached

to 4 (to be detailed in Section 4) is projective
tower.

3 2 2 REMARK The philosophy Of MOI‘lta COIl—
jecture is: a g« moduli space x over » is a

proper scheme over » if and only if . is a
proper scheme over x (here o and x are as in

Section 1).

3.3. DEFINITION. We say the abelian va-
riety 4 has compact factors, if for each simple factor
# of ¢« there exists a simple factor of »# which
1s compact.
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3.4. ON the CLASSIFICATION of ¢<. We
consider the case in which ¢« is a simple

group over o. According to Satake—Deligne
classification, there exist five possible types.
In Deligne’s notations these types are: 4,, 5.,
Cny DE, and DRE.

TYPE A.. We have a product decomposi-

thIl Gad =Tl;c; PSU(as;n+1—a;).

CONDITIONS: for at least one <1 we
have ai€{1,...,n}.

OUR CASES: if one ., is either zero or
n+1, then a has compact factors.

TYPE B.. We have a product decomposi-
t10N G2 = 1., S0(as,2n +1 - as).

CONDITIONS: for all ;cr we have u< .2
and for at least one i< we have . -o.

OUR CASES: if one ., is zero, then 4 has
compact factors.

EXAMPLE: Let F be A totally real Ilumbel' ﬁeld
whose degree . is at least two. Let ccq,... a-1.

Let a.. e r be non-zero elements such that
the following two conditions hold:

(i) for precisely . embeddings ..r- =, both
elements .., and .«) are positive, and
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(ii) for precisely « . embeddings .. r < =,
both elements .«) and .«) are negative.

Let ¢ be the group over r that fixes the
quadratic form aws + e+ e+ +4a3., (ON Fn).
Then if ¢ - Res, (i.e., it o = Q(F)), then 4
has compact factors.

TYPE C.. ..
TYPE D= ..

TYPE D= ..

3.5. BASIC THEOREM (Vasiu, submit-

ted). Suppose that s has compact factors.

Then there exists a finite field extension & of

r such that 4, extends to an abelian scheme
OvVer oy, .



3.6. PREVIOUS WORKS.

(a) Morita (1975), Kottwitz (1992), and Paugam
(2004).

(b) The first two works pertain to abelian vari-
eties of PEL type. We recall that 4 is of PEL type,
if 4. has a polarization x such that the derived group
of ¢ is also the derived group of the intersection of
aspw,y) with the double centralizer of ¢ in ¢, (here
y is the alternating form on w defined by x» and PEL
stands for polarization, endomorphisms, and level
structures).

(c) In the PEL type case, the types of the simple
factors of ¢« are: (i) 4, type, (ii) totally non-compact
¢, type, (iii) totally non-compact p¥ type, and (iv)
totally non-compact, inner n} type (often (iv) is con-
sidered as part of (iii)).

(d) Suppose 4 is such that there exists a prime pen
with the property that the group ez is anisotropic
(i.e., its g,-rank is zero). Then the Morita conjecture
holds for . REMARK: this example is of 4, type.
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(e) The work of Paugam pertains to special cases
when there exists a good prime e~ for which a cer-

tain comb natorial condition on the natural action of
Gal(Q,) ile set of simple factors of ¢ fl ]lgs ((il

good primes , exist only if 4 has compact factors
and each simple factor # of ¢« is “simple enough”
(like when #. has only one simple, non-compact fac-
tor). Good primes , do not exist if there exists one
simple factor » of ¢« such that the group m: ei-
ther (i) has more simple, non-compact factors than
simple, compact factors or (ii) it is a Weil restric-
tion Res; 4, where ¢ is an absolutely simple, adjoint
group over SOIME arithmetically complicated tOtaHy real number

field 7. Thus Paugam’s results are particular cases
of our Basic Theorem.

3.7. ON the PROOFS.

(a) Morita and Kottwitz: use the Shimura moduli

spaces associated to 4 to show that 4 can not have
semiabelian reductions.

(b) Paugam: relies on Grothendieck’s criterion
(SGAT) of good and semistable reductions of a.

11



(c) Vasiu: the starting idea is as in (a).
But this idea is supplemented by an congation
mct. 10 explain the trick, we will assume
that ¢« is a simple group over o. It is known
that there exists a totally real number field
r such that

G = RGSF/QQ,

with ¢ as an absolutely simple, adjoint group
over . We decompose req0, =11, 7 as a prod-
uct of ,-adic fields.

We pick an 4 <r such that » “keeps track”
of a compact, simple factor of ¢. -1, .0 x-®
(i.e., under a suitable identification Homr) -
Homp@p ue Homr,g,), there exists j,c Homr)
for which the group ¢«-,r is compact and
to which corresponds an element of the set
Hom,g,)). Let » be a totally real number

field that contains r and for each we have a
similar decomposition r sqq, = (L., 7 x Fu, -

The elongation trick refers to the process
of replacing e of ¢ with that one of @, q.),
where ¢¢.- Res,, 0. Under this replacement,
4 gets replacement by another abelian vari-
ety i over some finite field extension z of =
whose Mumiford—Tate group ¢ has the fol-
lowing two properties:
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. its adjoint is ¢« and

. it is naturally a subgroup of another
Mumford-Tate group ¢ whose adjoint is e.

If 4 has semiabelian reduction i, with respect to
a prime » of &, then the rank -, of the toric part 7, of
i, obeys the following two rules:

@) it is either zero or at least equal to [r:q (i.e.,
the field » acts on the group of characters of 7,);

i) it depends only on the factor 11, ., 7 of either
FeoQ, O F, 8,0, and thus it is bounded from above in
terms of r alone (i.e., independently of r).

Thus by taking (s : r = A, : F,] >> 0, one gets that

r,=0. Thus 4, is an abelian variety. This implies that
45 has good reduction with respect to ».
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4. A NEW and LARGE CLASS of
NERON MODELS

Let the notations s, &, 4, L, w, ¢, h:s— Gz be as in
Section 3. Let ;.=am4). Let x be the ¢m-conjugacy
class of ». The pair (,x) is called a shimura pair.

We review some standard properties of Shimura

Na;rletles dh]ICh allow us to state our new results on
éron mo

4.1. SIEGEL MODULAR PAIR. Suppose 4
has a principal polarization . Let y.r0,z52
be the pertect, alternating form on : induced
by .. Let s be the es,mmy®-conjugacy class of
the homomorphism s - es,w,4). defined by

it is a double copy of the Siegel domam of
genus ,. The pair @spmy).s 18 called a Siegel
modular pair.

4.2. ON x. Let ¢, be the centralizer of Imu
in ¢.. We have x-cewy/c.®. It turns out that
the existence of the polarization . implies
that both x and s are hermitian symmetric
domains.
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4.3. THE ADELIC CONSTRUCTION. Let
s =Ze,0 be the ring of finite adeles of ¢. For

x a compact, open subgroup of c¢w,), let

Sh(G, X)c/K = GQ\X x G(As)/K;

it is a finite disjoint union of quotients of a
connected component of the hermitian sym-
metric x by arithmetic subgroups of ¢@. A
theorem of Baily and Borel says that sue x./x
has a canonical structure of a normal, quasi-
projective complex scheme which is smooth
if x is small enough. Thus the projective
llmlt (ze the Shimura tower)

Sh(G, x)(C = prOJ . llm'KgG(Af), compact + open Sh(Ga x)C/K

of all the normal, quasi-projective complex
schemes sne,xe/x’S, has a canonical structure
of a regular complex scheme. One calls su@,x).

asS the complex Shimura variety attaChed tO the Shimura
palr (@, x).

4.3.1. EXAMPLE. If 4 is an elliptic curve such that
Ac does not have complex multiplication, then ¢ =
GL, = Gspw,v). Moreover, the schemes snc,x)c/x are finite
unions of complex modular curves of different type
of levels.
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4.4. THE REFLEX FIELD. We have s. -
. xG, and thus ».s-¢. defines a ¢-conjugacy

class » of homomorphisms ¢, xc, - ¢.. This
conjugacy class is defined over g and thus
we get a c@-conjugacy class ., of homomor-
phisms Gm X Gm — Gy The reflex field E(G,X) Of (G, X) is the
number field fixed by the open subgroup of
Gal(Q) that fixes vge

4.4.1. EXAMPLE. If ¢ = ¢spw,v), then e@G x) =0. On
the other hand, if 4 has compcat factors, then g, x)
is a CM field which is different from o.

4.5. MUMFORD MODULI SCHEMES (Ge-

ometric Invariant Theory, 1965). Let w>s.
Let 4,.. be the moduli scheme over 72 that
parameterizes principally polarized abelian

schemes which are of relative dimension ,
and which are equipped with a level-~ sym-

plectic similitude structure. Let
K(N) = {ne asp(L.) @) MOd v 18 the identity.
Let

Ka(N) := K(N) N G(Ay).

The iI.lteI'SGCtiOIl KA4(N)NG(Q) iS A1) arithmetic subgroup
of ¢ which is a more general version of the

classical r, arithmetic subgroups.
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It is known that we can identity

Sh(GSp(W, ), 8)c/K(N) = A1 ne.

We have a finite (functorial) morphism
of complex schemes

f(N)c : Sh(G, X)c/Ka(N) — Sh(GSp(W,¢),8)c/K(N) = Ag1nc

which is obtained from the embedding
X x G(Ag) = 8 x GSp(W,4)(Ay)

between complex spaces via a natural pas-
sage to quotients. It is well known that
this morphism is in fact defined over ze,x)
(Shimura, Deligne). More precisely, we have

a finite (functorial) morphism of #c,x-schemes

F(N) : Sh(G, X)/Ka(N) = Sh(GSp(W, ), 8) n(a.x) /K(N) = Ag 1.3 (0

the rc x-scheme swe vk, 18 called the cnonica
model OF sn(G. 0c/kav) OVET r@x and the o-scheme

Sh(GSp(W,4),8) = Ag1,n 1S Ca;].led the canonical model Of
Sh(GSp(W, ), 8)c/K(N) OVEL Q.

By Shimura varieties, one usually means
such canonical models sue,x)/x.x) or their pro-
JGCtiVe 1im1t (i.e., the arithmetic Shimura tower) Sh(G,X).
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The advantage offered by suex in com-
parison with s v/x.wv), 1S that the group ca,)
acts continuousty ON shc,x) and thus in this way one
keeps track of all #ecke operators.

4.6. GLOBAL MODULI SPACES DEFINED
by A. Let

1

D :=Opc,x)ly] and x - E(G,X).

Let x be the normalization of 4,., in the ring
of fractions of swex/x.v; it is a p-scheme.

The notation x is non-standard but it re-
lates to Section 1.

One thinkS Of X asS the global deformation space Of A
over bp.

4.7. BASIC THEOREM (Vasiu, submit-

ted). If 4 has compact factors, then x is
a projective n-scheme.

4.7.1. REMARK. Theorem 4.7 is equivalent to The-
orem J3.7.
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4.8. THEOREM (Néron models as smooth,
projective, integral models of Shimura va-
rieties). Suppose that the following three
conditions hold:

(i) the abelian variety 1 has compact fac-
tors (infinite source of examples);

(ii) the p-scheme x is smooth (this condi-
tion automatically holds if ~-0);

(iii) if , is a prime that does not divide w,
then each local ring of » of mixed character-
istic o.» has an index of ramification at most
max1,p -2y (this condition automatically holds

1f N>>O).

Then x is a Néron model over » of its
generic fibre.

19



PROOF: Let v be a smooth »-scheme and

let mx:ve - xx @ morphlsm The p-scheme x
is projective, cf. Theorem 4.7. Thus from
the valuative criterion of properness, we get
that there exists an open subscheme v of
y which contains v., whose complement in
vy has codimension at least two in v, and
which also has the property that ... extends
uniquely to a morphism m,:.v - x. Let i .vw -
4,.~ D€ the composite of », with the natural
morphism x - 4,,,. Due to the purity result
2.4, the morphism i, extends uniquely to a
morphism i.v - 4, ...

As x is finite over 4,,, and as v is a nor-
mal scheme, the morphism : factors uniquely
through a morphism ».r - x that extends .

and thus that extends mz. Lhus the Néron
mapping universal property holds for x. There-

fore x is a Néron model of its generic fibre.c
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4.9. EXAMPLE. Suppose

G2 X% PSU(a,b)g xg PSU(a+ b,0)g,

with o, senvy2. A result of Parthasarathy
says that for each connected component e
Of Xc¢ =Sh(G,X)c/Ka(N), WE have HYM0(C(C),C) =0.

This means that the albanese variety of
e 18 trivial i.e., each morphism from ¢ to a
complex abelian variety is trivial. This im-
plies (as ¢ is projective) that each morphism
from ¢ to a complex group is trivial.

CONCLUSION: the Néron models constructed
by Theorem 4.8 form a completely new and

large class of Néron models.
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