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THE MAIN CONJECTURE

Throughout, G0 is a finite group and C is an
r-tuple of G0- conjugacy classes. The corre-
sponding modular tower is:

. . . −→ H (G1,C) −→ H (G0,C) −→ Ur

Main Conjecture: For every number field k,

∃N, ∀n > N,H (Gn,C) (k) = ∅.

Theorem: ∀ number field k, � ∃ modular tower
that has a projective sequence of k-points.

Strategy:

1. Characterize projective systems of compo-
nents defined over a fixed number field k,
i.e. understand obstruction of components.

2. For r = 4, show genera of (reduced) com-
ponents in projective systems are unbounded.
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OUTLINE OF TALK

Part I

1. Reduce obstruction of Hurwitz space com-

ponents to an obstruction purely in group

cohomology.

2. Describe the canonical sequence of fi-

nite groups defining modular towers, and

enumerate some of their properties that

impinge on obstruction.

Part II

1. Review the concepts of cohomological

dimension and duality groups.

2. Record consequences of duality for ob-

struction in modular towers.
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PART I
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HURWITZ SPACE CONSTRUCTION

If |z| = r, π1(P
1 \ z) � 〈δ1, . . . , δr | δ1 · · · δr = 1〉.

Fix a bouquet (δ1, . . . , δr).

Fix an r-tuple C of conjugacy classes of Gn.

Definition: The Nielsen class Ni (Gn,C) is:

{ϕ : π1(P
1 \ z) � Gn | ∃σ ∈ Sr, ∀i, ϕ(δi) ∈ Cσ(i)}

modulo conjugation by π1(P
1 \ z).

Definition: Ur is the configuration space of

z ⊂ P1
C

such that |z| = r.

Definition: The Hurwitz space H (Gn,C) is

the covering space corresponding to

π1(Ur, z) → Out(π1(P
1 \ z)) → Sym(Ni (Gn,C)).
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OBSTRUCTION AS EMBEDDING PROBLEM

Let ψn : π1(P1
C \ z) � Gn represent an element

of Ni (Gn,C) corresponding to xn ∈ H (Gn,C).

Given an exact sequence

1 −→ Mn −→ Gn+1
ϕn−→ Gn −→ 1,

let φn : H
(
Gn+1,C

)
→ H (Gn,C) be given by

fiber-wise composition by ϕn. Then, φ−1
n (xn) �=

∅ iff there is a solution to the embedding prob-

lem

π1(P
1
C \ z)

↓ ψn

1 −→ Mn −→ Gn+1
ϕn−→ Gn −→ 1

that lies in Ni
(
Gn+1,C

)
.
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p-FRATTINI COVERS

Definition: F ∈ C is Frattini iff

∀X ∈ C, ∀φ ∈ Hom(X, F ) , φ is an epimorphism .

Let ϕ : Gn+1 � Gn be a p-Frattini cover (i.e.

a Frattini object in the category of epimor-

phisms onto Gn with p-group kernel). Then,

every weak solution to the embedding problem

is surjective.

Definition: A conjugacy class C is a p′-c.c. iff

∀g ∈ C, p � | |〈g〉|.

Lemma: ϕn is a p-Frattini cover =⇒

∀ p′-c.c. Cn ⊂ Gn, ∃! p′-c.c. Cn+1 ⊆ ϕ−1
n (Cn).

∴ p′-c.c. of G0 lift uniquely to p′-c.c. of Gn

and elements of the lift have the same order.
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A COHOMOLOGICAL OBSTRUCTION

Definition: Let s = (s1, . . . , sr) ∈ Nr. Then,

the polygonal group Γ(s) is:

〈σ1, . . . , σr | σ
s1
1 = . . . = σsr

r = σ1 · · ·σr = 1〉.

Assume Gn+1 � Gn is p-Frattini and every

conjugacy class in C is a p′-c.c.
For each i = 1, . . . , r, let si = |〈ψn(δi)〉|.

1. ψn has a solution lying in Ni
(
Gn+1,C

)
iff

ψn has a weak solution:

π1(P
1 \ z)
↓

Γ(s)
↓ ψn

⎫⎪⎬
⎪⎭ ψn

1 −→ Mn −→ Gn+1
ϕn−→ Gn −→ 1
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2. If αn ∈ H2(Gn, Mn) represents the exact

sequence

1 −→ Mn −→ Gn+1
ϕn−→ Gn −→ 1,

then ψn : Γ(s) � Gn has a weak solution iff

the inflation infψn
(αn) of αn to Γ(s) is 0.

3. Consider

H
(
Gn+1,C

) φn−→ H (Gn,C)

and let O be a connected component of

H (Gn,C) such that φ−1
n (O) �= ∅. Then,

H1(Γ(s), Mn) ↪→ φ−1
n (O) � O

is a fibration.
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THE
GRUENBERG-ROGGENKAMP

EQUIVALENCE

Definition: The augmentation ideal ωRG is
the kernel of the augmentation map, i.e.

0 −→ ωRG −→ RG −→ R −→ 0
g �→ 1

is exact.

Two categories of covers:

CRG(ωRG) = ((RG-module covers M � ωRG))

CRG(G) =

((
group covers H � G

with RG-module kernel

))

Theorem (Gruenberg-Roggenkamp):

CRG(ωRG) ≈ CRG(G)

where corresponding objects have isomorphic
kernels.
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FRIED’S MODULAR TOWERS

n+1
p G̃

ϕn� n
pG̃ is the projective Frattini object in

C
Fp

[
n
pG̃

](n
pG̃) [unique up to isomorphism].

1. ∀gn ∈ n
pG̃, ∀gn+1 ∈ ϕ−1

n (gn),

p divides |〈gn〉| =⇒ |〈gn+1〉| = p · |〈gn〉|.

2. If some conjugacy class in C is not a p′-c.c.,

∀ number field k, ∃n,H
(
n
pG̃,Cn

)
(k) = ∅.

If C consists of p′-c.c. then n
pG̃ is p- perfect.

3. Definition: Op′(G) = max{H�G | p � | |H|}.

If G is p-perfect then n
pQ̃ has trivial center:

Pullback: n
pG̃ −� n

pQ̃

↓ � ↓
G −� Q = G/Op′(G)

We may assume n
pG̃ is p-perfect and centerless.
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A TRICHOTOMY

“Schreier formula:”

dimFp (Mn+1) = 1 + p
dimFp(Mn)

(
dimFp (Mn) − 1

)

1. p � | |G| ⇐⇒ ∀n,dimFp (Mn) = 0

⇐⇒ ∀n, n
pG̃ = G

2. Theorem (Griess-Schmid):

G/Op′(G) ≤ (Z/pmZ) >� F∗
p if and only if

∀n,dimFp (Mn) = 1.

Example: G = D2p =⇒ n
pG̃ = D2pn+1

3. Otherwise, dimFp (M0) > 1.

Example: G = (Z/2Z)2:

n 0 1 2
dimF2

(Mn) 5 129 1 + 2136
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LIMITATIONS OF THE INVERSE LIMIT

Lemma: lim←−
n
pG̃ � pG̃, the universal p-Frattini

cover of G.

The construction of pG̃ uses Zorn’s lemma and

so is non-constructive, even when G is a semi-

direct product.

Theorem: Let G = N>�H, where p � | |H| and

(|N |, |H|) = 1. Then, pG̃ = pÑ>�H.

Lemma: If G is a p-group then pG̃ � F̂m(p),

where m is the minimal number of generators

of G.

Example: Let p = 2 and G = F
+
8 >�F∗

8.

Then, 2G̃ � F̂3(2)>� (Z/7Z).

However, Aut(F3) has no 7-torsion.
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CADORET’S ABELIANIZED VARIANT

pḠ � G is the projective Frattini object in

CZpG(G) [unique up to isomorphism]. Let L

be its kernel.

Definition: n
pḠ = pḠ/pnL

The argument for Fried’s modular towers works

also for Cadoret’s abelianized variants:

We may assume n
pḠ is p-perfect and centerless,

for the purposes of the Main Conjecture.

Note that

0 −→ pnL/pn+1L −→ n+1
p Ḡ −→ n

pḠ −→ 1

is exact and that pnL/pn+1L � M0.
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SUMMARY OF PART I

1. αn : 0 → Mn → Gn+1 → Gn → 1 represents

a canonically defined p-Frattini cover.

2. C consists of p′-c.c.

3. The polygonal group Γ(s) is

〈σ1, . . . , σr | σ
s1
1 = . . . = σsr

r = σ1 · · ·σr = 1〉.

4. xn ∈ Ni (Gn,C) corresponds to Γ(s)
ψ̄n� Gn.

5. ∃xn+1 such that xn+1 �→ xn

�
0 = infψ̄n

(αn) ∈ H2(Γ(s), Mn).
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PART II

Throughout,

1. Γ is a group and R is a commutative ring,

2. 1RΓ is the RΓ-module R on which Γ acts

trivially, and

3. unless otherwise stated, every module is a

left module.
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FINITENESS CONDITIONS

Definition: Γ has cohomological dimension n

over R (i.e. cdR (Γ) = n) iff ∃ RΓ-projective

resolution of length n of 1RΓ:

0 −→ Pn −→ . . . −→ P0 −→ 1RΓ −→ 0.

Lemma: cdR (Γ) = n ⇐⇒
∀k > n, ∀RΓ − module M , Hk(Γ, M) = 0 and

∃RΓ − module M , Hn(Γ, M) �= 0.

Definition: Γ is of type FP∞ over R iff ∃ res-

olution of 1RΓ by finitely generated, projective

RΓ-modules. It is of type FP if this resolution

may be chosen to have finite length.

Lemma: Γ is of type FP over R iff Γ is of

type FP∞ over R and cdR (Γ) < ∞.
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TOPOLOGICAL INTERPRETATION

Example: If X is a finite n-dimensional CW-
complex with contractible universal cover then
π1(X) is of type FP and cdZ (π1(X)) ≤ n.

Theorem: ∃K(Γ,1) that is the retract of a
finite complex =⇒ Γ is of type FP over Z.

Definition: The geometric dimension of Γ
(geom dim(Γ)) is the dimension of a minimal-
dimensional K(Γ,1).

Lemma: cdZ (Γ) ≤ geom dim(Γ)

Theorem: Let n =

{
3, if cdZ (Γ) = 2.

cdZ (Γ) , otherwise.

Then ∃ n-dimensional K(Γ,1). If Γ is finitely
presented and of type FP then this may be
chosen to be the retract of a finite complex.
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COHOMOLOGY FOR PROFINITE GROUPS

1. Use the completed group algebra Zp[[Γ]]
instead of ZpΓ (i.e. R = Zp).

2. Modules are topological and Γ acts contin-
uously on them.

3. The Pontryagin category Bp(Γ) of mod-
ules is the union of

Dp(Γ) = discrete torsion modules
Cp(Γ) = profinite modules

Pontryagin duality (HomZp
(·, Qp/Zp)) is a

contravariant functor on Bp(Γ).

4. A discrete subgroup of a profinite group is
“good” iff its cohomology groups are iso-
morphic to those of its ambient group.
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DUALITY GROUPS

Definition: Γ is a duality group of dimension

n over R iff cdR (Γ) = n, Γ is of type FP, and

Hk(Γ, RΓ) =

{
0, k �= n

flat R-module, k = n

Definition: If Γ is a duality group of dimen-

sion n over R then DR(Γ) = Hn(Γ, RΓ) is the

dualizing module; this is a right RΓ-module.

Theorem: If Γ is a duality group of dimension

n over R then, ∀k, ∃ natural isomorphism of

functors

Hk(Γ, ∗) = Hn−k(Γ, DR(Γ) ⊗R ∗),
compatible with the long exact sequences, and

where Γ acts diagonally on the tensor product.
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POINCARÉ DUALITY GROUPS

Theorem: X is a closed n-dimensional mani-
fold with contractible universal cover =⇒ π1(X)
is a duality group of dimension n over Z.

Definition: A duality group Γ over R is a
Poincaré duality group iff DR(Γ) � R as an
R-module.

Definition: A Poincaré duality group Γ over
R is orientable iff DR(Γ) � 1RΓ as a right RΓ-
module.

Corollary: If Γ is an orientable Poincaré du-
ality group of dimension n over R then, ∀k, ∃
natural isomorphism of functors:

Hk(Γ, ∗) = Hn−k(Γ, ∗)

Remark: It is not known whether existence of
an n-dimensional K(Γ,1)- manifold character-
izes Poincaré duality groups over Z.
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BASIC EXAMPLES

Example: A finitely generated free group is
a duality group of dimension 1 over Z. It is
Poincaré duality iff it is cyclic (in which case it
is orientable).

Example: A finitely generated free pro-p group
is a duality group of dimension 1 over Zp (with
respect to profinite cohomology). It is Poincaré
duality iff it is cyclic (in which case it is ori-
entable).

More generally, these are the p-projective groups,
e.g. pG̃.

Example: The pro-p Poincaré duality groups
of dimension 2 over Zp (with respect to profi-
nite cohomology) are exactly the Demuškin
groups (pro-p one-relator groups).
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FINITENESS CONDITIONS AND
FINITE-INDEX SUBGROUPS

Let 1 �= Υ ≤ Γ such that (Γ : Υ) < ∞.

Definition: Γ has no R-torsion iff ∀g ∈ Γ, |〈g〉|
is invertible in R if |〈g〉| < ∞.

Theorem (Serre): If Γ has no R-torsion then
cdR (Γ) = cdR (Υ).

Theorem: Γ is of type FP∞ iff Υ is of type
FP∞.

Theorem: If Γ has no R-torsion then Γ is a
duality group over R iff Υ is a duality group
over R. Furthermore, ResΓΥ(DR(Γ)) � DR(Υ).

Theorem: Let Δ � Γ and let both Δ and
Γ/Δ be duality groups over R. Then Γ is a
duality group over R and

cdR (Γ) = cdR (Δ) + cdR (Γ/Δ).
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THE HURWITZ MONODROMY GROUP

Definition: Ur is the configuration space of

z ⊂ P1
C

such that |z| = r. The Hurwitz mon-

odromy group Hr is π1(Ur).

For r ≥ 3,

1 −→ Z/2Z −→ Hr −→ Mod+
r −→ 1

is exact, where Mod+
r is the orientation-preserv-

ing mapping class group of P1
C
\z (with |z| = r).

For r ≥ 4,

1 −→ Fr−2>� . . . >�F2 −→ Mod+
r −→ Sr −→ 1

is exact.

Corollary: For p > r ≥ 4, both Mod+
r and Hr

are (non-Poincaré) duality groups of dimension

r − 3 over Zp and are “good” groups.
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THE POLYGONAL GROUP

Theorem (Weigel): For prime p � | ∏r
i=1 si,

Γ(s) is an orientable Poincaré duality group of
dimension 2 over Zp and is a “good” group,
provided

r∑
i=1

(
1 − 1

si

)
> 2. (1)

Sketch of proof: Inequality (1) is equivalent
to: for every Galois cover X � P1

C
with ram-

ification prescribed by s, the genus of X is
greater than 1:

Γ(s)︷ ︸︸ ︷
H −→ X︸ ︷︷ ︸

S

−→ P1
C

where S is an orientable Poincaré duality group
of dimension 2 over Z.

(Γ(s) : S) < ∞ and the only elements in Γ(s)
having finite order are the “elliptic” elements
(the conjugates of σ1, . . . , σr). �
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A CONSEQUENCE FOR
MODULAR TOWERS

In the following commutative diagram of exact
sequences, ψ̄n : Γ(s) � Gn has a weak solution
for the top row iff it has a weak solution for
the bottom row:

0 → Mn → Gn+1 → Gn → 1
↓ ↓ ↓

0 → (Mn)Gn → pĜn → Gn → 1

where (Mn)Gn = Mn/ωFpGn
Mn.

In other words, if ᾱn ∈ H2(Gn, (Mn)Gn) corre-
sponds to the bottom row and αn to the top,
then

infψ̄n
(αn) = 0 ⇐⇒ infψ̄n

(ᾱn) = 0.

Corollary: If, above a connected component
O of H

(
n
pḠ,C

)
, ∃ connected component in

H
(
n+N
p Ḡ,C

)
for a suitably large N , then ∃ pro-

jective system of connected components above
O in the abelianized modular tower.
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EXCEPTIONAL POLYGONAL GROUPS

r∑
i=1

(
1 − 1

si

)
≤ 2

s Γ(s) Coxeter graph

Spherical triangle groups:

(n, n) Z/nZ I2(n)

(2,2, n) D2n I2(n)
⊔

A1

(2,3,3) A4 A3

(2,3,4) S4 B3

(2,3,5) A5 H3

Euclidean triangle groups:

(2,3,6) (Z × Z)>�(Z/6Z) H̃2

(2,4,4) (Z × Z)>�(Z/4Z) B̃2

(3,3,3) (Z × Z)>�(Z/3Z) Ã2

(2,2,2,2) (Z × Z)>�(Z/2Z) Ĩ1
⊔

Ĩ1

Each group is the “alternating” subgroup of
the corresponding Coxeter group.
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HURWITZ SPACES FOR r = 4

Let Ur be the configuration space of �z ∈
(
P1

C

)r

with distinct coordinates. Since

PSL2 (C) × P1
C
\ {0,1,∞} ∼−→ U4

(α , z) �→ α(0,1,∞, z)

the universal cover of U4 is the composition:

SL2 (C) × H
(Z/2Z)×F2−� U4

S4−� U4.

Since the stabilizer in SL2 (C) of a generic fiber

of U4 � U4 is (Z/2Z)2 � S4, reduction modulo

SL2 (C) yields

H
F2−� P1

C
\ {0,1,∞}

S3−� C,

a PSL2 (Z)-cover ramified over 0 and 1728,

since the final map may be taken to be j.

Thus, reduced Hurwitz spaces for r = 4 are

quotients of H by subgroups of PSL2 (Z).
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