OBSTRUCTION IN MODULAR TOWERS

Darren Semmen

http://www.math.uci.edu/~mfried/conffiles/ semmen-RedLodgeSlides.pdf

THE MAIN CONJECTURE

Throughout, G_0 is a finite group and C is an *r*-tuple of G_0 - conjugacy classes. The corresponding modular tower is:

 $\dots \longrightarrow \mathcal{H}(G_1, \mathbb{C}) \longrightarrow \mathcal{H}(G_0, \mathbb{C}) \longrightarrow U_r$

Main Conjecture: For every number field k,

 $\exists N, \forall n > N, \mathcal{H}(G_n, \mathbf{C}) (k) = \emptyset.$

<u>Theorem</u>: \forall number field k, $\not\exists$ modular tower that has a projective sequence of k-points.

Strategy:

- Characterize projective systems of components defined over a fixed number field k, i.e. understand obstruction of components.
- 2. For r = 4, show genera of (reduced) components in projective systems are unbounded.

OUTLINE OF TALK

Part I

- Reduce obstruction of Hurwitz space components to an obstruction purely in group cohomology.
- 2. Describe the canonical sequence of finite groups defining modular towers, and enumerate some of their properties that impinge on obstruction.

Part II

- 1. Review the concepts of cohomological dimension and duality groups.
- 2. Record consequences of duality for obstruction in modular towers.

PART I

HURWITZ SPACE CONSTRUCTION

If $|\mathbf{z}| = r$, $\pi_1(\mathbb{P}^1 \setminus \mathbf{z}) \simeq \langle \delta_1, \dots, \delta_r \mid \delta_1 \cdots \delta_r = 1 \rangle$. Fix a bouquet $(\delta_1, \dots, \delta_r)$. Fix an *r*-tuple C of conjugacy classes of G_n .

<u>Definition</u>: The Nielsen class Ni (G_n, \mathbf{C}) is: $\{\varphi : \pi_1(\mathbb{P}^1 \setminus \mathbf{z}) \twoheadrightarrow G_n \mid \exists \sigma \in S_r, \forall i, \varphi(\delta_i) \in C_{\sigma(i)}\}$ modulo conjugation by $\pi_1(\mathbb{P}^1 \setminus \mathbf{z})$.

<u>Definition</u>: U_r is the configuration space of $\mathbf{z} \subset \mathbb{P}^1_{\mathbb{C}}$ such that $|\mathbf{z}| = r$.

<u>Definition</u>: The Hurwitz space $\mathcal{H}(G_n, \mathbb{C})$ is the covering space corresponding to

 $\pi_1(U_r, \mathbf{z}) \to \operatorname{Out}(\pi_1(\mathbb{P}^1 \setminus \mathbf{z})) \to \operatorname{Sym}(\operatorname{Ni}(G_n, \mathbf{C})).$

OBSTRUCTION AS EMBEDDING PROBLEM

Let $\psi_n : \pi_1(\mathbb{P}^1_{\mathbb{C}} \setminus \mathbf{z}) \twoheadrightarrow G_n$ represent an element of Ni (G_n, \mathbf{C}) corresponding to $x_n \in \mathcal{H}(G_n, \mathbf{C})$. Given an exact sequence

 $\mathbf{1} \longrightarrow M_n \longrightarrow G_{n+1} \xrightarrow{\varphi_n} G_n \longrightarrow \mathbf{1},$

let $\phi_n : \mathcal{H}(G_{n+1}, \mathbb{C}) \to \mathcal{H}(G_n, \mathbb{C})$ be given by fiber-wise composition by φ_n . Then, $\phi_n^{-1}(x_n) \neq \emptyset$ iff there is a solution to the embedding problem

$$\pi_{1}(\mathbb{P}^{1}_{\mathbb{C}} \setminus \mathbf{z})$$

$$\downarrow \psi_{n}$$

$$\mathbf{1} \longrightarrow M_{n} \longrightarrow G_{n+1} \xrightarrow{\varphi_{n}} G_{n} \longrightarrow \mathbf{1}$$

that lies in Ni (G_{n+1}, \mathbf{C}) .

p-FRATTINI COVERS

<u>Definition</u>: $F \in C$ is *Frattini* iff

 $\forall X \in \mathcal{C}, \forall \phi \in \text{Hom}(X, F), \phi \text{ is an epimorphism }$.

Let $\varphi: G_{n+1} \rightarrow G_n$ be a *p*-Frattini cover (i.e. a Frattini object in the category of epimorphisms onto G_n with *p*-group kernel). Then, every weak solution to the embedding problem is surjective.

<u>Definition</u>: A conjugacy class C is a p'-c.c. iff $\forall g \in C, p \not\mid |\langle g \rangle|.$

Lemma: φ_n is a *p*-Frattini cover \Longrightarrow $\forall p'$ -c.c. $C_n \subset G_n, \exists p'$ -c.c. $C_{n+1} \subseteq \varphi_n^{-1}(C_n).$

 \therefore p'-c.c. of G_0 lift uniquely to p'-c.c. of G_n and elements of the lift have the same order.

7

A COHOMOLOGICAL OBSTRUCTION

<u>Definition</u>: Let $s = (s_1, ..., s_r) \in \mathbb{N}^r$. Then, the *polygonal group* $\Gamma(s)$ is:

 $\langle \sigma_1, \ldots, \sigma_r \mid \sigma_1^{s_1} = \ldots = \sigma_r^{s_r} = \sigma_1 \cdots \sigma_r = 1 \rangle.$

Assume $G_{n+1} \rightarrow G_n$ is *p*-Frattini and every conjugacy class in **C** is a *p*'-c.c. For each i = 1, ..., r, let $s_i = |\langle \psi_n(\delta_i) \rangle|$.

1. ψ_n has a solution lying in Ni (G_{n+1}, \mathbf{C}) iff $\overline{\psi}_n$ has a weak solution:

$$\begin{array}{c} \pi_1(\mathbb{P}^1 \setminus \mathbf{z}) \\ \downarrow \\ \mathsf{\Gamma}(\mathbf{s}) \\ \downarrow \overline{\psi}_n \end{array} \psi_n \\ 1 \longrightarrow M_n \longrightarrow G_{n+1} \xrightarrow{\varphi_n} G_n \longrightarrow 1 \end{array}$$

2. If $\alpha_n \in H^2(G_n, M_n)$ represents the exact sequence

$$1 \longrightarrow M_n \longrightarrow G_{n+1} \xrightarrow{\varphi_n} G_n \longrightarrow 1,$$

then $\overline{\psi}_n : \Gamma(\mathbf{s}) \twoheadrightarrow G_n$ has a weak solution iff the inflation $\inf_{\overline{\psi}_n}(\alpha_n)$ of α_n to $\Gamma(\mathbf{s})$ is 0.

3. Consider

$$\mathcal{H}\left(G_{n+1},\mathbf{C}\right) \xrightarrow{\phi_n} \mathcal{H}\left(G_n,\mathbf{C}\right)$$

and let \mathcal{O} be a connected component of $\mathcal{H}(G_n, \mathbb{C})$ such that $\phi_n^{-1}(\mathcal{O}) \neq \emptyset$. Then,

$$H^1(\Gamma(\mathbf{s}), M_n) \hookrightarrow \phi_n^{-1}(\mathcal{O}) \twoheadrightarrow \mathcal{O}$$

is a fibration.

<u>THE</u> <u>GRUENBERG-ROGGENKAMP</u> <u>EQUIVALENCE</u>

<u>Definition</u>: The augmentation ideal ω_{RG} is the kernel of the augmentation map, i.e.

is exact.

Two categories of covers:

 $C_{RG}(\omega_{RG}) = ((RG\text{-module covers } M \twoheadrightarrow \omega_{RG}))$

 $\mathcal{C}_{RG}(G) = \left(\left(\begin{array}{c} \text{group covers } H \twoheadrightarrow G \\ \text{with } RG\text{-module kernel} \end{array} \right) \right)$

Theorem (Gruenberg-Roggenkamp):

 $\mathcal{C}_{RG}(\omega_{RG}) \approx \mathcal{C}_{RG}(G)$

where corresponding objects have isomorphic kernels.

FRIED'S MODULAR TOWERS

 $p^{n+1}\tilde{G} \xrightarrow{\varphi_n} {}_p^n \tilde{G}$ is the projective Frattini object in $\mathcal{C}_{\mathbb{F}_p[p^n \tilde{G}]}(p^n \tilde{G})$ [unique up to isomorphism].

- 1. $\forall g_n \in {}^n_p \tilde{G}, \forall g_{n+1} \in \varphi_n^{-1}(g_n),$ $p \text{ divides } |\langle g_n \rangle| \Longrightarrow |\langle g_{n+1} \rangle| = p \cdot |\langle g_n \rangle|.$
- 2. If some conjugacy class in C is *not* a p'-c.c., \forall number field $k, \exists n, \mathcal{H} \begin{pmatrix} n \tilde{G}, C_n \end{pmatrix} (k) = \emptyset$. If C consists of p'-c.c. then ${}_p^n \tilde{G}$ is p- perfect.
- 3. <u>Definition</u>: $O_{p'}(G) = \max\{H \triangleleft G \mid p \not| |H|\}.$

If G is p-perfect then ${}^{n}_{p}\tilde{Q}$ has trivial center:

$$\begin{array}{ccccc} \underline{\mathsf{Pullback}} \colon {}^{n}_{p} \tilde{G} & \longrightarrow {}^{n}_{p} \tilde{Q} \\ & \downarrow & \Box & \downarrow \\ & G & \longrightarrow & Q = G/O_{p'}(G) \end{array}$$

We may assume ${}_{p}^{n}\tilde{G}$ is *p*-perfect and centerless.

<u>A TRICHOTOMY</u>

"Schreier formula:" $\dim_{\mathbb{F}_p} (M_{n+1}) = 1 + p^{\dim_{\mathbb{F}_p} (M_n)} \left(\dim_{\mathbb{F}_p} (M_n) - 1 \right)$

1.
$$p \not| |G| \iff \forall n, \dim_{\mathbb{F}_p} (M_n) = 0$$

 $\iff \forall n, {}_p^n \tilde{G} = G$

- 2. Theorem (Griess-Schmid): $G/O_{p'}(G) \leq (\mathbb{Z}/p^m\mathbb{Z}) > \mathbb{F}_p^*$ if and only if $\forall n, \dim_{\mathbb{F}_p} (M_n) = 1.$ Example: $G = D_{2p} \implies {}_p^n \tilde{G} = D_{2p^{n+1}}$
- 3. Otherwise, $\dim_{\mathbb{F}_p}(M_0) > 1$.

Example: $G = (\mathbb{Z}/2\mathbb{Z})^2$:

n	0	1	2
$\operatorname{dim}_{\mathbb{F}_{2}}(M_{n})$	5	129	$1+2^{136}$

LIMITATIONS OF THE INVERSE LIMIT

<u>Lemma</u>: $\lim_{p} {}^{n} \tilde{G} \simeq {}_{p} \tilde{G}$, the *universal* p-Frattini cover of G.

The construction of ${}_{p}\tilde{G}$ uses Zorn's lemma and so is non-constructive, even when G is a semidirect product.

<u>Theorem</u>: Let $G = N \rtimes H$, where $p \not| |H|$ and (|N|, |H|) = 1. Then, ${}_{p}\tilde{G} = {}_{p}\tilde{N} \rtimes H$.

Lemma: If G is a p-group then ${}_{p}\tilde{G} \simeq \hat{F}_{m}(p)$, where m is the minimal number of generators of G.

Example: Let p = 2 and $G = \mathbb{F}_8^+ \rtimes \mathbb{F}_8^*$. Then, $_2 \tilde{G} \simeq \hat{F}_3(2) \rtimes (\mathbb{Z}/7\mathbb{Z})$. However, Aut (F_3) has no 7-torsion.

CADORET'S ABELIANIZED VARIANT

 ${}_{p}\bar{G} \twoheadrightarrow G$ is the projective Frattini object in $\mathcal{C}_{\mathbb{Z}_{p}G}(G)$ [unique up to isomorphism]. Let L be its kernel.

<u>Definition</u>: ${}^{n}_{p}\bar{G} = {}_{p}\bar{G}/p^{n}L$

The argument for Fried's modular towers works also for Cadoret's abelianized variants: We may assume $p \bar{G}$ is *p*-perfect and centerless, for the purposes of the Main Conjecture.

Note that

 $0 \longrightarrow p^n L/p^{n+1}L \longrightarrow p^{n+1}\bar{G} \longrightarrow p^n\bar{G} \longrightarrow 1$ is exact and that $p^n L/p^{n+1}L \simeq M_0$.

SUMMARY OF PART I

- 1. $\alpha_n : 0 \to M_n \to G_{n+1} \to G_n \to 1$ represents a canonically defined *p*-Frattini cover.
- 2. C consists of p'-c.c.
- 3. The polygonal group $\Gamma(s)$ is $\langle \sigma_1, \ldots, \sigma_r \mid \sigma_1^{s_1} = \ldots = \sigma_r^{s_r} = \sigma_1 \cdots \sigma_r = 1 \rangle.$
- 4. $x_n \in Ni(G_n, \mathbb{C})$ corresponds to $\Gamma(s) \xrightarrow{\overline{\psi}_n} G_n$.

PART II

Throughout,

- 1. Γ is a group and R is a commutative ring,
- 2. $\mathbf{1}_{R\Gamma}$ is the $R\Gamma$ -module R on which Γ acts trivially, and
- 3. unless otherwise stated, every module is a *left* module.

FINITENESS CONDITIONS

<u>Definition</u>: Γ has cohomological dimension nover R (i.e. $\operatorname{cd}_R(\Gamma) = n$) iff $\exists R\Gamma$ -projective resolution of length n of $\mathbf{1}_{R\Gamma}$:

 $0 \longrightarrow P_n \longrightarrow \ldots \longrightarrow P_0 \longrightarrow \mathbf{1}_{R\Gamma} \longrightarrow 0.$

<u>Lemma</u>: $\operatorname{cd}_{R}(\Gamma) = n \iff$ $\forall k > n, \forall R\Gamma - \operatorname{module} M, H^{k}(\Gamma, M) = 0$ and $\exists R\Gamma - \operatorname{module} M, H^{n}(\Gamma, M) \neq 0.$

Definition: Γ is of type \mathbf{FP}_{∞} over R iff \exists resolution of $\mathbf{1}_{R\Gamma}$ by finitely generated, projective $R\Gamma$ -modules. It is of type \mathbf{FP} if this resolution may be chosen to have finite length.

<u>Lemma</u>: Γ is of type **FP** over R iff Γ is of type **FP**_{∞} over R and cd_R(Γ) < ∞ .

TOPOLOGICAL INTERPRETATION

Example: If X is a finite n-dimensional CWcomplex with contractible universal cover then $\pi_1(X)$ is of type **FP** and $\operatorname{cd}_{\mathbb{Z}}(\pi_1(X)) \leq n$.

<u>Theorem</u>: $\exists K(\Gamma, 1)$ that is the retract of a finite complex $\Longrightarrow \Gamma$ is of type FP over \mathbb{Z} .

Definition: The geometric dimension of Γ (geom dim(Γ)) is the dimension of a minimal-dimensional $K(\Gamma, 1)$.

<u>Lemma</u>: $\operatorname{cd}_{\mathbb{Z}}(\Gamma) \leq \operatorname{geom} \operatorname{dim}(\Gamma)$

Theorem: Let
$$n = \begin{cases} 3, & \text{if } \operatorname{cd}_{\mathbb{Z}}(\Gamma) = 2. \\ \operatorname{cd}_{\mathbb{Z}}(\Gamma), & \text{otherwise.} \end{cases}$$

Then $\exists n$ -dimensional $K(\Gamma, 1)$. If Γ is finitely presented and of type **FP** then this may be chosen to be the retract of a finite complex.

COHOMOLOGY FOR PROFINITE GROUPS

- 1. Use the completed group algebra $\mathbb{Z}_p[[\Gamma]]$ instead of $\mathbb{Z}_p\Gamma$ (i.e. $R = \mathbb{Z}_p$).
- 2. Modules are topological and Γ acts continuously on them.
- 3. The Pontryagin category $\mathfrak{B}_p(\Gamma)$ of modules is the union of

 $\mathfrak{D}_p(\Gamma) =$ discrete torsion modules $\mathfrak{C}_p(\Gamma) =$ profinite modules

Pontryagin duality $(\text{Hom}_{\mathbb{Z}_p}(\cdot, \mathbb{Q}_p/\mathbb{Z}_p))$ is a contravariant functor on $\mathfrak{B}_p(\Gamma)$.

 A discrete subgroup of a profinite group is "good" iff its cohomology groups are isomorphic to those of its ambient group.

DUALITY GROUPS

<u>Definition</u>: Γ is a duality group of dimension n over R iff $\operatorname{cd}_R(\Gamma) = n$, Γ is of type FP, and

$$H^{k}(\Gamma, R\Gamma) = \begin{cases} 0, & k \neq n \\ \text{flat } R\text{-module}, & k = n \end{cases}$$

<u>Definition</u>: If Γ is a duality group of dimension n over R then $D_R(\Gamma) = H^n(\Gamma, R\Gamma)$ is the dualizing module; this is a right $R\Gamma$ -module.

<u>Theorem</u>: If Γ is a duality group of dimension n over R then, $\forall k$, \exists natural isomorphism of functors

$H^{k}(\Gamma, *) = H_{n-k}(\Gamma, D_{R}(\Gamma) \otimes_{R} *),$

compatible with the long exact sequences, and where Γ acts diagonally on the tensor product.

POINCARÉ DUALITY GROUPS

<u>Theorem</u>: X is a closed *n*-dimensional manifold with contractible universal cover $\Longrightarrow \pi_1(X)$ is a duality group of dimension *n* over \mathbb{Z} .

Definition: A duality group Γ over R is a *Poincaré duality group* iff $D_R(\Gamma) \simeq R$ as an R-module.

Definition: A Poincaré duality group Γ over R is *orientable* iff $D_R(\Gamma) \simeq \mathbf{1}_{R\Gamma}$ as a right $R\Gamma$ -module.

<u>Corollary</u>: If Γ is an orientable Poincaré duality group of dimension n over R then, $\forall k$, \exists natural isomorphism of functors:

 $H^k(\Gamma, *) = H_{n-k}(\Gamma, *)$

<u>Remark</u>: It is not known whether existence of an *n*-dimensional $K(\Gamma, 1)$ - manifold characterizes Poincaré duality groups over \mathbb{Z} .

BASIC EXAMPLES

Example: A finitely generated free group is a duality group of dimension 1 over \mathbb{Z} . It is Poincaré duality iff it is cyclic (in which case it is orientable).

Example: A finitely generated free pro-p group is a duality group of dimension 1 over \mathbb{Z}_p (with respect to profinite cohomology). It is Poincaré duality iff it is cyclic (in which case it is orientable).

More generally, these are the p-projective groups, e.g. $_{p}\tilde{G}$.

Example: The pro-p Poincaré duality groups of dimension 2 over \mathbb{Z}_p (with respect to profinite cohomology) are exactly the Demuškin groups (pro-p one-relator groups).

FINITENESS CONDITIONS AND FINITE-INDEX SUBGROUPS

Let $1 \neq \Upsilon \leq \Gamma$ such that $(\Gamma : \Upsilon) < \infty$.

<u>Definition</u>: Γ has no R-torsion iff $\forall g \in \Gamma$, $|\langle g \rangle|$ is invertible in R if $|\langle g \rangle| < \infty$.

Theorem (Serre): If Γ has no R-torsion then $\operatorname{cd}_R(\Gamma) = \operatorname{cd}_R(\Upsilon)$.

<u>Theorem</u>: Γ is of type FP_{∞} iff Υ is of type FP_{∞} .

<u>Theorem</u>: If Γ has no R-torsion then Γ is a duality group over R iff Υ is a duality group over R. Furthermore, $\operatorname{Res}_{\Upsilon}^{\Gamma}(D_R(\Gamma)) \simeq D_R(\Upsilon)$.

<u>Theorem</u>: Let $\Delta \lhd \Gamma$ and let both Δ and Γ/Δ be duality groups over R. Then Γ is a duality group over R and

 $\operatorname{cd}_{R}(\Gamma) = \operatorname{cd}_{R}(\Delta) + \operatorname{cd}_{R}(\Gamma/\Delta).$

THE HURWITZ MONODROMY GROUP

<u>Definition</u>: U_r is the configuration space of $\mathbf{z} \subset \mathbb{P}^1_{\mathbb{C}}$ such that $|\mathbf{z}| = r$. The Hurwitz monodromy group H_r is $\pi_1(U_r)$.

For $r \geq 3$,

 $1 \longrightarrow \mathbb{Z}/2\mathbb{Z} \longrightarrow H_r \longrightarrow \mathsf{Mod}_r^+ \longrightarrow 1$

is exact, where Mod_r^+ is the orientation-preserving mapping class group of $\mathbb{P}^1_{\mathbb{C}} \setminus \mathbf{z}$ (with $|\mathbf{z}| = r$).

For $r \ge 4$,

 $1 \longrightarrow F_{r-2} \rtimes \ldots \rtimes F_2 \longrightarrow \mathsf{Mod}_r^+ \longrightarrow S_r \longrightarrow 1$

is exact.

<u>Corollary</u>: For $p > r \ge 4$, both Mod⁺_r and H_r are (non-Poincaré) duality groups of dimension r-3 over \mathbb{Z}_p and are "good" groups.

THE POLYGONAL GROUP

Theorem (Weigel): For prime $p \not| \prod_{i=1}^r s_i$, $\Gamma(s)$ is an orientable Poincaré duality group of dimension 2 over \mathbb{Z}_p and is a "good" group, provided

$$\sum_{i=1}^{r} \left(1 - \frac{1}{s_i} \right) > 2. \tag{1}$$

<u>Sketch of proof</u>: Inequality (1) is equivalent to: for every Galois cover $X \to \mathbb{P}^1_{\mathbb{C}}$ with ramification prescribed by s, the genus of X is greater than 1:

where \mathbb{S} is an orientable Poincaré duality group of dimension 2 over \mathbb{Z} .

 $(\Gamma(s) : \mathbb{S}) < \infty$ and the only elements in $\Gamma(s)$ having finite order are the "elliptic" elements (the conjugates of $\sigma_1, \ldots, \sigma_r$). \Box

A CONSEQUENCE FOR MODULAR TOWERS

In the following commutative diagram of exact sequences, $\overline{\psi}_n : \Gamma(s) \rightarrow G_n$ has a weak solution for the top row iff it has a weak solution for the bottom row:

where $(M_n)_{G_n} = M_n / \omega_{\mathbb{F}_p G_n} M_n$.

In other words, if $\bar{\alpha}_n \in H^2(G_n, (M_n)_{G_n})$ corresponds to the bottom row and α_n to the top, then

 $\inf_{\bar{\psi}_n}(\alpha_n) = 0 \iff \inf_{\bar{\psi}_n}(\bar{\alpha}_n) = 0.$

<u>Corollary</u>: If, above a connected component \mathcal{O} of $\mathcal{H}\begin{pmatrix} n\bar{G}, \mathbf{C} \end{pmatrix}$, \exists connected component in $\mathcal{H}\begin{pmatrix} n+N\bar{G}, \mathbf{C} \end{pmatrix}$ for a suitably large N, then \exists projective system of connected components above \mathcal{O} in the *abelianized* modular tower.

EXCEPTIONAL POLYGONAL GROUPS

$$\sum_{i=1}^r \left(1 - \frac{1}{s_i}\right) \le 2$$

S	$\Gamma(s)$	Coxeter graph	
Spherical triangle groups:			
(n,n)	$\mathbb{Z}/n\mathbb{Z}$	$I_2(n)$	
(2, 2, n)	D_{2n}	$I_2(n) \bigsqcup A_1$	
(2,3,3)	A_{4}	A_3	
(2,3,4)	S_{4}	B3	
(2,3,5)	A_5	H ₃	
Euclidean triangle groups:			
(2,3,6)	$(\mathbb{Z} \times \mathbb{Z}) ightarrow (\mathbb{Z}/6\mathbb{Z})$	$ ilde{H}_2$	
(2,4,4)	$(\mathbb{Z} \times \mathbb{Z}) ightarrow (\mathbb{Z}/4\mathbb{Z})$	\tilde{B}_2	
(3,3,3)	$(\mathbb{Z} \times \mathbb{Z}) ightarrow (\mathbb{Z}/3\mathbb{Z})$	$ ilde{A}_2$	
(2,2,2,2)	$(\mathbb{Z} imes \mathbb{Z}) ightarrow (\mathbb{Z}/2\mathbb{Z})$	$\widetilde{I}_1 \bigsqcup \widetilde{I}_1$	

Each group is the "alternating" subgroup of the corresponding Coxeter group.

<u>HURWITZ SPACES FOR r = 4</u>

Let U^r be the configuration space of $\vec{z} \in \left(\mathbb{P}^1_{\mathbb{C}}\right)^r$ with distinct coordinates. Since

 $\begin{array}{rcl} \mathsf{PSL}_2(\mathbb{C}) & \times & \mathbb{P}^1_{\mathbb{C}} \setminus \{0, 1, \infty\} & \xrightarrow{\sim} & U^4 \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ &$

$$\mathsf{SL}_2(\mathbb{C}) \times \mathbb{H} \xrightarrow{(\mathbb{Z}/2\mathbb{Z}) \times F_2} U^4 \xrightarrow{S_4} U_4.$$

Since the stabilizer in $SL_2(\mathbb{C})$ of a generic fiber of $U^4 \rightarrow U_4$ is $(\mathbb{Z}/2\mathbb{Z})^2 \triangleleft S_4$, reduction modulo $SL_2(\mathbb{C})$ yields

$$\mathbb{H} \xrightarrow{F_2} \mathbb{P}^1_{\mathbb{C}} \setminus \{0, 1, \infty\} \xrightarrow{S_3} \mathbb{C},$$

a $PSL_2(\mathbb{Z})$ -cover ramified over 0 and 1728, since the final map may be taken to be j.

Thus, reduced Hurwitz spaces for r = 4 are quotients of \mathbb{H} by subgroups of $PSL_2(\mathbb{Z})$.