Arithmetic properties of Moduli spaces for \(p \)-etale G-covers and torsion on abelian varieties

Anna Cadoret

Arithmetic Galois Theory and Moduli Spaces

Abstract

Fix a finite group \(G \) and a prime \(p \) dividing \(|G| \). A G-cover \(X \to \mathbb{P}^1 \) with group \(G \) is said to be \(p \)-etale if it factors through an etale G-cover \(X \to X_0 \) with group a \(p \)-subgroup \(P \) of \(G \).

Let \(C \) be the inertia canonical invariant of \(X \to \mathbb{P}^1 \), \(g = g(G, C) \) be the genus of \(X \) and \(g_0 = g(P, C) \) be the genus of \(X_0^{ab} \). Write \(H_{g, C} \) (resp. \(H_{g_0}^{ab} \)) for the coarse moduli space of \(G \)-curves with genus \(g \) (resp. \(g_0 \)) whose resulting G-cover has group \(G \) and inertia canonical invariant \(C \) (resp. is etale with group \(P^{ab} \)). There is a natural morphism \(H_{g, C} \to H_{g_0}^{ab} \) corresponding to the functor sending \(X \to \mathbb{P}^1 \) to \(X \to X_0^{ab} \) and which, composed with the Torelli morphism, yields a morphism \(H_{g, C} \to A_{g_0}^{ab} \).

Rational points on \(H_{g, C} \) are connected to torsion on abelian varieties in isogeny classes of rational points in the image of \(H_{g, C} \to A_{g_0}^{ab} \). This observation yields new insights in the theory of modular towers. For instance, it shows that Fried’s conjecture for modular towers is a special case of the strong torsion conjecture for abelian varieties or that there is no projective system of \(\mathbb{Q}^{ab} \) rational points along modular towers.

After exposing these results, I will focus on dihedral towers and related conjectures. I will prove the dihedral conjecture over \(\mathbb{Q}^{ab} \) and I will give a transcendental uniformization of the 3-dimensional dihedral tower, obtaining in particular that the \(n \)th level of this tower is of general type for \(n \) large enough.