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Abstract. Our basic question: Restricting to covers of the sphere by a com-
pact Riemann surface of a given type, do all such compose one connected
family? Or failing that, do they fall into easily discerned components? The
answer has often been “Yes!,” figuring in such topics as the connectedness of
the moduli space of curves of genus g (geometry), Davenport’s problem (arith-
metic) and the genus 0 problem (group theory). One consequence: We then
know the definition field of the family components.

Our connectedness story considers the existence of unramified p-group
extensions attached to a compact Riemann surface cover of the sphere. This
translates to existence of a sequence of spaces – a M(odular) T(ower) whose
levels correspond to an integer k ≥ 0. Connectedness results ensure certain
cusp types lie on the tower level boundaries. One cusp type – conjoining papers
of Harbater and Mumford – guarantees the full sequence of these spaces (and
so the group extensions) are nonempty. Another, called a p cusp, contributes
to the Main MT Conjecture: When all tower levels are defined over some fixed
number field K, high tower levels have general type and no K points.

Modular curve towers have both cusp types, and no others. General MTs
can have another cusp type, though these often disappear at high levels, pre-
serving our expectations. This happens in examples of Liu-Osserman, allowing
us to prove the Main Conjecture holds in an infinity of cases. A combina-
torial description of cusps enables a different type of group theory–modular
representations–than used by representation and automorphic function people.
A graphical device — the sh-incidence matrix, coming from a natural pairing
on cusps —simplifies the display of results. A lifting invariant — used by the
author and Serre — appears often to explain both components and cusps.

The S(trong) T(orsion) C(onjecture) — bounding the Q torsion on
abelian varieties of a fixed dimension — implies the Main Conjecture, giving
it a R(egular) I(nverse) G(alois) P(roblem) interpretation. Any success (as
given here) or failure of the Main Conjecture, can use this cusp description as
an explicit test of the STC.
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1. Framework for the problem

§1.1 describes the main results as a by-product of understanding cusps. We use
cusps (and their types) — introduced in [Fr06a, §3.2] — to show how they quickly
produce connectedness results, and then lead the way to many applications. They
do so by giving group/geometric character to components.

1.1. A brief overview. Let G be p-perfect group (§1.3.3) and let C be p′

conjugacy classes of G (multiplicity of the appearance of conjugacy classes matters).
Each such (G,C, p) produces a projective system of algebraic varieties {Hk}∞k=0 that
is still mysterious to many, though written on plenty. A MT is a projective system
of absolutely irreducible components on {Hk}∞k=0.
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1.1.1. Comparison with modular curves. Rational points on each Hk corre-
spond to regular realizations of a Frattini covering group Gk → G with p-group
kernel (of exponent pk). One well-known case is where the MT corresponds to
dihedral groups {Dpk+1}∞k=0 (p odd) and the conjugacy classes are four repetitions
of the involution (order 2) class: the tower of modular curves (minus their cusps)
{Y0(pk+1}∞k=0. Components at level k correspond to (Artin or Hurwitz) braid or-
bits on a combinatorial object —Nielsen class attached to (Gk,C, p) (§1.3). To
understand, however, the general level k, it is necessary to nail level 0 (G0 = G).

Sometimes a MT level will have nothing over it at the next level (an obstructed
level; some tower levels may even be empty) and sometimes a MT level has several
components (even at level 0). Ex. 2.18 and Ex. 6.2 give, respectively, infinitely
many examples of each, including distinctions between absolute and inner spaces.

Being obstructed is not modular curve-like. Yet, effective homological results
show precisely when there is obstruction (Prop. 2.15). So the problem of obstruc-
tion — both interesting and controllable — is transparent to our lifting invariant
technique. These are especially effective when p = 2 using Invariance Prop. 2.12.
§2.1.3 reformulates the description of MTs, as a problem in classifying p group ex-
tensions of any finite p-perfect group. The p-perfect condition (resp. p′ conjugacy
classes) is necessary for any level (resp. any level past the 0th) to be nonempty.

From now on, assume a MT refers to a projective system with all levels
nonempty. We say a MT is over a field K when all levels (and maps between
them) are defined over K. The Main Conjecture for these expresses a modular
curve-like property. Now take K to be a fixed number field. The weakest version of
the Main Conjecture says that high tower levels have no K points. This is trivial
unless the MT has definition over a number field.

1.1.2. The role of cusps. The cusp types from §2.3.2 that naturally generalize
those on modular curves are the g-p′ cusps and the p cusps. Example: The two
cusps on X0(p) have width p and width 1. In our identifications, the former is a
H(arbater)-M(umford) cusp (that happens to be a p cusp) and the latter, the shift
of the former, is a very special g-p′ cusp.

As Thm. 2.17 shows, that there might be no p cusps at any level of a MT is
what makes the Main Conjecture hard. Mysterious components are the culprit in
detecting p cusps. Appropriate connectedness results allow recognizing one of MT
levels by distinguishing cusps (on the boundaries of their compactifications). To
show how this works, we establish the Main Conjecture for infinitely many cases
where G is an alternating group and p = 2.

§1.2 lists results on connected spaces leading to proving the Main Conjecture.
§1.3 reviews the combinatorial framework. By proving this for abelianized MT s
(§2.1) we get a stronger result. Also, the abelianized towers have properties more
akin to modular curve towers and a more direct connection to the Strong Torsion
Conjecture. For example, existence of a nonempty abelianized tower is a simpler
test than for general towers (Prop. 2.15).

The proofs come clear from a list of sh-incidence matrix Tables; based on the
cusp pairing on reduced Hurwitz spaces introduced in [BF02, §2.10]. Tables 2–
5 display our main theorem (Props. 4.9 and 4.10). These make all components,
cusp-types and elliptic ramification contributions transparent. The remaining sh-
incidence tables show the difference between assuming spaces of genus 0 covers (say,
in the Liu-Osserman examples) and the case of higher genus covers.
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1.2. Spaces whose components appear here. Liu and Osserman [LOs06,
Cor. 4.11] consider all connected covers, ϕ : X → P1

z of the Riemann sphere P1
z

(uniformized by z) with the genus gX of X equal 0, and the degree deg(ϕ) = n,
having r specific pure-cycles as branch cycles. Stipulate one of their examples
with the pure-cycle lengths (with no loss) as ddd = (d1, . . . , dr). For many purposes,
assume d1 ≤ d2 ≤ · · · ≤ dr. Their result: The space of such covers form one
connected family Habs

ddd . Here, abs denotes absolute equivalence (the usual notion,
see §2.1.1) of covers in the family.

1.2.1. Liu-Osserman examples. Compare the Liu-Osserman genus 0 result, with
[Fr06b, Thm. A and B] where the pure-cycles are all 3-cycles, but gX is any fixed
non-negative integer. Here, if the genus exceeds 0, the spaces have exactly two
components, distinguishable using our main tool, the spin invariant (related in this
case to Riemann’s half-canonical classes).

The spin invariant has many uses. Two used here: deciding when a none
2(= p) cusp has above it only 2 cusps; and formulating a natural umbrella result
containing both [LOs06] and [Fr06b] (§6.3.3). Our main results apply when all
the pure-cycles have odd order and r = 4. Then, G = An and, with no loss, the
pure-cycle lengths are d1 ≤ d2 ≤ d3 ≤ d4 with

∑4
i=1 di − 1 = 2(n − 1). We redo,

while generalizing, part of their results for two reasons.

(1.1a) [LOs06, Cor. 4.11] is on absolute equivalence, but the Inverse-Galois
and modular-curve-comparison applications are on inner equivalence
of Galois covers, and results for this case are related but sometimes
different (compare n ≡ 1 mod 8 with n ≡ 5 mod 8 in Prop. 4.1).

(1.1b) Redoing their hardest case, r = 4, using our combinatorial description
of cusps shows quickly its advantage (Table 1 of Lem. 4.2).

When p = 2, Ex. 3.11 applies Invariance Prop. 2.12 to describe exactly which
of the Liu-Osserman examples are the bottom level of at least one abelianized MT.
When p �= 2 is a prime dividing n!/2 (but none of the di s), then each Liu-Osserman
example is the bottom level of at least one MT.

Again, §6.5 examples show if you drop the condition that these be spaces of
genus 0 covers, the story is much richer. Yet, the lifting invariant tells much —
though, not all — of the tale.

1.2.2. Connecting to the RIGP. Each space in §1.2.1 plays a role in the R(egular)
I(nverse) G(alois) P(roblem), another modular curve-like property. I explain.

Spaces H = Hin attached to inner equivalence and a centerless group G come
with a uniquely defined Galois cover Ψ : Y → Hin ×P1

z, with group G. Attached to
a K point ppp ∈ H is the fiber Ψppp : Yppp → ppp × P1

z. This is a geometric cover attached
to a K regular realization of G.

Assume p is an odd prime. For modular curves, an old story gives an RIGP
way to look at the K rational points of {Y1(pk+1)}∞k=0, the space parametrizing
elliptic curves with a pk+1 division point up to isomorphism. Any ppp ∈ Y1(pk+1)(K)
corresponds to a regular realization of the dihedral group Dpk+1 of order 2pk+1

with four involution (order 2) branch cycles ([Fr78, §4], for notation §1.3). In fact,
the whole Strong Torsion Conjecture for hyperelliptic Jacobians is tantamount to
considering: Where are involution realizations of dihedral groups?

Mazur’s Theorem describes explicitly the possible orders of Q torsion points
on elliptic curves over Q. One version is that you need at least six branch points
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to find a Q regular realization of Dm if m is odd and exceeds 7 [DFr94, Thm. 5.1]
(§7.2 gives the context more dramatically and generally).

An action of PGL2(C) on H′
k produces a reduced space H′

k/PGL2(C) def= H′rd
k .

A K point on H′
k produces a K point on H′rd

k , a complex analytic space of dimension

r − 3. Let H̄rd
k be the unique (projective) normalization of Pr/PGL2(C) def= J̄r in

the function field of Hrd
k .

Assume G0 = G is centerless. As it is p-perfect, then so is Gk centerless for all
k ≥ 0 [BF02, Prop. 3.21]. So, even one Q point ppp (not a cusp) on H′

k (a manifold)
gives a geometric cover ϕppp : Xppp → P1

z over Q with group Gk (§1.2.2). Running
over β ∈ PGL2(Q) the covers β ◦ ϕppp : Xppp → P1

z give ∞-ly many inner inequivalent
covers, with group Gk, over Q. These, however, are all reduced equivalent.

1.2.3. Main Conjecture(s). For any MT, {Hk}∞k=0, over a number field K, we
expect properties like those of the standard modular curve tower. For example, high
levels should have no K points; one, of two, aspects of the Main MT Conjecture.

(1.2a) Arithmetic MC: For any number field K, H′rd
k (K) = ∅ for k >> 0.

(1.2b) Geometric MC: For k >> 0, H̄′rd
k has general type.

When r = 4 the reduced levels are curves, and (1.2a) is equivalent to (1.2b). In
this case, the failure of the Main Conjecture has an explicit statement using p cusps
(Prop. 2.8). For many Nielsen classes we cannot be certain that ppp ∈ H′rd

0 (K) is
the image of some ppprd ∈ H′

0(K). Still, (1.2b) holds if (and only if) the statement
replacing H′rd

k by H′
k holds. Further, it holds if H′rd

k∗ (K) is finite for some k∗.
[Cad05b] has shown the S(trong) T(orsion) C(onjecture) (§7.3 lists various

versions) from abelian varieties implies a stronger version of (1.2a). For that, replace
Gk by Gab

k
def= Gk/Uk with Uk the commutator subgroup of ker(Gk → G): This we

call the Arithmetic MCab, with a similar decoration for the Geometric MCab. It
clearly implies (1.2a).

For the prime p = 2, when even one of the di is even, the monodromy group
of a cover in the Nielsen class is Sn, which is not 2-perfect. So, to to satisfy the
2-perfect condition, a Liu-Osserman example must have all the di s odd.

Congruence subgroups of PSL2(Z) appear in the standard definition of modular
curves. This make a simple arithmetic matter for finding their genuses. When r = 4,
the (reduced) MT levels are defined by finite index subgroups of PSL2(Z), though
they are rarely congruence subgroups and certainly not in the Liu-Osserman cases.
Still, the (compactified) levels have a genus (usually different from that of the curves
their points parametrize). The MCab holds — Arithmetic (for all number fields K)
or Geometric — if the and only if some tower level genus exceeds 1.

When all the di s are odd, then G = An for some n. For the most refined
results, we take the subcase the di are equal: C = C( n+1

2 )4 is four repetitions of an
n+1

2 -cycle (odd only if n ≡ 1 mod 4). Props. 4.9 (n ≡ 5 mod 8) and 4.10 (n ≡ 1
mod 8) prove the Arithmetic MCab as a corollary of computing the genuses of the
reduced level 0 Hurwitz spaces. A graphic understanding of these very different
cases — the first proven cases of the Main Conjecture for infinitely many distinct,
non-modular curve, examples — comes from explicit sh-incidence matrices.

The case n ≡ 1 mod 8 has special interest because there are two braid orbits.
That is H(An,C( n+1

2 )4)
in,rd is not connected. The explanation does not come from

the lifting invariant. Rather it is a case of the outer automorphism of An taking one
component to the other. So, here is an infinite set of cases with the covering group
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G = An simple, where it is not immediately obvious what are the definition fields of
these two components.§6.4 shows, in fact, the two components are conjugate over
a natural quadratic extension of Q.

The case n ≡ 5 mod 8, where H(An,C( n+1
2 )4)

in,rd has just one component,
generalizes level 0 of the major example (n = 5) that guided so much of [BF02].
The difference: [BF02, §9] went deeply into level 1 — even figuring the sh-incidence
matrix for it. While here we manage just enough about level 1 in an infinity of
cases to draw modular curve parallels and get the Main Conjecture.

1.2.4. Results phrased as locating p cusps. None of the H(An,C( n+1
2 )4)

in,rd

spaces has a 2 cusp, though each MT over them does have a 2 cusp by level 1
(Cor. 5.1). We expand on the §1.1.2 discussion on modular curve cusps. Cusps on
a MT form a projective tree, and one way to tackle the nature of the tree is to
compare it with the cusp tree of modular curves. For that purpose we call the type
of subtree that arises over the long cusp of X̄0(p) a p-Spire.

For the cases n ≡ 5 mod 8, the H-M cusps at level 1 are the base of a p-Spire
(Cor. 5.2), a property that is stronger than any of the Main Conjectures, at least
when r = 4. Considering the existence of a p-Spire is meaningful for any r ≥ 4.

§6.1 gives an approach to proving the Main Conjectures for Liu-Osserman ex-
amples for primes different from 2. While we are certain this technique will work, it
misses a piece of modular representation theory at this time. §6.2, however, shows
it working for (A5,C34) and the prime 5. Finally, §6.3 remarks on other phenomena
appearing in proving Main Conjecture for the rest of the Liu-Osserman examples
not completed here. We felt it time to regroup before taking what we we’d learned
here to a new stage in understanding the Main MT conjectures.

1.3. Using Classical Generators of π1(P1
z \ zzz, z0). Let ϕ : X → P1

z be
a (nonconstant) function on a compact Riemann surface X. Then, ϕ defines a
number of quantities:

(1.3a) A group G for a minimal Galois closure cover ϕ̂ : X̂ → P1
z: Automor-

phisms (Aut(X̂/P1
z)) of X̂ commuting with ϕ̂;

(1.3b) Unordered branch points zzz = {z1, . . . , zr} ∈ Ur;
(1.3c) Conjugacy classes C = {C1, . . . ,Cr} in G; and
(1.3d) A Poincaré extension of groups:

ψϕ̂ : Mϕ̂ → G with kerψ
def= ker(Mϕ̂ → G) = π1(X̂).

Further, (1.3a) produces a permutation representation of G, by its action on the
cosets of Aut(X̂/X) in Aut(X̂/P1

z). Here the coset of the identity is given canoni-
cally, but there is no natural labeling of the other cosets.

1.3.1. Homomorphisms and Nielsen class elements. If we put an ordering on zzz,
then following App. A, we may consider a set of classical generators of π1(P1

z \zzz, z0).
This ordering doesn’t assume Ci is the conjugacy class attached to zi. Denote their
isotopy class as r generators of the fundamental group by ḡgg = (ḡ1, . . . , ḡr). Refer
to their images in Mϕ̂ also as ḡgg, and their images in G by (g1, . . . , gr) = ggg.

Then, ggg is in the Nielsen class of (G,C):

Ni(G,C) def= {ggg ∈ C | 〈ggg〉 = G, Π(ggg) def= g1 · · · gr = 1}.
In English: The set consisting of ordered r-tuple generators of G having product
one, and falling (in some order, multiplicity counted) in the conjugacy classes C.
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Given classical generators ḡgg = (ḡ1, . . . , ḡr) of Mϕ, an element of Ni(G,C) is
exactly what we need to form a canonical map Mϕ̂ → G, by mapping ḡi → gi,
i = 1, . . . , r. The notation Mḡgg applied to Mϕ̂ is useful, and then it is convenient to
rename ψϕ̂ to ψḡgg,ggg.

The classical generators of π1(P1
z \ zzz, z0) form a homogeneous space for the

action of the combinatorial Hurwitz monodromy group. We use the phrase braid
equivalence of these homomorphisms by this action (§2.1.5). When there is just
one such equivalence class, we call the space of such homomorphisms connected.
This corresponds to an actual Hurwitz space H(G,C) being connected.

Actually, there are four types of Hurwitz space that appear in this paper at-
tached to any Nielsen class: H(G,C)in, H(G,C)abs (attached to a permutation
representation of G and their reduced versions H(G,C)in,rd and H(G,C)abs,rd.
Each corresponds to a further equivalence on Ni(G,C) (§2.1.5). Connectedness of
H(G,C)in and H(G,C)in,rd (resp. H(G,C)abs and H(G,C)abs,rd) are equivalent,
though we emphasize cusps, and their combinatorial counterparts, that belong to
the reduced spaces. Significant cases, however, are that connectedness absolute
spaces does not imply connectedness of their associatedinner space.

App. A summarizes the literature on this correspondence and these spaces.
Most of this paper is about the braid orbits; the translation to applications is by
quoting results already in print. Applications depend on our figuring from this
useful properties of the Hurwitz space, or their reduction by an action of PSL2(C)
so it has dimension r − 3. Also, applications don’t start from one group or one
Nielsen class. Rather, initial data about some problem produces a collection of
groups that could be the monodromy group of a cover solving the problem. The
following is the meaning of the phrase:

The R(egular)I(nverse)G(alois)P(roblem) holds for G:

There is a geometric Galois cover of the sphere with group G, with all its automor-
phisms defined over Q. Such a regular realization of G corresponds to a rational
point on an inner Hurwitz space associated to some Nielsen class Ni(G,C) for some
rational union of conjugacy classes in G (§7.2). Part of the point of this theory
is that if a Hurwitz space has no rational points, then there will be no regular
realizations corresponding to those conjugacy classes.

§7.3 reminds that MTs result from a ramification restriction on the RIGP,
akin to, but far less restrictive than that used in number fields for the Fontaine-
Mazur Conjecture. The Main Conjecture thus says, for each p-perfect finite group,
there are p-perfect covers of it for which require increasingly unbounded numbers
of conjugacy classes to produce any regular realization of them.

1.3.2. Three expositional sections. There is an html definition file for the RIGP:
http://www.math.uci.edu/˜ mfried → Sect. I.b. → Definitions: Arithmetic of cov-
ers and Hurwitz spaces → * The R(egular) I(nverse) G(alois) P(roblem): RIGP.html.

Similarly for an overview of MTs:
Outline of how Modular Towers generalizes modular curve towers:
http://www.math.uci.edu/˜ mfried → Sect. I.a. → Articles: Generalizing modular
curve properties to Modular Towers → Item #1 mt-overview.html.

Hurwitz spaces are abstract. They have algebraic descriptions, though it is
inefficient to rely on their equations. For G a p-perfect group, you can’t get their
Hurwitz spaces from Kummer theory; they come from nonabelian covers of P1. The
essential data about Hurwitz spaces we use comes through connectedness results.
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We start with r = 4 (supported by r = 3), where the reduced Hurwitz spaces
are curves (with natural compactifications) that are upper-half plane quotients and
j-line covers.

Properties come from knowing about cusps through the braid class of our ho-
momorphisms ψḡgg,ggg. When the spaces are connected, or their components separate
by discrete invariants, we know their definition fields.

Example conclusion: In Davenport’s problem (§7.1), there are no nontrivial
pairs of indecomposable polynomials over Q with the same value sets modulo all
but finitely many primes. There are, however, class calls. For several Nielsen classes,
representing a finite number of possible degrees, there are families of polynomial
pairs (in particular, genus 0 covers) that do give the same values over a finite
extension of Q. These families have each more than one connected component,
with none defined over Q. A cover gives a bundle (in this case over P1

z. Then, each
Hurwitz space component attached to a given Nielsen class in Davenport’s problem,
defines the same family of bundles over Q.

Second example: §7.2 reminds of the Conway-Fried-Parker-Völklein framework
for connectedness results. A rough statement for that: If you repeat conjugacy
classes sufficiently , you know explicitly the connected components (and their def-
inition fields) of the Hurwitz spaces (absolute or inner) of covers of the sphere in
a given Nielsen class Ni(G,C). Our examples engage expectations from the word
sufficiently , by considering imformation embodied in cusps.

This applied to show how to find Nielsen classes for which the corresponding
inner Hurwitz space has a connected component with definition field Q. They must
exist, and some of them must have Q points, for each centerless group G if the RIGP
is correct. Still, the version of the Conway-Fried-Parker-Voelklein result in [FV92]
required unknown large values of r. It applied to create presentations of GQ, the
absolute Galois group of Q, the first, and still, only such proven presentations. The
version of CFPV in §7.2 allows us to state connnectedness problems very close to
the Liu-Osserman examples that reflect on all aspects of this paper, especially how
explicitly lifting invariants tie to connectedness results.

Finally, §7.3 comments on Cadoret’s observation that the S(trong) T(orsion)
C(onjecture) implies the abelianized version of the Main Conjecture, more evidence
that connected results help solve practical problems.

1.3.3. Notation. Group notation: Denote the cyclic group of order N by Z/N .
For any finite group G, with conjugacy classes C = {C1, . . . ,Cr}, denote the least
common multiple of orders of elements in C by NC. We say G is p-perfect if p||G|,
but there is no surjective homomorphism G → Z/p.

Equation notation: If V is a (quasi-projective) algebraic variety (open subspace
of a projective variety), and K is a field, then V (K) denotes the points on V with
coordinates in K.

Our main results are on pure-cycle Nielsen classes. A pure-cycle conjugacy
class in G ≤ Sn is one in which each element in the class has exactly one nontrivial
(length greater than 1) disjoint cycle. Some displays simplify by using the notation
xi,j for (i i+1 · · · j). This is assuming 1 ≤ i < j ≤ n. The inverse of this element
is x−1

i,j = xj,i. So, long as we don’t cycle around mod n, the notation for inverse
should cause no problems. We use the following easy lemma often.
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Lemma 1.1. Consider xa,b with a < b with b − a ≡ 0 mod 4 (resp. ≡ 2
mod 4). Then, (b a)(b−1 a+1) · · · (b′ a′) with (b′ a′) = (b− b−a−2

2 a+ b−a−2
2 ), an even

(resp. odd) permutation, conjugates xa,b to its inverse. It has parity (−1)
b−a
2 .

Also, if b − a + 1 ≡ 0 mod 4 (resp. ≡ 2 mod 4) then (b a)(b−1 a+1) · · · (b′ a′)
with (b′ a′) = (b− b−a−1

2 a+ b−a−1
2 ) is even (resp. odd) permutation, conjugates xa,b

to its inverse. It has parity (−1)
b−a+1

2 .

We often use the acronym R-H (App. A) for the Riemann-Hurwitz formula
given by the genus of a cover of a sphere from a branch cycle description for it.

2. Tools and MT definitions

§2.1 introduces the braid group and certain of its quotients and subgroups, in
the service of a natural equivalence on group extensions. The definitions of MTs
and their abelianization appear here. §2.2 has the combinatorial definition of cusps
that appears in the statement of the paper’s precise results. Their relation to the
Main Conjecture is in §2.3.

§2.4 has the main homological tool, the spin lifting invariant and how it applies
to deciding braid orbits and existence of MTs. Finally, §2.5 introduces the precise
Nielsen classes for our main result. Here there are examples of how to apply the
lifting invariant for information on cusps at the next level.

2.1. Braid actions and MTs. We start with braid actions on sphere covers.
2.1.1. Deformation equivalence of extensions. If ϕ : X → P1 is Galois with

group G with G abelian, we could write equations for it by hand. From, however,
G being p-perfect, it isn’t. Further, why deal one cover at-a-time? Consider all
covers with (G,C) as their data: In the Nielsen class.

We have a topological need: to decide the nature of connected components
of all covers in a given Nielsen class. For that we have a deformation conclusion:
Each component has a cover with any a priori fixed (collection of r distinct) branch
points zzz0. That is, any cover (with branch points zzz) deforms through covers with
r branch points to a cover with branch points zzz0. Further, if (ggg,C) is associated
to the, consider a homomorphism from §1.3.1: ψḡgg,ggg : Mḡgg → G. Then, ψḡgg,ggg and any
of its extensions deform with it. This, the identification of Hurwitz Monodromy
group Hr with π1(Ur, zzz

0), and the explicit action (with representing paths) on ḡgg in
(2.1) is in [Fr77, §4].

For further help, Hr — related to classical braid group discussions — and their
consequences are reviewed in [BF02, §2.2] (full proofs compatible with our use are
in [Fr07, Chap. 4, 5]; exposition in html definition files as in §1.3.2). We especially
use H4 though, generally: Hr is the group of automorphisms of π1(P1

z \zzz0, z0) that
preserves an (transitive) action on classical generators. Given classical generators,
it identifies with π1(Ur, zzz

0).
We give the generators of Hr by their actions on ḡgg:

(2.1a) Shift: sh : ḡgg → (ḡ2, . . . , ḡr, ḡ1); and
(2.1b) 2nd Twist: q2 : ḡgg → (ḡ1, ḡ2ḡ3ḡ

−1
2 , ḡ2, ḡ4, . . . ).

For each i = 1, . . . , r−1 there is an i-twist qi
def= shi−2q2sh−i+2 (i mod r−1).

Our formulas are best seen using i = 2 when r = 4.
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2.1.2. MT definitions. Denote the maximal p-Frattini cover of G with elemen-
tary p group kernel by G1 → G = G0. Let Gk+1 = G1(Gk). Note: We drop most
p notation. Still, if you change p, the new Gk for k > 0 is a different group.

Definition 2.1 (MT). A projective system of Hr orbits on {Ni(Gk,C)in}∞k=0

is a M(odular) T(ower). Let kerk,0 = ker(Gk → G0 = G). An abelianized MT
is similarly a projective system, except the braid orbits are in the Nielsen classes
from replacing Gk by Gk/(kerk,0, kerk,0) = Gk,ab (as in [BF02, Prop. 4.16]).

Denote the projective limit of all Gk,ab s by pG̃/(ker0, ker0) = pG̃ab. Though
G1,ab = G1, for k > 1, the natural map Gk → Gk,ab has (known) degree exceeding
1 if and only if dimZ/p ker(G1 → G) > 1 ⇔ G0 is not p super-solvable [BF02, §5.7].

Let Mḡgg,ab be the natural quotient of Mḡgg with ker(Mḡgg,ab → G) the homology
of the Riemann surface for which ker(Mḡgg → G) is its fundamental group. Finding
extensions of ψḡgg,ggg : Mḡgg → G to pG̃ab is equivalent to its extension to Mḡgg,ab → G.

Any p-perfect group G has a universal p-Central extension ψ∗ : R∗
G,p → G.

Universal here means that if μH,G : H → G → 1 is a central p extension, than a
unique map ψ : R∗

G,p → H commutes between ψ∗ and μH,G. Let μk : Rk → Gk be
the universal exponent p central extension of Gk:

• Gk+1 → Gk factors through μk.
• ker(Rk → Gk) = max. elementary p-quotient of the Schur multiplier of

Gk.

2.1.3. Group form of MTs. For a prime p dividing |G|, we ask the following.

(2.2a) When does ψḡgg,ggg extend to all covers H → G with p-group kernel?
(2.2b) How does this depend on ggg?
(2.2c) What equivalence reasonably describes all extensions of ψḡgg,ggg?

2.1.4. Basic Reductions. The following reductions apply to considering when
there is an affirmative answer to (2.2a).

(2.3a) Complete Mḡgg so kerψḡgg,ggg is the pro-p completion of π1(X).
(2.3b) Restrict to p-Frattini covers H → G (no H proper in G maps onto).
(2.3c) Any g ∈ C must have order prime to p.
(2.3d) G must be p-perfect (it has no Z/p quotient).

Equivalent: When are all p-Frattini covers H → G achieved by unramified exten-
sions YH → X extending X → P1?

Here is the source of these reductions. For (2.3b), consider a p extension

μ : H → G → 1.

Take any subgroup H∗ ≤ H for which μH∗ is still surjective. A minimal such is a
p-Frattini cover of G. Assuming you can extend to that, you can extend through μ.
Any element of order p in G = G0 has all its lifts to G1 of order p2 [FK97, Lifting
Lem. 4.1]. That explains (2.3c). The most used geometric implication is for cusps
(first paragraph of Prop. 2.7): Suppose a cusp at level k0 has ramification index
divisible by p. Then, over it are only cusps whose ramification indices are divisible
by an additional power of p.

Finally, for (2.3d), we now know all elements of C are p′. So, entries of a Nielsen
class element cannot generate if G has Z/p as a quotient (as in [Fr06a, Lem. 2.1]).

Since the Gk s (of §2.1.2) are co-final in all p-Frattini covers of G, goal (2.2a)
needs only for H to run over the Gk s.
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2.1.5. Braid Comments. Through the action (2.1), the Hr action on ḡgg extends
to an action on the image of ḡgg in any quotient group G of Mḡgg. Then, it acts
compatibly on the following sets:

(2.4a) Inner Nielsen Classes: Ni(G,C)/G
def= Niin.

(2.4b) Absolute Nielsen classes: Ni(G,C)/NSn
(G) def= Niabs (given G ≤ Sn a

permutation representation).
(2.4c) Poincaré extensions: ψḡgg,ggg : Mḡgg → G.

Since we want extensions of homomorphism ψḡgg,ggg, the action (starting from q ∈ Hr

acting on ḡgg, from the left) is given by ψḡgg,ggg → ψḡgg,(ggg)q−1 , an action on the right. Any
extension properties of ψḡgg,ggg are preserved by a braid orbit.

Given (G,C, p), here is our first (albeit, naive) goal.
Conjecture 2.2 (Goal 1). Understand projective systems of Hr orbits acting

on {Ni(H,C)in}H→G: Running over p-Frattini covers H → G.
Remark 2.3. The actions of (2.4) come through uniquely deforming covers by

deforming branch points. This won’t work for covers in positive characteristic.

2.2. Cusp types. When reduced Hurwitz spaces are not connected, the criti-
cal problem is deciding on which components the cusps belong. For each M(odular)
T(ower) (Def. 2.1), there is a prime p (dividing |G|) attached to the problem, and
a notion of p cusp.

2.2.1. Hurwitz space Cusps. We understand Hr orbits through their cusps. A
combinatorial definition gives them as an Hr suborbit of a cusp group Cur < Hr.

(2.5a) For r ≥ 5: Cur = 〈q2〉.
(2.5b) For r = 4: Cur = 〈q2, sh2, q1q

−1
3 〉.

Much data is from the conjugacy class of Cur. So — except for normalizations
related to identifications with upper half-plane objects — if done consistently, we
could substitute qi for the appearance of q2 in Cur.

The following definition appears often in our results.
Definition 2.4. A p cusp is the Cur orbit of ggg ∈ O for which pμp(ggg)||ord(g2g3),

μp(ggg) > 0 (p-multiplicity of ggg).
The definition doesn’t depend on the representive of the p cusp, as changing

the representative changes (g2, g3) to (hg2h
−1, hg3h

−1) with h a power of g2g3. For
r = 4, to see that being a p cusp is independent of the representative, you would
substitute (g4, g1) (resp. (g1, g4)) for (g2, g3) to see the condition for a p cusp is
unchanged by applying sh2 (resp. q1q

−1
3 ) to ggg. When r = 4, we call ord(g2g3) the

middle product of ggg, denoted (ggg)mp.
2.2.2. Other cusp types for r = 4. App. B gives these for r > 4.
(2.6a) g(roup)-p′: U1,4(ggg) = 〈g1, g4〉 and U2,3(ggg) = 〈g2, g3〉 are p′ groups
(2.6b) o(nly)-p′: p cusp, but U1,4(ggg) or U2,3(ggg) not p′.
H(arbater)-M(umford) cusps for all even r = 2s have a cusp orbit represen-

tative of form (g1, g
−1
1 , . . . , gs, g

−1
s ). When r = 4, its shift (g−1

1 , g2, g
−1
2 , g1) is a

representative for a g-p′ cusp, no matter what is p since the middle product is 1.
Existence of an H-M rep. requires special conjugacy classes. They must be

pairable, in the form C1,C−1
1 , . . . ,Cs,C−1

s where the -1 exponent denotes the con-
jugacy class of the inverse of an element in a given conjugacy class. Consider a Liu-
Osserman pure-cycle Nielsen class Ni(G,Cddd)abs (§1.2). So, with d1 < d2 < · · · < du,
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it is necessary that that the conjugacy classes defining the Nielsen class have form
Cddd, with ddd = de1

1 · · · deu
u and each ei even.

The only time there are two distinct conjugacy classes of length di is when
G = An, and du = n (if n is odd) or du = n−1 (when n is even). In these cases
denote the conjugacy class pairs by C(n)′,C(n)′′ (resp. C(n−1)′,C(n−1)′′).

Proposition 2.5 ( g-p′ MT). If a braid orbit O0 has a g-p′ cusp, then a MT,
O = {Ok ⊂ Ni(Gk,C)in}∞k=0, lies over it.

Consider a pure-cycle Nielsen class Ni(G,Cddd)abs (§1.2), with all the di s odd,
and G a transitive, but not cyclic, subgroup of An. Then, Prop. 3.10 says G = An.
This Nielsen class contains an H-M rep. if and only if one of the following:

(2.7a) n ≡ 1 mod 4 (resp. n−1 ≡ 1 mod 4), du = n (resp. du = n−1)
and exactly half the eu conjugacy classes of length du are equal C(n)′

(resp. C(n−1)′); or
(2.7b) n ≡ 3 mod (resp. n−1 ≡ 3 mod 4), du = n (resp. du = n−1)

and each of the conjugacy classes C(n)′ and C(n)′′ (resp. C(n−1)′ and
C(n−1)′′) appear with even multiplicity.

Proof. The first result applies to the general definition of g-p′ cusp as in
App. B [Fr06a, Fratt. Princ. 3.6]. The necessity of (2.7) is a consequence of the def-
inition of H-M rep., and the congruence condition for declaring when C(n)′,C(n)′′,
etc. each contain the inverse of any element in them (say, Lem. 1.1).

Finally, to fulfill an H-M rep. under these conditions requires only producing
transitive pure-cycles whose lengths in order are given by the symbol d

e′
1

1 · · · de′
u

u

with e′ denoting e
2 . Since,

∑u
i=1

e′

2 (di−1) ≥ n − 1, this is quite easy. Start with
g1 = (1 . . . d1), and continue inductively, starting the next pure-cycle — and its
increasing integer sequence — with the last integer occuring in the previous pure-
cycle. When you get to n, cycle around to 1. Example: For n = 7, r = 6 and
ddd = 34 · 52, so e′1 = 2, e′2 = 1, take g1 = (1 2 3), g2 = (3 4 5), g3 = (5 6 7 1 2). �

Remark 2.6 (G = Sn and genus not 0 in Prop. 2.5). If in Prop. 2.5 one of the
di s is even then G = Sn, and the conjugacy classes considerations for top-length
cycles is much simpler. On the other hand, there are a few more exceptions [LOs06,
Thm. 5.3]: Cyclic groups for one. The Liu-Osserman case is when the Nielsen class
has genus 0. So, if r ≥ 3, a cyclic (transitive) subgroup of Sn generated by pure-
cycles is impossible.

Also, if r = 3, there is a non-trivial possibility of having, n = 5, and ddd = 42 · 5
where the group G is the non-standard representation of S5 in S6. The action of S5

on the normalizer N of a 5-Sylow. If we expand beyond the genus 0 case, we can
have A5 = G in this degree six representation (all conjugacy classes among the two
5-cycle conjugacy classes), too. So, for higher genus, these sporadic representations
of pure-cycle cases require careful accounting.

2.3. MT Geometric correspondence. A MT is a projective system of
braid orbits O = {Ok ⊂ Ni(Gk,C)in}∞k=0. This corresponds to a projective sys-
tem (a tower) of — inner Hurwitz spaces — {Hk}∞k=0 where the Hk s are (normal)
absolutely irreducible affine algebraic varieties (dim=r) each covering Ur ⊂ Pr.

Here is the Main Conjecture, about rational points on the spaces Hk (not on
their compactifications).

Conjecture 2.7 (Main Conj.). For K a number field, Hk(K) = ∅ for k >> 0.
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The Main Conjecture is trivial unless G is p-perfect, for otherwise Ni(G,C) is
empty when C are p′ conjugacy classes [Fr06a, Lem. 2.1]. It is trivial, too, unless
the MT has some number field K as definition field: all levels (simultaneously, with
the maps between them) have K as definition field. [Fr06a, Prop. 3.3] reduces the
Main Conjecture to this case:

(2.8) The prime p does not divide the order of the center of G.
From here on, assume these things hold, including G is p-perfect and has p′ center.

2.3.1. What tower levels look like if the Main Conjecture is wrong. Prop. 2.8,
shows we may replace Hurwitz spaces by their reduced versions, and also the reliance
of the Main Conjecture on knowing about cusps. Our main results concentrate on
the case r = 4, where reduced tower levels are curves.

Proposition 2.8. The conclusion of Conj. 2.7 holds if and only if it holds
with each Hk replaced by its corresponding reduced space Hk/PGL2(C) = Hrd

k . Let

H̄rd
k be the unique (projective) normalization of Pr/PGL2(C) def= J̄r in the func-

tion field of Hrd
k . If there is at least one p cusp at level k0, the relative degree

deg(H̄rd
k+1/H̄rd

k ) def= dk+1,k, is some integer multiple of p for k ≥ k0. It is always
true that lim sup←k dk+1,k > 1.

For r = 4, Conj. 2.7 holds unless for k >> 0, either the cover H̄rd
k+1 → H̄rd

k

• doesn’t ramify and each H̄rd
k has genus 1,

• or it is equivalent to a degree p polynomial cover of P1
w → P1

z,
• or it is equivalent to a degree p rational (Redyi) function ramified (of

order p) at two points.

Proof. Everything in this proposition is already in [Fr06a, §5] except the
observation showing the impossibility of dk+1,k = 1 for all large k. Assume it is 1
for all k ≥ k0. Then, let ppprd ∈ Hrd

k0
be any point defined over some number field K

that is the image of ppp ∈ Hk0(K) (a K point of the non-reduced space).
Since G is p-perfect and its center is p′, [BF02, §2.2.2] shows that all the Gk s

also have p′ center. Start with a stronger condition — satisfied by all examples in
this paper: it has no center at all. Then, the non-reduced spaces, given as fiber prod-
ucts [BF02, §2.2.2], {Hk = Hrd

k ×Jr Ur}∞k=0, all have fine moduli [FV91, Cor. 1]. As
the maps between the reduced spaces have degree one, they induce degree 1 maps
Hk+1 → Hk, identifying them as covers of Ur. So, the points on each space identi-
fied to ppp correspond to a projective sequence of covers Xk → P1

z realizing the Gk s
as a Galois group over K. This contradicts [BF02, Prop. 6.8]: No such projective
sequence can exist over a number field K. This implies lim sup←k dk+1,k > 1.

Suppose, G0 does have a nontrivial p′ center Z. Then, we cannot immediately
assume the conclusion above immediately holds. Here is why. While the point ppp
has coordinates in K, since the spaces Hk don’t have fine moduli, there may be
no Galois cover of P1

z associated to ppp defined (with its automorphisms) over K.
App. §C completes the argument in this case. �

The following comments elaborate on the geometric correspondence between p
cusps and geometric cusps.

(2.9a) Cusps at level k correspond to divisors on the normal compactification
H̄rd

k over Jr.
(2.9b) F(rattini) Princ. 1 [Fr06a, Princ. 3.5]: If 0ggg ∈ O0 is a p cusp — with

μp as in (2.4), then (ggg)mp — then μp(kggg) = k + μp(0ggg).
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(2.9c) If r = 4, then, Hrd
k is an upper-half plane quotient, j-line cover, with

ramification order dividing 3 (resp. 2) over 0 (resp. 1).
The combinatorics theoretically allows us to compute the genus of the reduced MT
levels when r = 4. Consider a M̄4

def= H4/〈sh2, q1q
−1
3 〉 orbit O ≤ Ni(G,C)∗,rd. Take

∗ to be any appropriate equivalence; here either inner or absolute. [Fr06a, §3.1.2]
gives the formula for computing the genus of a reduced Hurwitz space component
H∗

O corresponding to O. Take the induced permutation actions of q1q2, or sh, or
q2) on O and call these respectively γ′

0, γ
′
1, γ

′
∞. Then (R-H), the genus gggO satisfies

(2.10) 2(|O| + gO − 1) = ind(γ′
0) + ind(γ′

1) + ind(γ′
∞).

The following problem is very close to the Main Conjecture when r = 4. We
suspect a more refined statement is close to the Geometric MCab for all r ≥ 4.

Problem 2.9 (Goal 2). Given a MT, {Ok ⊂ Ni(Gk,C)in}∞k=0, classify when
there is a p cusp on Ok for k >> 0.

Conjecture 2.10. p Cusp Generation: If O has no p cusp branches, then high
tower levels are relatively unramified, and they have no number field as a uniform
definition field for all levels.

Otherwise, we expect the relative monodromy groups G(Ok+1/Ok) to be p
groups, generated by the inertial groups of their relative p cusps.

p Cusp Existence: In particular, this implies a MT O defined over a number
field has a p cusp at all high levels.

2.3.2. Finding p cusps and using g-p′ cusps. Finding p cusps, and the nature
of the components on which they lie is the most sophisticated ingredient in this
paper. Combining works of the author, J.-P. Serre [Ser90], and Thomas Weigel
[Wei05] gives an effective tool for locating p cusps in the cases here of the MT
Main Conjecture. The p-adic completions of the groups Mggg have a property called
p-Poincaré duality, crucial to our analysis of the p cusp problem. This tool first
appeared through interpreting the Main MT conjecture as a problem of computing
braid equivalence classes of extensions of the groups Mggg. Its computational gist is
Prop. 2.15. The production of full (not abelianized) MTs has only come about so
far through Prop. 2.5 using g-p′ cusps (see (2.6a)). On the other hand, we know
many examples where a braid orbit has no g-p′ cusp, but there is an abelianized
MT over that orbit. The (A4,C±32 , p = 2) of § 6.5 is sterling for that and for
examples of general geometric properties of MTs.

The most occurring g-p′ cusps in this paper are shifts of H(arbater)-M(umford)
cusps because Prop. 3.10 applies to our cases. We see the role of H-M cusps clas-
sically by translating the MT view to modular curves. There are two cusps on
the curve called X0(p). The long cusp is a p cusp, and the short cusp is a shift
of an H-M cusp. Complications in making precise calculations to prove the Main
Conjecture arise often because o-p′ cusps (as in (2.6b)) can occur, too. These have
no analog on modular curves.

These definitions become explicit when we restrict to groups generated by odd
pure-cycle Nielsen classes, to which results of Liu-Osserman [LOs06] apply. We
prove the MT Main Conjecture in many of their cases. By comparing their result
with [Fr06b, Thms. A and B] we develop techniques toward a proof of the Main
Conjecture in general for r = 4. §6.3.3 uses the Spin-lifting invariant of (2.11) for
an explicit conjectured umbrella to the combined Liu-Osserman and Fried results
on connected pure-cycle Nielsen classes.
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2.4. The Spin lifting invariant. I’ll denote the universal central extension
of An by Spinn. It happens that ker(Spinn → An) is Z/2 (n ≥ 4). To present it,
embed An in the determinant 1 elements SOn(R) of the orthogonal group. The
fundamental group of SOn(R) (n ≥ 4) is Z/2, so SOn(R) has a 2-sheeted cover,
Spinn(R). Then, Spinn is the pullback of An in Spinn(R). It arises in practice
often. For example, A5 = PSL2(Z/5) — 2× 2 matrices of determinant 1, mod ±I2

— and Spin5 is just SL2(Z/5).
2.4.1. Universal central extensions. Examples of Schur multipliers in this paper

occur when G is a subgroup of An (often it will be An). Then, consider the pullback
Ĝ to Spinn. (It depends on the embedding in An, but that will be clear from the
context.) If Ĝ → G is a nonsplit extension, then ker(Ĝ → G) is a Z/2 quotient of
the Schur multiplier of G.

In this situation, assume C consisting of odd (2′) conjugacy classes in G. Then,
we attach to ggg ∈ Ni(G,C) a lifting invariant sĜ/G(ggg) defined as follows. Take the

unique 2′ lift ĝi ∈ Ĝ lying over gi, i = 1, . . . , r. Then,

(2.11) sĜ/G(ggg) def= ĝ1, . . . , ĝr ∈ {±1}.

These basic definitions easily generalize to arbitrary groups and arbitrary primes.
This paper concentrates, in our special case, on the meaning of the lifting invariant
and our ability (often) to compute it explicitly thanks to [Ser90] and [Fr06b].
With this we establish the Main Conjecture in our cases.

Remark 2.11 (Well-definedness of lifting invariant). Though the covers in an
absolute Nielsen class (§2.1.5) such as Ni(An,C3n−1)abs are not Galois, the lifting
invariant still makes sense. When we pass to the Galois closure of the cover, it
checks whether Spinn is realized as an unramified cover of it. The Galois closure
cover is only canonical up to an inner isomorphism of the Galois group with G.
So, that requires knowing the lifting invariant doesn’t depend on changing that
isomorphism. That follows because any inner isomorphism of G lifts to a canonical
inner isomorphism of Ĝ → G.

2.4.2. Using the lifting invariant. It makes sense to replace Ni(G,C) under the
hypotheses of §2.4 with Ni(Ĝ,C): replace G by the nonsplit degree two to exten-
sion Ĝ. This gives a natural one-one (often not onto) map Ni(Ĝ,C) → Ni(G,C).
Associate to this map one of three possible symbols: ⊕ if it is onto; � if Ni(Ĝ,C)
is empty; and ⊕� if neither of the first two happen.

When the symbol is ⊕� there must be at least two braid orbits on Ni(G,C)
(two Hurwitz space components). That is because the lifting invariant is a braid
invariant. Conway-Fried-Parker-Völklein (C-F-P-V, §7.2) in this case says that if
each class in C appears “suitably often,” then there are exactly two braid orbits
on Ni(G,C) with these two components represented by the symbol ⊕�.

Prop. 2.12 (proofs in [Ser90] or [Fr06b, Cor. 2.3]) gets repeated use here.
Many of our applications are really partial generalizations of it. For odd order
g ∈ An, let w(g) count length l disjoint cycles in g with (l − 1)/2 ≡ 1 or 2 mod 4.

Proposition 2.12 (Invariance). Let n ≥ 3. If ϕ : X → P1 is in the Nielsen
class Ni(An,C3n−1)abs, then deg(ϕ) = n, X has genus 0, and s(ϕ) = (−1)n−1.

Generally, for any genus 0 Nielsen class of odd order elements, and representing
ggg = (g1, . . . , gr), s(ggg) is constant, equal to (−1)

∑r
i=1 w(gi).
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Examples 2.13 and 2.14 are a warmup to recognizing the significance of the
phrase “suitably often,” mean. In Ex. 2.13, the covers in the Nielsen class have
genus 0, and Prop. 2.12 shows they only achieve one value of the lifting invariant.
In fact, [LOs06] there is just one braid orbit. In Ex. 2.14 the covering group is
G1(A4), the 1st 2-Frattini extension of A4. It has a Schur multiplier of order 4,
and correspondingly, there are four braid orbits, each corresponding to a different
value of the lifting invariant.

2.4.3. Pure cycles and the invariance Corollary. Our chief source of examples
is from pure-cycle Nielsen classes: C consists of pure-cycles (§1.3.3).

Let d1, . . . , dr be the disjoint cycle lengths. We often use d1 · · · dr, sometimes
with exponents to indicate repetitions. R-H: A cover in this Nielsen class has genus

(2.12) g = gd1···dr

def=
∑r

i=1 di−1

2 − (n − 1), a non-negative integer.
Suppose G ≤ Sn and ggg ∈ Ni(G,C), a pure cycle Nielsen class Ni(G,C), with

the image of C in Sn equal to CSn def= Cd1···dr . Assume you have chosen branch
points, and a set of classical generators (§1.3), so ϕ : X → P1

z corresponds to ggg in
this Nielsen class. Here is a case of computing the lifting invariant that shows what
we mean by “explicit.”

Example 2.13 (Genus 0 pure-cycles). When the Nielsen class is odd pure-
cycle, and the genus is 0, the lifting invariant (in additive notation) is

∑r
i=1

d2
i−1
8

mod 2. For example, if r = 3, n is odd, and d1 = d2 = n+1
2 and d3 = n, then

G = 〈g1, g2〉 = An, and

(2.13) sSpinn/An
(ggg) =

n2 − 1
8

mod 2 =

{
0 if n ≡ ±1 mod 8
1 if n ≡ ±3 mod 8

.

The following example reappears in §6.5. It illustrates many points about
braid orbits in this section, and also some expectations in going beyond the genus
0 condition of Liu-Osserman.

Example 2.14. When G is G1(A4), and extension of A4 with kernel of order
25, the Schur multiplier (for p = 2) is (Z/2)2. Then, there are exactly four braid
orbits on Ni(G1(A4),C±32).

2.4.4. Inductive criterion for existence of a non-empty MT. We can check that
a braid orbit at level k has above it (a nonempty) braid orbit at level k + 1. §1.3.1
says this is equivalent to extending a given Mggg → Gk to Mggg → Gk+1.

In the abelianized case, the inductive procedure simplifies to just one test to
see if Mggg → G extends to Mggg → Gk,ab for all k. The first statement is from [BF02,
Prop. 3.21]. The last two are from [Fr06a, Cor. 4.19] (using results of [Wei05]).

Recall (§2.1): R∗
G,p → Gk is the representation cover whose kernel is the max-

imal exponent p quotient of the) Schur multiplier of Gk. The Schur multiplier is
always a finite group, and so ker(R∗

G,p → Gk) has a finite exponent pu0 . Below, de-
note the subgroup of ker(R∗G,p → G) generated by all elements of exponent larger
than pk (k ≤ u0) by Uk.

Proposition 2.15. If G has p′ center (as in (2.8)), then so does Gk, k ≥ 1.
The Hurwitz orbit Hr(gggk) ⊂ Ni(Gk,C)in is in the image of Ni(Gk+1,C)in if

and only if gggk is in the image of Ni(Rk,C).
Also, ggg ∈ Ni(G,C) is in the image of Ni(Gk,ab,C) if and only if it is in the

image of Ni(R ∗G,p /Uk,C). If k ≥ u0, the conclusion holds exactly when ggg is in
the image of Ni(R∗G,p,C).
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The following example works because we know precisely the Schur multiplier
of alternating groups. Indeed, it works as well for all simple groups, though there
is as yet no Invariance Cor. 2.12 to make the calculation of the lifting invariant for
other simple groups.

Example 2.16. Suppose G = An, n ≥ 4, with p = 2 and C classes of odd
order elements. Then, for ggg ∈ Ni(G,C), there is an extension of ψḡgg : Mggg → G to
pG̃ab if and only if sSpin/An

(ggg) is trivial. If p �= 2 (where C are p′) then there is
always an extension to pG̃ab.

2.5. Organizing our choice of MTs. Our examples show how connect-
edness allows computing when MTs have p cusps. We will do this on general
principles, thereby getting a sense of what we can compute as we go up the tower.

2.5.1. General approach. Level 0 requires some knowledge of conjugacy classes
of a group G0 with no normal p subgroup. Often that might be a simple group.
Going up to level 1 requires knowing certain precise facts about Schur multipliers
of p-perfect subgroups of G0.

In proving the Main Conjecture for ∞-ly many not modular curve cases, we
have chosen examples where G0 is an alternating group, and the prime p is 2.
This is a serious challenge, with phenomena revealing of what will occur in general,
though without tremendous group theory complications. Here are guesses (justified
by examples) for what happens in a general MT O def= {Ok}∞k=0 ≤ {Ni(Gk,C)}∞k=0.

Now consider the case r = 4 and the Main Conjecture. Use the correspondence
Ok ⇔ H̄′

k with the space on the right an absolutely irreducible component of
H̄(Gk,C)in,rd. Proving p Cusp Existence is close to proving the Main Conjecture
as a consequence of [Fr06a, Thm. 5.1]. Denote the genus of H̄′

k by g′
k.

Theorem 2.17. If g′
0 > 0, then a single p cusp branch, starting at some level

k0, implies gk > 1, k > k0, and the Main Conjecture holds for O.
The Main Conjecture holds if g′

0 = 0, and some level has three p cusps.

2.5.2. Pure-cycle Nielsen classes. Now return to the case a Nielsen class is
pure-cycle (all conjugacy classes have one disjoint cycle; §2.4.2). We will do the
case p = 2, the pure-cycle lengths are d1 ≤ d2 ≤ · · · ≤ dr, and the genus of covers
in the Nielsen class is 0.

All the Liu-Osserman examples stand out because there are no 2 cusps at level
0, but they do appear at level 1. Reminder: When r = 4, then there are two places
were genus 0 may come up: the inner reduced Hurwitz spaces may have genus 0;
for all the spaces, their points represent covers of genus 0.

Recall: Since Sn is not 2-perfect, it does not enter into the Main Conjecture
for the prime p = 2. So, for the start, here are our general assumptions.

(2.14a) We have a pure-cycle Nielsen class Ni(G,C) of odd order elements,
G ≤ An a transitive subgroup and p = 2; and

(2.14b) covers in the absolute Nielsen class all have genus 0.

So, even though what we prove here will only apply only when (2.14) holds, it
gives us infinitely many cases where the Main Conjecture holds. Further, even
here we can often conclude the Main Conjecture for other primes, not just p = 2.
§6.3.2 considers the extension of this result on existence of 2 cusps in genus 0 odd
pure-cycles from the case r = 4 to general r ≥ 3.
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2.5.3. Comparing Liu-Osserman with other cases. Connectedness of the Liu-
Osserman spaces is not without precedent. There are a small number of other
Nielsen class collections of genus 0 covers long known to give connected spaces.
The first such is the space of simple-branched (2-cycle) covers that Clebsch used
140 years ago to show the connectedness of the moduli of curves of genus g. Less
obvious, yet more relevant for general applications, are modular curves.

We assume p is odd. Recall: The dihedral group is Dpk+1 = Z/pk+1×s(Z/pk+1)∗

and C24 is four repetitions of the involution conjugacy, represented by multiplica-
tion by −1 on Z/p. So, the Nielsen class is Ni(G = Dpk+1 ,C24 , p). Note: G here
is Gk(Dp) in the notation of §2.1.2. We use the absolute Nielsen class, where the
representation of G has degree pk+1.

Notice that (pk+1−1)/2 gives the number of length two orbits of multiplication
by −1 on Z/pk+1. Check easily from this that (2.14b) holds: R-H gives the genus
as ggg = 0 satisfying 2(pk+1 + ggg − 1) = 4(pk+1 − 1)/2. For p ≥ 5, the conjugacy
classes are not pure-cycle. This is the elementary modular curve case, where H̄in,rd

0

is X1(pk+1) and H̄abs,rd
0 is X0(pk+1). Of course, though [Fr78, §4] has been around

a long time, this is not the traditional way to look at this space.
Since it will come up later, we now consider cases that are like the Clebsch

case. You fix a group and you vary the conjugacy classes. In Ex. 2.18 you fix a
group G and one conjugacy class C within it. Then, you vary the multiplicity of
that conjugacy class to consider different Nielsen classes. In both cases denote the
collection of absolutely irreducible components by I, and consider the natural map
from i ∈ I to the conjugacy class collection for that component. The listing of
components for absolute classes and inner classes is the same (that does not hold
up in all the Liu-Osserman examples as we shall see).

Example 2.18 (Dihedral and Alternating cases). If G = Dpk+1 with p odd,
and C∗ = {C2} (conjugacy class of an involution), then i → C2ri is one-one and
onto, with the ri s running over all even integers ≥ 4. Also, Hrd

i identifies with the
space of cyclic pk+1 covers of hyperelliptic jacobians of genus ri−2

2 [DFr94, §5].
If G = An with C∗ = {C3}, class of a 3-cycle, then i → C3ri with ri ≥ n

is two-one (Main Result of [Fr06b]). Denote indices mapping to r by i±r . Those
covers in Hi±r

are Galois closures of degree n covers ϕ : X → P1
z with 3-cycles for

local monodromy. Also, write the divisor (dϕ) of the differential of ϕ as 2Dϕ. Then,
ϕ ∈ Hi+r

(resp. Hi−r
) if the linear system of Dϕ has even (resp. odd) dimension; it

is an even (resp. odd) θ characteristic. For ri = n− 1 the map i → C3ri is one-one.

3. Cusp Principles

We assume the Liu-Osserman conditions (2.14) hold from this point for the rest
of the paper unless otherwise said. We use several principles to compute properties
of the absolute and inner reduced spaces defined by some of their Nielsen classes.
§3.1 nails the description of pure-cycle Nielsen classes when r = 3.

For r = 4, §3.2 is a basic tool kit for this the contribution of the cusps to
the genus of the reduced spaces. Its three principles detect when we have p cusps;
especially (Princ. 3.3) on how their existence gives the Main Conjecture. One
conclusion: once you know an H-M cusp is a p cusp, a subtree of the cusp tree on
a MT resembles that for the whole cusp tree on modular curves. In this case, we
clearly see the number of p cusps grow with the levels.
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We contrast this with Princ. 3.6. This says we get only pure-cycle cusps —
(ggg)mp is pure-cycle (or trivial) for all ggg in the Nielsen class — precisely when the
Nielsen class is Ni( n+1

2 )4 . One conclusion from is that case is there are no 2 cusps
at level 0. Yet, by applying [Fr06a, Fratt. Princ. 3], §3.3 shows in all cases some 2
cusps appear at level 1, proving the Main Conjecture.

3.1. Detecting p cusps in the cusp tree. For r ≥ 4, all reduced spaces have
well-defined cusps. Their combinatorial definition (§2.2.1) applied to an element ggg
in the Nielsen class starts by imposing a grouping on the entries of ggg. When r = 4,
we inspect the ordered pairs (g2, g3) and (g4, g1) both for their products and the
groups they generate. This inductive definition appears clearly in App. B. So, we
can’t dismiss the case r = 3, the case most Riemann surface people find comforting
because its attached reduced space consists just of points with no need for cusps.

3.1.1. The case r = 3. Assume r = 3 and the genus of the covers in the Nielsen
class is 0. With no loss, by applying a braid from H3, assume d1 ≥ d2 ≥ d3.
Let g3 = (1 . . . d3−u . . . d3) for some integer 1 ≤ u ≤ d3−1. Now consider the
following two elements based on another integer t with n−t = d3 + 1:

(3.1)
g2 = (d3 d3−1 . . . d3−u n . . . n−t), and

g1 = (1 . . . d3−u−1 n . . . n−t d3)−1.

Note these properties:
(3.2a) (g1, g2, g3) has product-one.
(3.2b) The genus is 0.
(3.2c) This represents the unique element in the statement of the theorem.

Principle 3.1. For r = 3 and gd1·d2·d3
= 0, there is a unique

ggg ∈ Ni(G,Cd1·d2·d3)
abs with ord(gi) = di, i = 1, 2, 3.

3.1.2. p Cusps and Main MT Conjecture. The projective system of cusp orbits
forms a natural directed tree. A cusp branch is a projective system of representa-
tives

g̃gg = {kggg
def= [kg1, kg2] ∈ Ni(Gk,C)in,rd}∞k=0.

If all representatives are H-M reps., call it an H-M branch. Its projective system
of braid orbits defines an H-M MT, or an H-M component branch. Assume, with
no loss (see the start of [Fr06a, §5]), that the p-part of the center of all the Gk s is
trivial. That is, the center of Gk is a (the same) p′ group.

It will simplify some expressions to use a short-hand, [g1, g2], for the H-M
rep. ggg = (g1, g

−1
1 , g2, g

−1
2 ).

Principle 3.2. We have the following formulas:

([g1, g2])q1 = [g−1
1 , g2], ([g1, g2])q3 = [g1, g

−1
2 ] and ([g1, g2])q1q2 = [g−1

1 , g−1
2 ].

Among them is a p cusp if and only if one of p|ord(g±1
1 g2).

Proof. The display just repeats the definition of the actions of q1 and q2. By
definition, these are p cusps if and only if the respect products g±1

1 g±1
2 have order

divisible by p. Notice, however, that the inner equivalent H-M rep. g1[g1, g2]g−1
1

has middle product
g−1
1 g1g2g

−1
1 = g2g

−1
1 = (g1g

−1
2 )−1.

This shows the middle product order of g1g
−1
2 is already among the middle product

orders ord(g±1
1 g2), etc. �
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If the following held (we state this just for H-M reps., though p is arbitrary),
then the Main Conjecture would follow for an H-M component branch from Princ. 3.3.

(3.3) [Non-Weigel cusp branch] For k >> 0, kggg does not define an o-p′ cusp.
So, from FP1 (2.9b), there is a k0 so that for k ≥ k0, pk−k0+1||(kggg)mp.

It is significant to figure out when condition (3.3) is automatic.
Assuming (3.3), we can spin off low ramification p cusps for general p. With no

loss by changing k0 to 0 (replace G0 by Gk0), assume the cusp branch starts with an
H-M rep. (g1, g

−1
1 , g2, g

−1
2 ) = [g1, g2] = ggg0 with middle product d · pu, u ≥ 1. Take

the case u = 1 to simplify notation. Now let k+1ggg be the level k + 1 representative
in our projective sequence, with

c̄k = (k+1g
−1
1 k+1g2)dk ∈ ker(Gk+1 → Gk),

and dk the middle product order of kggg. So

k+1ggg
′ = (k+1ggg)q2dk

2 = (k+1g1, c̄k(k+1g
−1
1 )c̄−1

k , c̄k(k+1g2)c̄−1
k , k+1g

−1
2 ).

Further, c̄k that will satisfy product-one in this expression must centralize
g−1
1 g2. Now use that 〈k+1g1, k+1g1k+1g2〉 = Gk+1 and the center of this group

has no p-part. Since c̄k commutes with the second of these generators, it can’t
commute with the first. Conclude:

(3.4) k+1ggg
′ �= k+1ggg.

Now form (k+1ggg
′)sh, whose 2nd and 3rd entries are (c̄k(k+1g2)c̄−1

k , k+1g
−1
2 ), with

exactly one power of p dividing their product.
Principle 3.3. As above, (ggg′k+1)sh is a new p cusp. So, (3.3) for the H-M

cusp branch of g̃gg implies the main conjecture for its H-M component branch.

Proof. The first paragraph of the proof of [Fr06a, Prop. 5.5] shows how
spinning of new p cusps implies the number of p cusps grows with k: The cusps at
level k produced by this have above them only cusps with middle product divisible
by one more power of p. So, this new cusp cannot equal any of them.

The Main Conjecture counterexample towers have at most two p cusps at each
level [Fr06a, Thm. 5.1] (or Prop. 2.8). This concludes the proposition. �

Example 3.4. In A5, consider g1 = (1 2 3 4 5) and g2 = (1 2 3). They generate
A5, and the middle product ([g1, g2])mp is (1 2 3) while ([g1, g

−1
2 ])mp is (5 4 2 3 1).

This shows middle products of H-M reps. are not a braid orbit invariant.

3.2. Two cusp-type Principles. Princ. 3.5, a version of [BF02, Prop. 2.17],
makes transparent the width of most cusps. Princ. 3.6 smooths the way between
the case r = 3 and r = 4 when dealing with pure-cycle Nielsen classes. It is a
version of [LOs06, §4], the hardest combinatorial part of their paper, where r = 4.
Our simplification results from using cusps to improve the combinatorial efficiency
in computing braid orbits.

3.2.1. The Twisting Principal. For (g, g′) ∈ G×G, denote (g, g′) → (gg′g−1, g)
by tw. It is just the q2 operator restricted to 2-tuples, instead of 4-tuples. As such
the iterated action of tw starting from (g, g′) has an orbit in G × G.

Principle 3.5. Given (g, g′), denote gg′ by g′′. Assume g−1 �= g′ and for
simplicity that Z(〈g, g′〉) ∩ 〈g′′〉 is trivial (see Rem. 3.8). Then, the tw orbit length
is 2 · ord(ggg) unless
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(3.5) ord(ggg) = o is odd, and ord((gg′)
o−1
2 g) = 2.

In turn, (3.5) is equivalent to

(3.6) (g, g′)tw = (g′′)
o+1
2 (g, g′)(g′′)−

o+1
2 .

Proof. The first paragraph is [BF02, Prop. 2.17]. Now assume o is odd and
let j = o+1

2 . If (3.6) holds, then gg′g−1 = (g′′)jg(g′′)−j , or g′ = (g′′)
o−1
2 g(g′′)−

o−1
2

=⇒ g′(g′′)
o−1
2 = (g′′)

o−1
2 g.

This is reversible; the last restates (3.5) that (g′′)
o−1
2 g has order 2. �

3.2.2. The Pure-Cycle Cusp Principle. The next principal shows exactly why,
among the Liu-Osserman cases, the Nielsen classes Ni( n+1

2 )4 (§4.1) stand out. It is
these for which all cusps are pure-cycle (or have trivial middle product; Def. 3.7).
Ex. 3.9 does a split-cycle case in detail to assure the reader of the notation.

Principle 3.6. Apply R-H to see, with no loss, each j ∈ {1, . . . , n} is in the
support of exactly two of the gi s modulo one of two possibilities:

(3.7a) Either there is an i0 in the support of all four gi s; or
(3.7b) There are two integers i0 and k0 in the support of exactly three gi s.

Consider the common support of (g2, g3) for ggg in the Nielsen class. With no loss,
unless it is empty, take it to be {1, . . . , k}. Then, consider also the overlap U(ggg) of
that with (ggg)mp. This consists of at most two integers.

If |U(ggg)| = 1 (with no loss take it to be k) then (g2, g3) has the form

((k . . . 1vvv), (1 . . . kwww)) with vvv, www and {1, . . . , k} mutually disjoint.

Here, (ggg)mp = (kwwwvvv), an odd pure-cycle.
If |U(ggg)| = 2, then there is no overlap in the support of (g4, g1, g4g1). Further,

(g2, g3) has the form

((k . . . i0+1vvv1 i0 . . . 1vvv2), (1 . . . i0 www1 i0+1 . . . kwww2)),

with vvv1,vvv2, www1, www2 and {1, . . . , k} mutually disjoint and (ggg)mp = (kwww2 vvv2)(i0 www1 vvv1).
Two disjoint cycles are g1 and g4, giving conditions (see (3.8)) on the lengths (or-
ders) of vvvi and wwwi, i = 1, 2 so ggg entries have the right orders.

The condition |U(ggg)| = 2 happens for some rep. in each allowed Nielsen class
if and only if it is not Ni( n+1

2 )4 for some n ≥ 4.

Proof. For the first part of this argument start with general r. The product
one condition

∏r
i=1 gi implies each integer must appear in at least two of the gi s.

For each j ∈ {1, . . . , n} let kj be the number of gi s containing j in their support,
and let ki − 2 = k′

i ≥ 0. Apply R-H, using g = 0 to conclude

2(n − 1) =
r∑

i=1

di − 1 = 2n +
∑

k′
j − r.

So,
∑

k′
j = r − 2. If r = 4, then either some k′

j = 2, or two of them equal 1. In
the former case (3.7a) holds, and in the latter it is (3.7b). Now we characterize
each. For a segment labeled vvv (or www) in the calculations, compatible with previous
notation, denote its length o(vvv).

If U(ggg) is empty, then g2 and g3 are disjoint. Otherwise, assume k ∈ U(ggg). If
no other letter is in U(ggg), then consider the effect of g2g3 to see that by reordering
1, . . . , k, we may assume g3 maps i → i+1, and g2 reverses this, for i = 1, . . . , k−1.



22 M. FRIED

So, these integers disappear in the support of the product, and (g2, g3) has the
shape given in the proposition statement. The length of (ggg)mp is 1 + o(vvv) + o(www),
and 2k +o(vvv)+o(www) = d2 +d3. Since d2 and d3 are both odd, conclude o(vvv)+o(www)
is even, and the length of (ggg)mp is odd.

It is similar for |U(ggg)| = 2. Now consider, by cases, what happens with the
complementary pair (g4, g1).

Suppose |U(ggg)| = 2. Then, two integers having three supports among the
entries of ggg appear in (ggg)mp. Apply the argument to (g4, g1, g4g1 = (g2g3)−1) that
we used on (g2, g3, g2g3). If there were further integers in the common support
of (g4, g1, g4g1) and (g4, g1), that would give at least three integers appearing in
the common support of three entries of ggg. So, that can’t happen. Similarly, if
|U(ggg)| = 1, then the common support for (g4, g1, (g4g1)−1) has also cardinality 1,
different from the integer in U(ggg).

Finally, consider the production of split-cycle cusps. When the Nielsen class is
Ni( n+1

2 )4 , all pairs of entries of ggg must have overlapping support, so there can be no
split-cycle cases. Given ddd �= (n+1

2 )4, if we have a split-cycle, then may apply braids
to assume, with d1 ≤ d2 ≤ d3 ≤ d4, that o(gi) = di+1, i = 1, . . . , 4 mod 4. This
assures the two smallest lengths are at positions 1 and 4. The genus 0 condition
shows d1 + d2 ≤ n. Here are equations expressing segment lengths using vvv and www:

(3.8)
1 + o(vvv1) + o(www1) = d1, 1 + o(vvv2) + o(www2) = d2,
k + o(vvv1) + o(vvv2) = d3, k + o(www1) + o(www2) = d4.

Solve the equations, as in Ex. 3.9, to canonically, up to absolute equivalence,
produce a split-cycle cusp. For example, d1−1+d2−1 = d3−k+d4−k, determining
k. This concludes the proposition. �

Suppose ggg ∈ Nid1·d2·d3·d4 . Then, consider the cusp Cu4(ggg) it generates.
Definition 3.7. Assume ggg is not the shift of an H-M rep. (so (ggg)mp is not

trivial). Corresponding to the cases in Princ. 3.6, Cu4(ggg) is a pure-cycle (resp. split-
cycle) cusp if |U(ggg)| = 1 (resp. |U(ggg)| = 2 or 0).

Remark 3.8. In our applications here the triviality of H = Z(〈g, g′〉) ∩ 〈g′′〉
assumption in Princ. 3.5 holds. As in [BF02, Prop. 2.17], modding out by H gives
a completely general result.

Example 3.9 (Split-cycle cusp). Let n = 9 and (d1, d2, d3, d4) = (3, 5, 5, 7), so
Ni(A9,C3·5·5·7) satisfies the genus 0 assumption. Make a split-cycle cusp Cu4(ggg)
where (o1, o2, o3, o4) = (3, 5, 7, 5) by assigning values to i0, k,vvv1, vvv2,www1 www2 in the
formula in Princ. 3.6. As in (3.8), 1 + o(vvv1) + o(www1) = 5, 1 + o(vvv2) + o(www2) = 3,
k + o(vvv1) + o(vvv2) = 5 and k + o(www1) + o(www2) = 7.

So, 4 + 2 = 5 − k + 7 − k, or k = 3 and o(vvv1) = o(vvv2) = o(www2) = 1, o(www1) = 3.
With no loss:

(3.9) vvv1 = |4|, vvv2 = |5|,www1 = |6 7 8|,www2 = |9|.
For i0 = 1, g2 = (3 2 4 1 5) and g3 = (1 6 7 8 2 3 9) ((1 6 7 8 4)(3 9 5) = (ggg)mp); and
for i0 = 2 g2 = (3 4 2 1 5) and g3 = (1 2 6 7 8 3 9) (middle product (2 6 7 8 4)(3 9 5).

3.3. 2-cusps and the Liu-Osserman examples. Prop. 3.10 assumes the
genus 0, pure-cycle hypotheses of (2.14). For general r it gives a precise criterion
for an abelianized MT over any braid orbit on Ni(An,Cd1···dr

) def= Nid1···dr
. It says

there are no 2 cusps at (MT) level 0 for r = 4, but indicates how to find 2 cusps at
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level 1. Denote the order of g ∈ G by o(g). Cusp notation is from §2.2.2. Keep in
mind — though Prop. 3.10 doesn’t use it — that [LOs06, Cor. 4.11] says there is
only one braid orbit on Niabs

d1···dr
. Further, if there are two braid orbits on Niind1···dr

,
then conjugating by an element of Sn \ An (as in Prop. 4.1) joins them.

Proposition 3.10. Assume Niabs
d1···dr

is a Nielsen class of odd pure-cycle genus
0 covers, r ≥ 3. Then, G = An, n ≥ 4. For p = 2, there is a (nonempty) abelianized
MT above any component of H(An,Cd1···dr )

in if and only if

(3.10)
r∑

i=1

o(gi)2 − 1
8

≡ 0 mod 2.

For p �= 2, there is always a (nonempty) abelianized MT above any component of
H(An,Cd1···dr )

in. Further, if the di s are equal in pairs, there is always (irrespective
of p) a (full—not abelianized) MT over any component of H(An,Cd1···dr )

in. From
here on assume (3.10) holds (Ex. 3.11 has Liu-Osserman examples when it doesn’t).

Now assume r = 4. Then, all cusps (Def. 3.7) in Nid1·d2·d3·d4 are either g-2′

or o-2′. All g-2′ cusps are shifts of H-M reps, and all H-M reps give o-2′ cusps.
Let Cu4(ggg) be an o-2′ pure-cycle cusp. Then, U2,3(ggg) = Au and U1,4(ggg) = Av

for some u, v ≥ 4. All level 1 cusps above it are 2 cusps if and only if

(3.11)
o(g2)2 − 1

8
+

o(g3)2 − 1
8

+
o(g2g3)2 − 1

8
≡ 1 mod 2.

Let Cu4(ggg) be a split-cycle cusp with |U(ggg)| = 2 and (d1, d4) = d′. Then,
U2,3(ggg) = An and U1,4(ggg) = Z/d1 ×Z/d Z/d4 (natural fiber product over Z/d).
Assume (3.10) holds. Then, both 2 cusps and o-2′ cusps at level 1 lie over Cu4(ggg).

Proof. All appearances of alternating groups come directly from [Wm73],
whose hypothesis are a noncyclic, transitive subgroup of An, generated by odd
pure-cycles. Then, the group must be An, n ≥ 4. [LOs06, Thm. 5.3] gives more
detail (see Rem. 2.6). If we can exclude that G is cyclic, then G = An, n ≥ 4 in any
such Nielsen class. If, however, G = 〈h〉, then transitivity implies h is an n-cycle.
Apply the pure-cycle and genus 0 conditions. Conclude: all the gi s are invertible
powers of h. So, by R-H: 2(n − 1) = r(n − 1) and r = 2, contrary to hypothesis.

Consider, then, (3.10). Inv. Prop. 2.12 says this is the exact condition that
Ni(Spinn,Cd1···dr ) has a nonempty Hr orbit over any Hr orbit of Ni(An,Cd1···dr ).
Since the representation cover of An is Spinn, Prop. 2.15 says this is also the
exact condition there be an abelianized MT for p = 2 over any braid orbit of
Ni(An,Cd1···dr

). It also says there is no condition for this when p �= 2.
Now take r = 4 and apply Princ. 3.6 to consider cases for Cu4(ggg). First suppose

it is a g-2′ cusp. That means both U2,3(ggg) and U1,4(ggg), each generated by odd pure-
cycles, have orders prime to 2. From the previous paragraph this implies they are
cyclic groups. Therefore, (ggg)mp generates a common normal subgroup of these two
groups. This would be a normal subgroup of an alternating group G. The only
possibility G is not simple, is if it is An, n = 3 or 4. In both cases, however, the
entries of ggg would have to be 3-cycles. Apply R-H to see this gives 2(n− 1) = 4 · 2,
which works for neither n = 3 or 4. So, the middle product is trivial. Apply the
shift to conclude (ggg)sh is an H-M rep.
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Now suppose Cu4(ggg) is a pure-cycle cusp. (This includes the H-M rep. case.).
First exclude that U2,3(ggg) is cyclic. As above that would require all the odd pure-
cycles g2, g3, g2g3 (as given by Princ. 3.6) to be (invertible) powers of some pure-
cycle h. Since the support of h would also have to contain the supports of g1 and g4,
that would require h to be an n−cycle, contradicting again the genus 0 condition.
Thus, U2,3(ggg) and U1,4(ggg) are both alternating groups of degree exceeding 3.

Now consider ggg′ ∈ Ni(G1,C) (G1 = G1(An)) lying over ggg, an o-2′ cusp, where
G1 is the 1st p-Frattini of An. The exact condition that only p cusps (p = 2) in
Ni(G1,Cd1·d2·d3·d4) lie over Cu4(ggg) is that there are no o-2′ cusps Ni(G1,Cd1·d2·d3·d4)
over ggg. Let h = (ggg)mp, denoting its (2′) order by d. We simplify notation by not
indicating in which conjugacy class h ∈ Au lies, and establish the contrapositive.

In one direction, if ggg′ ∈ Ni(G1,C) gives an o-2′ cusp over ggg, then its image in
ggg∗ ∈ Ni(Spinn,Cddd) (uniquely determined by ggg given (3.10) is also o-2′. Since (the
cusp of) ggg is o-2′, with 〈g2, g3〉 = U2,3(ggg) = Au, Invariance Prop. 2.12 applies to
(g2, g3, h

−1). Then, the negation of (3.11) — that its left side is ≡ 0 mod 2 — is
the exact condition there is (g∗2 , g∗3 , (h∗)−1) ∈ Ni(Spinu,Cd2,d3,d) over (g2, g3, h

−1).
That is a consequence of ggg′ existing. The converse — constructing such an o-2′ ggg′

given the negation of (3.11) — is harder.
Consider 〈g1, g4〉 = U1,4(ggg) = Av and the analogous condition for (g4, g1, h)

being lifted to an element of Ni(Spinv,Cd2,d3,d). This is now automatic from com-
bining (3.10) and the negation of (3.11). As a special case of [Fr06a, Princ. 4.24]
(called F(rattini) Princ. 3), these respective Nielsen class elements give an o-2′ cusp
of Ni(G1(An),Cddd) over Cu4(ggg), showing the desired outcome of (3.11) not holding.

All that is left is to establish the analog for a split-cycle cusp. In this case,
since g1 and g4 have disjoint support, the analogous expression to the left side of
(3.10) is just the left side of (3.11). Given that the former holds then, the latter
reads as its negation. So, the previous argument — the lifting invariant does not
need pure-cycle elements to apply — gives that there are both 2 cusps and o-2′

cusps above ggg. �

Example 3.11 (Empty MTs over Liu-Osserman Nielsen classes). For r = 4,
check how to get ddd, satisfying 2(n− 1) ≡ ∑4

i=1 di − 1 (genus zero), for which there
is no abelianized MT over Niddd. Equivalent to this is failing (3.10): There is 1 or
3 of the di s equivalent to ±3 mod 8. If G = An with n ≡ 1 mod 4, then a case
check shows the genus 0 condition automatically forces (3.10).

For, however, n ≡ 3 mod 4, ddd with these unordered mod 8 entries will work:

1, 1, 1,−3;−1,−1,−1, 3; 1,−3,−3,−3.

For example, ddd = (5, 9, 9, 9) with n = 15. The case n is even can also happen,
though we leave that to the reader.

4. The Liu-Osserman case Ni( n+1
2 )4

This section shows the structure of the reduced spaces in the subcase of Liu-
Osserman from §2.5.2: Their cusps and their genuses, in particular. We denote this
case Ni( n+1

2 )4 with G = An: the conjugacy classes are four reps. of n+1
2 -cycles. This

is where level 0 of the MT contains an H-M rep., though it has a further specialness.
Our graphical presentation with sh-incidence matrices is the most memorable way
to consider the vast information coming from cusps.
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4.1. Cusps for Ni( n+1
2 )4 . Use the pure-cycle notation of §1.3.3. Prop. 3.10

says all g-2′ cusps in this case are sh applied to H-M cusps (g1, g
−1
1 , g2, g

−1
2 ). Fur-

ther, all remaining cusps are pure-cycle. With xi,j = (i i+1 · · · j), each inner H-M
class has one of two representatives:

H-M1
def= (xn+1

2 ,1, x1, n+1
2

, xn+1
2 ,n, xn, n+1

2
)

H-M2 = (H-M1)q1
def= (x1, n+1

2
, xn+1

2 ,1, xn+1
2 ,n, xn, n+1

2
)

The proof of the next result takes up the rest of this section, for which subsec-
tions do the respective cases of absolute and inner cusps.

Proposition 4.1. For n ≡ 5 mod 8, H-M1 and H-M2 are not inner equivalent.
So, there is one braid orbit on Ni(An,C( n+1

2 )4)
in.

For n ≡ 1 mod 8, if h ∈ Sn \ An, there is no braid between ggg and hgggh−1. So,
there are two braid orbits on Ni(An,C( n+1

2 )4)
in.

4.1.1. Cusps of Niabs,rd

( n+1
2 )4

. We first show how sh applied to the cusp of H-M1

gives representatives of all the absolute cusps. For U ≤ {1, . . . , n}, SU is the
collection of permutations of elements of U .

Lemma 4.2. A complete list of cusp representatives for Ni(An,C( n+1
2 )4)

abs,rd

comes from applying sh to elements (read subscripts mod n) in

Cu4(H-M1) = {H-M1,t = (xn+1
2 ,1, x1+t, n+1

2 +t, xn+1
2 +t,n+t, xn, n+1

2
)}n−1

t=0 .

Also, the order of the mp of the cusp representative equals the cusp width.

Proof. Table 1 consists of sh applied to elements of Cu4(H-M1). I’ve put the
expression “ord(g2g3):” (order of (ggg)mp) at the head of each table row.

Table 1. sh applied to elements of Cu4(H-M1)

[1 :]1 (H-M1,0)sh = (x1, n+1
2

, xn+1
2 ,n, xn, n+1

2
, xn+1

2 ,1)
[3 :]1 (H-M1,1)sh = (x2, n+3

2
, (n+3

2 . . . n 1), xn, n+1
2

, xn+1
2 ,1)

[5 :]1 (H-M1,2)sh = (x3, n+5
2

, (n+5
2 . . . n 1 2), xn, n+1

2
, xn+1

2 ,1)
· · ·

[n :]1 (H-M1, n−1
2

)sh = (xn+1
2 n, (n 1 . . . n−1

2 ), xn, n+1
2

, xn+1
2 ,1)

[n :]2 (H-M1, n+1
2

)sh = ((n+3
2 . . . n 1), x1, n+1

2
, xn, n+1

2
, xn+1

2 ,1)
· · ·

[5 :]2 (H-M1,n−2)sh = ((n−1 n 1 . . . n−3
2 ), xn−3

2 ,n−2, xn, n+1
2

, xn+1
2 ,1)

[3 :]2 (H-M1,n−1)sh = ((n 1 . . . n−1
2 ), xn−1

2 ,n−1, xn, n+1
2

, xn+1
2 ,1)

We want to know when the list above gives a complete set of representatives of
all cusps in the absolute case. Given ggg = (g1, g2, g3, g4) in the Nielsen class, denote
the centralizer (in Sn) of the pure cycle g2g3 by Cen(ggg)mp. Assume ord(g2g3) = k.
Princ. 3.1 shows any ggg′ with ord(g′2g

′
3) = k has an absolute Nielsen class rep. in

Tggg
def= {gggα

def= (g1, αg2α
−1, αg3α

−1, g4)}α∈Cen(ggg)mp, with 〈gggα〉 transitive.

So, we need to know if this collection of gggα (for a given k) appears in the collection
of cusps listed above. For each odd k > 1, there are two rows headed by [k :].
Denote them respectively [k :]1 and [k :]2.
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To fix the ideas, look at [3 :]1, denoting its 4-tuple by ggg. The respective Cen(ggg)mp

of the middle product is 〈(n+1
2 1 n+3

2 ), S2,..., n−1
2 , n+5

2 ,...,n〉, but if α moves one of
n+5

2 , . . . , n to one of 2, . . . , n−1
2 , then gggα won’t be transitive. Further, S2,..., n−1

2
is

Cen〈g2,g3〉 and Sn+5
2 ,...,n is Cen〈g1,g4〉. Finally:

(4.1a) For α ∈ Tggg, gggα and gggu1,4αu2,3
, u2,3 ∈ Cen〈g2,g3〉 and u1,4 ∈ Cen〈g1,g4〉,

represent the same Nielsen class.
(4.1b) The cusp generated by ggg′α ∈ Tggg consists of {gggα}α∈〈( n+1

2 1 n+3
2 )〉α′ .

Adjusting for the other rows marked [5 :]1, [7 :]1 . . . , [n :]1 shows each absolute
cusp with middle product k is in the row marked [k :]1. In particular, (3.5) from
Princ. 3.5 implies the cusp width is also k. �

4.1.2. Cusps of Niin,rd

( n+1
2 )4

. For all but the width 2 cusp there are two inner cusps
for each absolute cusp. We inspect Table 1 more closely to find which of the inner
cusps have representatives in it.

Lemma 4.3. For n ≡ 5 mod 8, there is one braid orbit on Niin,rd

( n+1
2 )4

, with these

cusps: (H-M1)sh represents the unique cusp of middle product 1 (width 2); and for
each odd 3 ≤ k ≤ n, there are exactly two inner cusps of width k. For k−1

2 odd
(3 ≤ k < n) [k :]1 and [k :]2 represent these in Table 1, while for k−1

2 even, [k :]1
and [k :]2 represent the same cusp.

For n ≡ 1 mod 8, there are two braid orbits O1 and O2 on Niin,rd

( n+1
2 )4

, re-

spectively containing the following cusp representatives: H-M1 and βH-M1β
−1,

β ∈ Sn \ An (cusp width 1). For each j = 1, 2, and odd 1 ≤ k ≤ n, there is
exactly one inner cusp of width k in Oj.

Proof. Now we adjust Lem. 4.2 for inner cusps. Use [BiF82, Lem. 3.8]: For
each h ∈ G there is a braid that goes from ggg ∈ Ni(G,C) to hgggh−1. When G = An,
for any h ∈ Sn, there is a braid from ggg to hgggh−1 if and only if there is such a braid
for one case of h ∈ Sn \ An.

Now replace H-M1 with H-M2. The analogous table of absolute cusps for H-M2

must, by the argument above, be exactly the same as that for H-M1. Apply q1 to
H-M2 to get H-M1. This braid is equivalent to conjugation by

β′ = (2 n+1
2 )(3 n−1

2 ) · · · (n−1
4

n+1
4 ).

We have listed every absolute class that comes from applying M̄4 to H-M1 in
Table 1. So, we get one (resp. 2) M̄4 orbits on Niin,rd

( n+1
2 )4

, if and only if β is (resp. is

not) in Sn \An. These cases occur, respectively, for n ≡ 5 mod 8 (resp. 1 mod 8),
and in these cases H-M1 represents an inner cusp of width 2 (resp. 1).

Now consider the case n ≡ 5 mod 8. Then, ((H-M1)sh)q2 = (H-M2)sh. By
the above, this means there is one inner, reduced cusp of width 2, consisting of the
shifts of the H-M reps. Now we show the rows in Table 1 corresponding to [3 :]1
and [3 :]2 are resp. reps. of the two inner cusps.

From Lem. 4.2, we know some element of Sn conjugates [3 :]2 into the cusp of
[3 :]1. The statement in the lemma requires showing this is an element of Sn \ An.
Princ. 3.5 tells precisely the cusp orbit of [3 :]1 (or [3 :]2): run through the orbit of
conjugation of the middle pair of [3 :]1 = (g1, g2, g3, g4) by (powers of)

(([3 :]1)mp = g2g3 = (1 n+3
2

n+1
2 ) def= h.
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This adds (g1, hg2h
−1, hg3h

−1, g4) and (g1, h
−1g2h, h−1g3h, g4) to get the full orbit.

Conjugate [3 :]2 by the inverse of xn+1
2 ,1, and then by (n n+3

2 ) — total conju-
gation by an element of Sn \ An — to get its outer (1st and 4th) entries to be the
same as those of [3 :]1. So, by our cusp characterization, the result must be in cusp
of [3 :]1. We are done with this case.

To see the continuing pattern we’ll do a similar calculation comparing [5 :]1 and
[5 :]2 (the result holds for n = 5, but note the next sentence). In this case, the cusp
orbit of [5 :]1 has Nielsen class reps. from the orbit from conjugating the middle
pair in [5 :]1 by the 5+1

2 -th (3rd) power of ([5 :]1)mp. Conjugate [5 :]2 by (xn+1
2 ,1)

−2

times (n−1 n+3
2 )(n n+5

2 ) (just one disjoint cycle if n = 5) to get

[5 :]′2
def= (x3, n+5

2
, •, •, xn+1

2 ,1),

which again is in the cusp of [5 :]1. For n = 5, only the first disjoint cycle appears.
The pattern appears from this.

Substituting H-M2 for H-M1 gives the same pattern, but in each line of Table
1, you get the complementary cusp. The case n ≡ 1 mod 8 is much simpler. �

When n ≡ 1 mod 8, Lem. 4.3 says there are two separate braid orbits, so two
projective space components H̄i(An,C( n+1

2 )4)
in,rd, i = 1, 2. Each maps one-one to

H̄(An,C( n+1
2 )4)

abs,rd. This identifies geometric cusps on each H̄i(An,C( n+1
2 )4)

in,rd

with those of H̄(An,C( n+1
2 )4)

abs,rd. So, we can denote the cusps simply as Cuspk,
running over 1 ≤ k ≤ n odd.

Prop. 6.3 finds (and explains) that as moduli spaces, while H̄(An,C( n+1
2 )4)

abs,rd

has definition field Q, the spaces H̄i(An,C( n+1
2 )4)

in,rd are conjugate over a quadratic
extension of Q. For n ≡ 5 mod 8, H̄(An,C( n+1

2 )4)
in,rd → H̄(An,C( n+1

2 )4)
abs,rd is

a degree 2 cover of absolutely irreducible Q varieties, and we need more intricate
notation for the cusps.

Definition 4.4. For n ≡ 5 mod 8 denote the unique width 2 cusp by Cusp1.
For k ≡ 3 mod 4, denote the distinct cusps represented by [k :]i by Cuspk,i, i = 1, 2.
For k ≡ 1 mod 4, denote the cusp represented by [k :]1 by Cuspk,1 = CuspH-M

1, k−1
2

,

([k :]2 represents the same cusp) and the cusp CuspH-M
2, k−1

2

by Cuspk,2. You may

assume representatives gggi ∈ Cuspk,i, i = 1, 2 both have xn+1
2 ,1 in their 4th positions.

Then, their first entries differ by a conjugate of Sn \ An.

4.2. sh-incidence for Niin,rd

( n+1
2 )4

. §4.2.1 introduces the sh-incidence matrix.
Then §4.2.2 uses it to put order in the naming of the inner cusps, and computes it
for Ni(A5,C34)in,rd. §4.3 computes the matrix for all Niin,rd

( n+1
2 )4

. Prop. 4.9 uses this

to compute the genus of the spaces H̄(An,C( n+1
2 )4)

in,rd, n ≡ 5 mod 8.
4.2.1. Using the sh-incidence matrix. The sh-incidence matrix is a pairing on

cusps (as Cur orbits of reduced Nielsen classes) [BF02, §2.10]:

(O, O′) → |O ∩ (O′)sh|.
It makes sense for all r ≥ 4, and applies to all reduced Nielsen class types. For
r = 4 it is symmetric. It summarizes much data on inner and absolute classes to
simplify computing the genus of reduced Hurwitz spaces. For example, we have the
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following. Take γ′
0, γ′

1 and γ′
∞ to be the actions of γ0, γ1, γ∞ on Ni(G,C)∗,rd with

∗ the inner or absolute classes as in §2.3.
A tautological appearance of entries comes from this identity:

(4.2) (((ggg)qj
2)sh)in,rd = (((ggg)qj

2))
in,rd)sh.

In words: The pairing of the cusp of ggg with the cusp of each shift in the cusp of ggg
contributes 1 to a position in the matrix.

The next lemma shows fixed points of either γ′
0 or γ′

1 contribute to the main
diagonal of the sh-incidence matrix. Still, the converse doesn’t hold. For example,
Table 6, for the sh-incidence matrix labeled Ni+0 , has a nonzero diagonal entry,
though neither γ′

0 nor γ′
1 has a fixed point.

Lemma 4.5. The sh incidence pairing applied to all cusps in a reduced Nielsen
class has its irreducible blocks corresponding one-one to the braid orbits (compo-
nents). Further, we can replace the shift (represented by q1q2q1) by q1q2 (represent-
ing γ0) to form the matrix.

In particular, if either γ′
0 or γ′

1 fix a representative in the Nielsen class then
that contributes an element in the diagonal of the matrix.

Proof. The first sentence is from [BF02, Lem. 2.26]. So, we show the second.
Consider the effect of q1q2 mod Cu4 on ggg ∈ cOggg. It gets mapped to exactly

the same place as q2q1q2 maps ggg′ = (ggg)q−1
2 ∈ cOggg. One of the braid relations

is q2q1q2 = q1q2q1 and mod Cu4, this is the shift. By the definition of the sh-
incidence matrix, something fixed by the shift will be in the intersection of O and
(O)sh. This concludes the proof. �

4.2.2. sh-incidence matrices and naming cusps. Continue with n ≡ 5 mod 8.
To start naming cusps, denote the unique cusp of middle product (mp) 1 and width
2 by O1,2. Therefore,

O1,2 = Cusp(H-M1)sh = Cusp(H-M2)sh = ((H-M1)sh)in,rd ∪ ((H-M2)sh)in,rd.

Already this fills in the column pairing O1,2 with the other cusps — see Table 2
— as the sum of the entries in the column will be the cusp width (2 in this case)
and pairing of O1,2 with Cusp(H-Mi) is 1, fulfilled by ((H-Mi)sh)in,rd.

Denote the cusp represented by (both) [n :]i, i = 1, 2, by On,n;1 (the first of two
cusps of mp n and width n). The following identifies this with CuspH-M2

:

(4.3) (H-M2)sh2 = (xn+1
2 ,n, xn, n+1

2
, x1, n+1

2
, xn+1

2 ,1) = ([n :]1)q−1
2 .

That is, [n :]i s are in the cusp of H-M2. So, On,n;1 is the cusp of H-M2. The n
fulfilling elements for all nontrivial intersections of (On,n;2)sh comprise the list of
Table 1. To whit: The column for On,n;1 in the pairing of the sh-incidence matrix
is fulfilled by elements listed in Table 1. These add up to n elements. All that is
missing is a naming of the cusps, and this gives us one.

Denote the cusp of [k :]i by Ok,k;i if k ≡ 3 mod 4. Otherwise, for everything
else in Table 1 of odd width, denote the cusp of [k :]i by Ok,k;1, and the other cusp
of width k by Ok,k;2. Table 2 does the case n = 5 so we can see what we’ve already
determined of the sh-incidence matrix.

Between the symmetry of Table 2, and the comments above (including that
column entries sum to the cusp width), the only unfinished point is the value of
O3,3,i paired with itself, leaving that the pairing of O3,3,1 with O3,3,2 is 1.
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Table 2. sh-incidence Matrix: r = 4 and Niin,rd
34

Cusp orbit O5,5;1 O5,5;2 O3,3;1 O3,3;2 O1,2

O5,5;1 0 2 1 1 1
O5,5;2 2 0 1 1 1
O3,3;1 1 1 0 1 0
O3,3;2 1 1 1 0 0
O1,2 1 1 0 0 0

Proposition 4.6. The genus g34 of H̄(A5,C34)in,rd is 0.
There are no 2 cusps at level 0. Yet, every cusp at level 1 over each of the

non H-M cusps, is a 2-cusp. So, there are at least four 2 cusps on every level 1
component of the MT for p = 2. In particular, the Main Conjecture holds for p = 2
and all component branches.

The only other prime of consideration is p = 5, and the Main Conjecture holds
for this prime, too, for all H-M component branches.

Proof. Apply (2.10) to get γ′
0, γ

′
1, γ

′
∞ acting on the unique braid orbit on

(A5,C34). The diagonal entries of the sh-incidence matrix has only 0’s. According
to Lem. 4.5, that means neither γ′

0 nor γ′
1 has a fixed point. So, we have a degree

18 cover of the j-line. R-H gives its genus g34 through

(4.4)
2(18 + g34 − 1) = ind(γ′

0) + ind(γ′
1) + ind(γ′

∞) =
2(18/3) + 18/2 + (1 + 2(2 + 4)) : g34 = 0.

Apply Prop. 3.10 to the cusps of width 3 and 5. Respectively, since 32−1
8 and

52−1
8 are ≡ 1 mod 2, all cusps about these are 2 cusps. In particular, any level 1

component has at least four 2 cusps. Therefore, the Main Conjecture is automatic
for any component branch for p = 2 (Prop. 2.8).

The two H-M rep. cusps are already 5 cusps at level 0. Princ. 3.3 therefore
shows for p = 5, there are at least three 5 cusps on every H-M level 1 component.
In particular the Main Conjecture holds for any component branch going through
a level 1 H-M component. If, however, a component is not H-M at level 1, we only
can guarantee two 5 cusps. �

Remark 4.7 (Distinction between non-H-M and H-M level 1 components). An
H-M component — a Hurwitz space component containing an H-M cusp (§3.1.2) —
figures in many applications of the moduli approach to properties of GQ (as in §7.2).
Level 0 of a MT over H̄(A5,C34)in,rd being an H-M component doesn’t guarantee
the same for level 1, even an abelianized MT. For example, H̄(G1(A4),C34)in,rd

(that’s A4, not A5; §6.5.2) has six components. Three of those are level 1 of a p = 2
MT over H(A4,C34)in,rd and one of those is not H-M.

Further, to show the MC for all allowable primes for just the infinite collection
of Nielsen classes of Prop. 4.6 will require general principles, to avoid detailed
calculations about non-H-M components. §6.2 completes Prop. 4.6 by showing all
level 1 components for a p = 5 MT over H̄(A5,C34)in,rd have at least three 5-cusps,
so the MC holds. A guess at a general braid orbit principle applied here, though
we computed using [GAP00] to assure it held.
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4.3. Rest of Ni(An,C( n+1
2 )4) sh-inc. matrix. The [3 :]1 row of Table 1 is

(x2, n+3
2

, (n+3
2 . . . n 1), xn, n+1

2
, xn+1

2 ,1), with middle product (1 n+3
2

n+1
2 ). Here are

(2nd, 3rd) positions of reps. of ((([3 :]1)q
j
2)sh)in, j = 1, 2:

(4.5)
hhh3,1 = ((n . . . n+5

2
n+1

2 1), xn+1
2 ,1)

hhh3,2 = ((n . . . n+5
2 1 n+3

2 ), xn+1
2 ,1).

Prop. 4.8 reduces the computation of the inner, reduced sh-incidence matrix to
deciding if a collection of conjugations between pairs of length n+1

2 pure-cycles is
or is not in An+1

2
. The actual sh-incidence display is completed in §4.3.2.

4.3.1. Reduction to finding conjugating elements. To aid in following notation,
we make explicit asides on the sh-incidence column for the cusp of [3 :]1. The
respective products of entries of hhh3,1 and hhh3,2 are

(n . . . n+5
2

n+1
2 . . . 2) and (n . . . n+5

2 1 n+1
2 . . . 2 n+3

2 ).

Denote the alternating (resp. symmetric) group acting on {n+3
2 , . . . , n} by An+3

2 ,n

(resp. Sn+3
2 ,n) and the group generated by xn+1

2 ,1 and An+3
2 ,n (resp. Sn+3

2 ,n) by
Ua

n (resp. Us
n). Also, denote k−1 − |2u − (k−1)|) by mk,u. A key to Prop. 4.8 is

applying q−1
1 q3, leaving the reduced Nielsen class unchanged.

Proposition 4.8. The cusps of

([n :]1)in,rd, ([n :]2)in,rd and ([n−2:]2)in,rd

each have one intersection with (Cusp[3:]1)sh. This accounts for all nonzero entries
in the column of the cusp of [3 :]j, j = 1, 2.

Denote (1 . . . k−1
2

n+k
2

n+k−2
2 . . . n+1

2 ) by αk. Use notation from Def. 4.4.
Then, Cusp�,1 and Cusp�,2 consist of inner reduced Nielsen classes represented by

k,uggg
def= (αu

kxn, n+1
2

α−u
k , •, •, xn+1

2 ,1)

with 	 = n − mk,u. Conjugation of k,uggg by an element of Us
n leaves the 4th entry

fixed. Further, k,uggg is then in Cusp�,1 if and only if αu
kxn, n+1

2
α−u

k mod Ua
n is

xn+1
2 −mk,u

2 ,n−mk,u
2

(the first entry of [	 :]1 in Table 1).
.

Proof. Three distinct sets of form gggin,rd comprise (Cusp[3:]1)sh. §4.2.2 shows
([n :]1)in,rd and ([n :]2)in,rd give two. Then, ggg∗ = ((n+1

2
n+5

2 . . . n n+3
2 ),hhh3,1, x2, n+3

2
)

is the 3rd, and it is in the cusp of one of ([n−2:]1)in,rd or ([n−2:]2)in,rd.
Apply q−1

1 q3 to ggg∗ to get the 4th entry xn+1
2 ,1:

gggn−2,2 def= ((n . . . n+5
2

n+1
2 1), •, •xn+1

2 ,1).

Conjugate [n−2:]2 = ((n+5
2 . . . n 1 2), x2, n+3

2
, xn, n+1

2
, xn+1

2 ,1) by xn+1
2 ,1 to get

ggg3,1 def= ((n+5
2 . . . n n+1

2 1), •, •, xn+1
2 ,1).

Apply the strategy of Def. 4.4: With β = (n n+5
2 )(n−1 n+7

2 ) · · · , β−1gggn−2,2β

is in the cusp of ggg3,1. Further, β is a product of (n − (n+5
2 ))/2 disjoint cycles.

This is an even number since n ≡ 5 mod 8. That accounts for the column in the
sh-incidence matrix for the cusp of [3 :]1. There is a similar accounting for [3 :]2,
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one intersection with each of the cusps for H-M1 and H-M2, and one intersection
with the cusp of [n−2:]1.

Now we extend the pattern above for computing into which cusp does the shift
of inner, reduced elements fall in the cusp columns of the other [k :]j , j = 1, 2. With
αk, as in the statement, apply Princ. 3.5 and q−1

1 q3 as above. This gives

k,uggg = (αu
kxn, n+1

2
α−u

k , •, •, xn+1
2 ,1).

The following steps give the sh-incidence matrix.
(4.6a) As (k, u) varies, 3 ≤ k ≤ n odd and 0 ≤ u ≤ k−1, compute

	 = ord((k,uggg)mp) = ord(xn+1
2 ,1 · αu

kxn, n+1
2

α−u
k ).

(4.6b) Then, (k, u) contributes 1 to Cusp�,1 (resp. Cusp�,2) if αu
kxn, n+1

2
α−u

k is
(resp. isn’t) conjugate by Ua

n to the first entry of [	 :]1.
For k = 5 and u from 0 to the value of αu

kxn, n+1
2

α−u
k attached to (k, u) appears

on the left in (4.7); and for k = 7 and u from 0 to 6 on the right. To the left of each
entry is 	 = ord((k,uggg)mp) followed by a “:”. Here 	 is n minus two numbers: the
cardinality of the subset of {n+k

2 , . . . , n+3
2 } (resp. of {1, 2, . . . , n+1

2 }) missing from
αu

kxn, n+1
2

α−u
k (resp. moved by αu

kxn, n+1
2

α−u
k as in x1, n+1

2
).

(4.7)

n : xn, n+1
2

n : xn, n+1
2

n−2 : (n . . . n+7
2

n+3
2

n+1
2 1) n−2 : (n . . . n+9

2
n+5

2
n+3

2
n+1

2 1)
n−4 : (n . . . n+7

2
n+1

2 1 2) n−4 : (n . . . n+9
2

n+3
2

n+1
2 1 2)

n−2 : (n . . . n+7
2 1 2 n+5

2 ) n−6 : (n . . . n+9
2

n+1
2 1 2 3)

n : (n . . . n+7
2 2 n+5

2
n+3

2 ) n−4 : (n . . . n+9
2 1 2 3 n+7

2 )
n−2 : (n . . . n+9

2 2 3 n+7
2

n+5
2 )

n : (n . . . n+9
2 3 n+7

2
n+5

2
n+3

2 ).

The pattern is clear, even if cumbersome in those fractionally represented in-
tegers. For u from 0 to k−1

2 (resp. k+1
2 to k−1), mk,u is u (resp. k−1 − u). First

consider 0 ≤ u ≤ k−1
2 , so the entry in (4.7) for a general (n, k) has this shape:

(4.8) (n . . . n+k+2
2 |xn+k−2u

2 , n+3
2
|n+1

2 x1,u).
The dividers | are just to visually separate sections of the permutation.

For such a u, k,uggg is in Cusp�,1 if and only if (4.8) is in xn+1
2 −u,n−u mod Ua

n

(the first entry of [	 :]1). Conjugate by a power of x1, n+1
2

∈ Ua
n to change the

segment |n+1
2 x1,u| to |xn+1−2u

2 , n+1
2
|. By cycling the last two segments to the front,

(4.9) (xn+k−2u
2 , n+3

2
|xn+1−2u

2 , n+1
2
|xn,n−u+1|xn−u, n+k+2

2
)

is the same permutation.
For k+1

2 ≤ u ≤ k−1, denote k−1 − u by u′. Then, here is the analog of (4.9):

(4.10) (xn+1−2u′
2 , n+1

2
|xn+k

2 , n+3+2u′
2

|xn,n−u′+1|xn−u′, n+k+2
2

).

This proof is done; §4.3.2 uses this to produce the precise sh-incidence matrix. �

4.3.2. Completing sh-incidence entries. The conclusion of this section is the
desired sh-incidence matrix. It behooves breaking the parameter u into two ranges.
We start with 0 ≤ u ≤ k−1

2 . As at the conclusion of the Prop. 4.8 proof, for each
such (k, u) check if an element of An+3

2 ,n conjugates (4.9) to xn+1
2 −u,n−u.
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Consider this example: In (4.7), compare the k = 7 column, the first position
labeled n−4 (u = 2) — using the element from the inner, reduced representative

ggg′ = (n+3
2

n−3
2

n−1
2

n+1
2 |n n−1|n−2 . . . n+9

2 )

in (4.9), except I’ve removed the first division — with the first position

g′′ = (n−3
2

n−1
2

n+1
2

n+3
2 |n+5

2
n+7

2 |n+9
2 . . . n−2)

of [n−2 :]1. We want the parity of the permutation from Sn+3
2 ,n that conjugates

between these two. The divisions in the two permutations correspond, and the
desired permutation is β7,2 = β7,2,1β7,2,2β7,2,3 with these comprising β s as follows:

(4.11) β7,2,1, a 4-cycle, cycles n−3
2 , n−1

2 , n+1
2 , n+3

2 ; β7,2,2 = (n n+5
2 )(n−1 n+7

2 );
and β7,2,3 is the inverting permutation from Lem. 1.1 whose parity in
this case is (−1)(n−2−n+9

2 )/2) = 1.
Conclude: β7,2 has parity -1, and the (7, 2) term in (4.7) is in Cusp13,7,2.
We fill notation for the general case using the (7,2) example plan (above).

Remove the first division in (4.9). We form βk,u,j , j = 1, 2, 3, to conjugate each of
three divisions in (4.9) to its correspondant in the first position of [n−2u :]1 for k:

(4.12) (xn+1−2u
2 , n+k−2u

2
|xn+k−2u+2

2 , n+k
2

|xn+k+2
2 ,n−u).

Conjugate |xn+1−2u
2 , n+k−2u

2
| to |xn+3

2 , n+k−2u
2

xn+1−2u
2 , n+1

2
| using xt′

n+1−2u
2 , n+k−2u

2
with

t′ = n+k−2u
2 −n+3

2 +1 = k−2u−1
2 . To get βk,u,1 combine this with the Lem. 1.1 conju-

gation inverting xn+3
2 , n+k−2u

2
. The former has parity (−1)t′·( k−1

2 ) = (−1)(
k−1
2 −u)·( k−1

2 ).

The latter has parity (−1)(
n+k−2u

2 −n+3
2 )/2 = (−1)(

k−3
2 −u)/2 if k−3

2 ≡ u mod 2, and
(−1)(

k−1
2 −u)/2 otherwise.

The parity of βk,u,1 is the product of these. Check the cases: For k−1
2 −u even

(resp. odd), this parity is (−1)(
k−1
2 −u)/2 (resp. (−1)(

k−1
2 −u+1)/2).

As with our example (k = 7, u = 2), βk,u,2 is clearly a product of u disjoint
transpositions, so its parity is (−1)u.

Similarly, if n−k−2
2 −u is even (resp. odd), apply Lem. 1.1 to get the parity of

βk,u,3 to be (−1)(
n−k−2

2 −u)/2 (resp. (−1)(
n−k

2 −u)/2). Since n ≡ 5 mod 8, an n-free
form of the parity replaces it by 5 to get (−1)(

k−3
2 +u)/2 (resp. (−1)(

k−5
2 +u)/2).

There’s no need to start all over with the case k+1
2 ≤ u ≤ k−1. Just check if

an element of An+3
2 ,n conjugates (4.9) to (4.10), where in the latter u′ is set equal

to u. If so they are both in the same inner, reduced cusp, and otherwise in the
complementary cusps for the given value of the middle product. In both (4.9) and
(4.10) join the 3rd and 4th divisions, and in the former replace by the equivalent
permutation where the first division has been placed at the end. We are left to
compare the two rows in this expression:

(4.13)
(xn+1−2u

2 , n+1
2
|xn, n+k+2

2
|xn+k−2u

2 , n+3
2

)
(xn+1−2u

2 , n+1
2
|xn+k

2 , n+3+2u
2

|xn, n+k+2
2

).

To continue, conjugate the corresponding integers in the 2nd division of the bottom
row to the integers in the 3rd division of the top row:

n+k
2 
→n+k−2u

2 ,..., n+3+2u
2 
→n+3

2 .

A product of k−2u−1
2 disjoint transpositions, γk,u,1, of parity (−1)

k−2u−1
2 gives this.
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To finish, conjugate by γk,u,2 = (xn+k−2u
2 , n+3

2
xn, n+k+2

2
)t′′ to cycle the 2nd di-

vision of |xn+k−2u
2 , n+3

2
|xn, n+k+2

2
| past the 1st: t′′ is the length, n+k−2u

2 − n+1
2 , of

xn+k−2u
2 , n+3

2
. So, γk,u,2 has parity (−1)

k−2u−1
2 ·( n−2u−3

2 ). Again, since n ≡ 5 mod 8

this has the n-free form (−1)
k−2u−1

2 (u−1). Then, let γk,u = γk,u,1γk,u,2.
The next expression is for convenient use of the previous computations in §4.3.3.

Since k+1
2 −u+ 3−k

2 −u = 1−2u, an odd number, if k+1
2 −u is odd (resp. even) then

3−k
2 −u is even (resp. odd). This gives us simple expressions for βk,u differentiating

between just two cases.

(4.14a) If k+1
2 − u is odd, then βk,u = (−1)(

k−1
2 −u+1)/2(−1)u(−1)(

3−k
2 −u)/2.

(4.14b) If k+1
2 − u is even, then βk,u = (−1)(

k−1
2 −u)/2(−1)u(−1)(

3−k
2 −u+1)/2.

4.3.3. Actual display of the sh-incidence matrix. Following Table 2, label the
general sh-incidence matrix for n ≡ 5 mod 8 so its columns (or rows) in order are

On,n;1, On,n;2, On−2;n−2;1, On−2,n−2;2, . . . , O3,3;1, O3,3;2, O1,2.

Notation for the u, v;w subscript: u is the middle product of a cusp rep.; v indicates
the cusp width (as a ramified point in the j-line cover); and w distinguishes the
inner reduced cusps with given u, v (if there is more than one).

For a given n, our previous parameters (k, u) where a convenient way to list
inner reduced Nielsen class elements, with the understanding the pattern of what
cusp into which its shift fell, as (k, u) varied mod 8. We now use these to con-
sider notation for the row denoted O�,�;1; it will be immediate then how to get
O�,�;2. Since that notation is redundant — meant to consider more general cases
where subscripts won’t be repeated — replace O�,�;j with O′

�;j to shorten the matrix
display. Leave the notation O1,2 for the one exceptional cusp.

Denote the sh-incidence matrix by I(An,C( n+1
2 )4)

in, with its ((	; j), (	′; j′))-
entry labeled I(�;j),(�′;j′). To make less of a distinction with the (1,2) subscript, we
sometimes use 	̄ to denote (	; j), and then include (1, 2) as another 	̄.

Proposition 4.9. For n ≡ 5 mod 8, the I(�;j),(�′;j′) are all 0, 1 or 2, and they
satisfy these additional rules.

(4.15a) Symmetry: I�̄,�̄′ = I�̄,�̄′ .
(4.15b) Width sum: Entries in the row for O�;j (resp. O1,2) sum to 	 (resp. 2).
(4.15c) I(�;1),(�′;1) + I(�;1),(�′;2) = 2 (resp. 1) if 	′ = n−2u and 0 ≤ u < k−1

2

(resp. u = k−1
2 ) and 0 otherwise.

Diagonal entries occur only when ?? The genus of H(An,C( n+1
2 )4)

in,rd is
ggg( n+1

2 )4 in the following expression.

Proof. As a warmup, here are the last three rows with a listing of the columns
in a style used below. The first two are from the opening paragraph of Prop. 4.8,
with the last from the first line of Prop. 4.1.

Table 3. Rows for O′
3,1, O′

3,2 and O1,2

Cusp orbit O′
n;1 O′

n;2 O′
n−2;1 O′

n−2;2 . . . O′
3;1 O′

3;2 O1,2

O′
3;1 1 1 0 1 . . . 0 0 0

O′
3;2 1 1 1 0 . . . 0 0 0

O1,2 1 1 0 0 . . . 0 0 0
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Table 4. Intersections of O′
5,1, O′

7,1, O′
9,1, O′

11,1 with O�,1

Cusp orbit O′
n;1 O′

n−2;1 O′
n−4;1 O′

n−6;1 O′
n−8;1 O′

n−10;1 O′
n−12;1 . . .

O′
11;1 1 1 0 1 0 0 0 0

O′
9;1 0 1 0 0 0 0 0 0

O′
7;1 1 1 0 0 0 0 0 0

O′
5;1 0 1 0 0 0 0 0 0

Table 5. Intersections of O′
5,1, O′

7,1, O′
9,1, O′

11,1 with O�,2

Cusp orbit O′
n;2 O′

n−2;2 O′
n−4;2 O′

n−6;2 O′
n−8;2 O′

n−10;2 O′
n−12;2 . . .

O′
11;1 1 1 0 1 0 0 0 0

O′
9;1 2 1 0 0 0 0 0 0

O′
7;1 1 1 0 0 0 0 0 0

O′
5;1 2 1 0 0 0 0 0 0

Expression (4.6) gives values I(�,1),(�′,1) of the row of O′
�,1, 	 = 5, 6, 9 and 11:

	 = n−mk,u with mk,u = k−1 − |2u − (k−1)|, as in Prop. 4.8. This is compatible
with reading columns of (4.7) as rows, thereby fixing 	 (and k), and changing u.

The column for O′
n,1 in Table 4 comes from Lem. 4.3 and choice of represen-

tatives for O′
n,j given in §4.2.2. The rest is from computing the values of βk,u,

0 ≤ u ≤ k−1
2 , and βk,u− k−1

2
γk,u− k−1

2
for k+1

2 ≤ u ≤ k, with k running over 5,7,9,11
from (4.14). The formulas (4.15) show why it suffices to know just Tables 3 and 4 to
completely fill the whole sh-incidence matrix. For example, the respective entries
in the columns for O′

n,j in Tables 4 and 5 sum to 2 (as expected from (4.15c)), as
does the rest of Table 5 follow from Table 4.

�

Proposition 4.10.
Remark 4.11. There is a sh-incidence matrix I(An,C( n+1

2 )4)
abs as well.

5. 2 cusps on Liu-Osserman MTs

5.1. Spin invariant assures 2 cusps at level 1. 2cusps-level1 2spire-level1
Corollary 5.1. Describe exactly why all (An,C( n+1

2 )4) have 2 cusps at level
1 on any MT over (An,C( n+1

2 )4).

Corollary 5.2. That for the case n ≡ 5 mod 8 that they have a 2-Spire at
level one.

6. How to approach primes different from 2

§6.3 considers the rest of the odd order pure-cycles cases of Liu-Osserman.
Finally, §6.5 gives one example from the list of Ex. 2.18. This shows issues involved
in dropping the condition that the absolute spaces represent genus 0 covers in
(2.14b). Considering it may seem slight, since G = A4 is such an “easy” group.
Yet, it is our most important example for using this paper to head toward a general
proof of the Main Conjecture.

Much of the idea of this section is general. The missing general ingredient is a
purely modular representation step. We consider if there are non-H-M braid orbits
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on Ni(G1(A5),C34 , p = 5). The Main Conjecture holds for any component branch
through them if there are at least three 5 cusps at level 1.

To prove the following result we look carefully at how to write out the level
1 sh-incidence matrix for Ni(PSL2(Z/52),C34 , p = 5)in,rd, recognizing the Hurwitz
components for this cover the unique component for Ni(A5,C34), and the level 1
components all factor through some one of these components.

Proposition 6.1. Each braid orbit on Ni(PSL2(Z/52),C34)in,rd has two rep-
resentives over H-M1. Therefore, the Main Conjecture holds for all MTs for
(A5,C34 , p = 5) and therefore for all MTs with level 0 equal to Ni(A5,C34)in,rd.

§6.1 shows why it suffices to consider Ni(PSL2(Z/52),C34)in,rd to conclude
Prop. 6.1. §6.2 considers how to compute the cusps of Ni(PSL2(Z/52),C34)in,rd,
and the corresponding sh-incidence matrix.

6.1. Relation of Ni(G1(A5),C34 , p = 5) to Ni(PSL2(Z/52),C34). Make use
of PSL2(Z/5) = A5 using the notation 02 (resp. I2) for the 2×2 zero (resp. identity)

matrix. Then, A1 =
(

0 1
−1 0

)
has order 2 mod {±I2}. We can see A4 in A5 as a

Klein 4-group with a Z/3 action. Nonzero representatives of the Klein 4-group are

order 2 matrices commuting with A1 mod ± I2: A2 =
(

0 2
2 0

)
and A3 =

(
3 0
0 2

)
are representatives of the two non-identity classes. Note: Traces of the involution
conjugacy class are 0.

A generator α ∈ Z/3 in A4 conjugates A1 to A2: αA1 = A2α: α =
(

2 −3
1 −1

)
is

a trace 1 representative. So, ±1 is the trace of all elements in the order 3 conjugacy
PSL2(Z/5) class. To get A5, throw into this copy of A4 an element of order 5 by

finding a representative β ∈ SL2(Z/5) of trace 2 or 3: β =
(

2 1
1 1

)
will do. Note:

These representatives canonically lift to have determinant 1 in SL2(Z/52).
From [Fr95, Rem. 2.10]:
(6.1a) ker(G1(A5) → A5) is a module with Loewy display U5 → U5 with U5

the trace 0 matrices in M2(Z/5); and
(6.1b) G1(A5) → A5 factors through PSL2(Z/52) → PSL2(Z/5).
Finally, we find in PSL2(Z/5) two H-M reps. with middle product order 5. As

αβ =
(

1 −1
1 0

)
= γ has trace 1, take H-M1 = (γ−1, γ, α, α−1) as one H-M rep. and

H-M2 = (γ, γ−1, α, α−1) as the other. Use the same integer entries of α and γ to
give representatives of all lifts of H-M1 to Ni(PSL2(Z/52),C34)in,rd:

gggAγ−1 ,Aγ ,Aα,Aα−1

def= (γ−1(I2 +5Aγ−1), γ(I2 +5Aγ), α(I2 +5Aα), α−1(I2 +5Aα−1)),

modulo conjugation by ker(PSL2(Z/52) → PSL2(Z/5)) subject to these conditions.
(6.2a) Entries in PSL2(Z/52): Entries of (Aγ−1 , Aγ , Aα, Aα−1) have trace 0.
(6.2b) Product-one: γ−1Aγ−1γ + Aγ + αAαα−1 + Aα−1 = 02.

The effect of conjugation of U by I2 + 5B sends the former to

(I2 + 5B)(U)(I2 − 5B) = U + 5([B, U ]),

with [B, U ] = BU − UB.
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With no loss, assume Aγ = 02, and consider the case Aα also is 02. Write

Aγ−1 =
(

a b
c −a

)
, so γ−1Aγ−1γ = −Aα−1 . With γ−1 =

(
0 −1
1 −1

)
,

Aα−1 = −
(

0 −1
1 −1

)(
a b
c −a

)(
1 −1
1 0

)
= −

(
a−c c

b−c+2a c−a

)
.

It is meaningful to have q ∈ M̄4 act on gggAγ−1 ,Aγ ,Aα,Aα−1
, by acting on its 4-

tuple. The Main Conjecture follows if for each q, so that its induced action mod 5
leaves (γ−1, γ, α, α−1) invariant, while not leaving gggAγ−1 ,Aγ ,Aα,Aα−1

invariant.

6.2. sh-incidence matrix for Ni(PSL2(Z/52),C34). §4.2.2 has the sh-incidence
matrix at level 0. For ggg in some Nielsen class Ni(G,C), denote the full collection of
elements in its reduced Nielsen class (its orbit under 〈G, 〈sh, q1q

−1
3 〉〉) by gggin,rd. The

cusp containing ggg (as a subset of Ni(G,C)) is the union of {((ggg)qj
2)

in,rd} running
over all integers j. Of course you only need at most the first 2 · (ggg)mp values of j.
We denote this set by Cuggg, the cusp of ggg.

Using this notation, Lem. 4.2 gives the 5 cusps of Ni(A5,C34) as Cu(H-M1)q
j
2sh

,
j = 0, 1, 2, 3, 4, with j = 0 the unique cusp of width 2, j = 1, 4 the cusps of
width 3, and j = 2, 3 the cusps of width 5. Now suppose H-M′

1 lies over H-M1

in Ni(PSL2(Z/52),C34). Then, we get the complete set of representatives of cusps
for the spaces corresponding to braid orbits on Ni(PSL2(Z/52),C34) by considering
the collection Cu(H-M′

1)q
j
2)sh, j = 0, 1, 2, 3, 4.

Let H-M′′
1 denote another representative over H-M1. A contribution to the

sh-incidence matrix of Ni(PSL2(Z/52),C34)in,rd over the level 0 position of (i, j)
comes from (H-M′

1)q
j
2sh)in,rd = (H-M′

1)q
i
2)

in,rd for some H-M′
1 and H-M′′

1 . So, to
find such contributions requires only looking at the cases where RETURN

6.2.1. sh-incidence Matrix: r = 4 and Niin,rd

( n+1
2 )

. Here is how to look at the level
0 sh-incidence matrix.

6.3. The rest of the Liu-Osserman Examples. Throughout this subsec-
tion assume we are given an odd-cycle Liu-Osserman Nielsen class Ni(An,C.

6.3.1. Remaining odd-cycle Liu-Osserman examples for r = 4. Give What
changes if we don’t have the (n+1

2 )4 case?
6.3.2. What about general r ≥ 3?

Example 6.2. Give the alternating group obstructed components here.

6.3.3. Umbrella result.

6.4. Rational functions representing elements of Ni(An,C( n+1
2 )4)

abs.
For n ≡ 1 mod 4 (and especially for n ≡ 1 mod 8) we consider rational func-
tions representing Ni(An,C( n+1

2 )4 . Here’s the rubric.
Rational functions in Q with branch points in Q, of which (with no loss) we

take three to be {0, 1,∞} and the other as z′. So, we can write such an f
def= fx′(x) :

P1
x → P1

z as h1(x)x
n+1

2 /h2(x) with h1, h2 of degree n−1
2 . This automatically puts 0

(resp. ∞) as the ramified point over 0 (resp. ∞). The following equations encode
the rest of the conditions at the branch points. These make 1 ∈ P1

x the ramified
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point over z = 1, to determine f
def= fx′(x) with x′ the ramified point over z′:

(6.3)
h1(x)x

n+1
2 − h2(x) = (x − 1)

n+1
2 m1(x)

h1(x)x
n+1

2 − z′h2(x) = (x − x′)
n+1

2 m2(x).

We can solve for h1, h2 as a function of m1 and m2:

(6.4)
(a) (z′ − 1)h2 = (x − 1)

n+1
2 m1 − (x − x′)

n+1
2 m2

(b) (z′ − 1)x
n+1

2 h1 = z′(x − 1)
n+1

2 m1 − (x − x′)
n+1

2 m2.

So, we want coefficients (total of n+1 coefficients) on the degree n−1
2 polynomi-

als m1, m2 polynomials so that h1 and h2 both have degree n−1
2 , simultaneously

figuring x′ as a function of z′.
Proposition 6.3. As x′ varies in P1

x \ {0, 1,∞}, we run over the connected
set of fx′(x) in the Nielsen class of covers with ordered branch points by solving the
equations (6.4) according to the stipulations above. For x′ lying in a field K, the
solution for fx′(x) has coefficients also lying in K.

Consider the cover Ψin,abs
n : H(An,C( n+1

2 )4)
in → H(An,C( n+1

2 )4)
abs. The top

space has one (resp. 2) components, defined over Q (resp. the unique quadratic
extension Kn of Q in Q(e

n+1
2 )) when n ≡ 5 mod 8 (resp. n ≡ 1 mod 8).

Proof. What we actually need to know, as x′ runs over Q is is that the
discriminant of the cover fx′ : P1

x → P1
z is not locally a square in Q{{x′}. We will

show for n ≡ 5 mod 8, it has expression in the square root of x′, while for n ≡ 1
mod 8 you must extend the constants by

Expand the zeros of fx′(x) = z about z′. �

6.5. Pure-cycle cases of non-genus zero covers. When r = 4, the reduced
Hurwitz space of a pure-cycle Nielsen class has a birational embedding in P1

j×P1
j . It

doesn’t matter if the covers in the family have genus 0 or not. To see that consider
such a cover ϕ : X → P1

z. Then, map the four branch points ϕzzz to their j invariant
jϕzzz . Above each branch point zi is a unique ramified point xi. So, that gives the j
invariant of xxx, which we denote jϕxxx . The birational embedding is ϕ → (jϕzzz , jϕxxx).
Notice this also holds for modular curves. There is a common reason for both cases,
though they do differ.

Lemma 6.4. Suppose r = 4, and C has the property that each conjugacy class
is represented by elements with a disjoint cycle of distinguished length, and also the
gcd of all cycle lengths in the conjugacy class is 1. Then, the reduced space embeds
in P1

j × P1
j . This applies to the modular curves X0(p) because they are the Nielsen

class of (Dp,C24), and the conjugacy class of multiplication on Z/p fixes just 0.
Why doesn’t this work for (Dpk+1 ,C24)?

6.5.1. Start of the MT for (A4,C±32 , p = 2). Here there is only the prime 2
to consider. This is the “easiest” case of pure-cycle covers of genus exceeding 0.
[Fr06a, Prop. 6.12] considers this case to show that both level 0 components of
the reduced absolute spaces are nonmodular curves, despite — like modular curves
— that they embed in P1

j × P1
j just as do modular curves.

Cusp representatives — 1st 3 for Ni+, 2nd 3 for Ni− — of the various cusp
orbits are in this list using the corresponding subscripts.

• ggg1,1 = ((1 2 3), (1 3 2), (1 3 4), (1 4 3))
• ggg1,3 = ((1 2 3), (1 2 4), (1 4 2), (1 3 2))
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Table 6. sh-Incidence Matrix for Ni+0

Orbit O1,1 O1,3 O3,1

O1,1 1 1 2
O1,3 1 0 1
O3,1 2 1 0

Table 7. sh-Incidence Matrix for Ni−0

Orbit O1,4 O3,4 O3,5

O1,4 2 1 1
O3,4 1 0 0
O3,5 1 0 0

• ggg3,1 = ((1 2 3), (1 3 2), (1 4 3), (1 3 4))
• ggg1,4 = ((1 2 3), (1 2 4), (1 2 3), (1 2 4))
• ggg3,4 = ((1 2 3), (1 2 4), (1 2 4), (4 3 2))
• ggg3,5 = ((1 2 3), (1 2 4), (1 4 3), (2 3 1))

Some comments: ggg1,1 is an H-M rep, and a 2 cusp, while ggg1,3 is the shift of an
H-M rep. On the other hand, the cusp orbit of ggg3,5 has length three by Princ. ??.
From Princ. 3.3 we know immediately that the Main Conjecture holds for any H-M
cusp branch. Here, however, is a harder question.

Question 6.5. FP 3 says there is at least one H-M component branch defining
a MT for (A4,C±32 , p = 2). Does the Main Conjecture hold for every component
branch?

Not much of a question if there is only one component branch, or slightly worse
there are several component branches, all H-M. Neither of these, however, holds.

6.5.2. Level 1 of MTs for (A4,C±32 , p = 2).

7. Connectedness Applications

7.1. Two problems: Davenport’s and Genus 0.

7.2. Fried-Voelklein. Whatever is NG,p = | ker(R∗
G,p → G)|, then the braid

orbits on Ni(G,C) with C a collection of p′ conjugacy classes realizing giving lifting
invariants can be as large as NG,p. That certainly happens if the conjugacy classes
in C are repeated sufficiently often. The following example appears again in §6.5.1.
It shows the .

Note the many uses of H-Mreps as in [FV91] or [?].

7.3. STC. Divide responding to the following two — from (??) — into two
parts.

(7.1a) Given Ni(G,C, p), when does it support a MT defined over a number
field K?

(7.1b) When r ≥ 5, what relations can we expect among the two MT conjec-
tures and the STC.

(2.3c) is a grand use of the B(ranch) C(ycle) L(emma) for which the following
is a summary: Gist of [FK97, Thm. 4.4] and [D06].
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Start with any number r0, and consider finding Q regular realizations of all
p-Frattini extensions of your favorite p-perfect G using no more than r0 branch
points, without any declaration as to the kind of conjugacy classes.

Example: With p = 5, find such regular realizations of all the dihedral groups
{D5k+1}∞k=0 with no more than three trillion branch points. The general conclusion
is there are (≤ r0) p′ conjugacy classes of G for which there is a (nonempty) MT
whose levels have points corresponding to those realizations. (For the dihedral case
that means that you can take the conjugacy classes in the regular realizations to be
no more than r0 repetitions of the involution class.) That restates (2.3d). Further,
all of whose levels have a Q point. The Main Conjecture is that it is not possible
that all levels of a MT could have points over a given number field K.

Appendix A. Classical Generators of π1(P1
z \ zzz0, z0)

Start with R(iemann)-H(urwitz) to compute the genus of an elements in a
Nielsen class. Put here also the minimal points on what is a Hurwitz space, and
the distinction between inner and absolute classes, and the reduced versions of each.

Appendix B. Classification of cusps

Appendix C. A p′ moduli argument

Finish the argument of Prop. 2.8 about non-degree 1 when there is a non-trivial
p′ center. [Fr06a, Rem. 3.4] notes the universal p-Frattini cover pG̃ of G identifies
with the fiber product over G/Z of G and the universal p-Frattini cover of G/Z.
Thus, Z is the center of pG̃. Conclude: The (one-one) image of Z by the map
pG̃ → Gk then identifies with the center of Gk.
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uli Spaces, Journal de l’Institut Mathématique de Jussieu, 5/03 (2006), 351–371.
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